Deep UHV gauges Theory and Practice

Bruce Kendall Elvac Laboratories

Authored in part by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177

Pressure ranges

- Deep ultra high vacuum: below 1x10⁻¹⁰Torr
 - Commercially available gauges exist
 - Care must be taken in using gauges properly
- Extreme high vacuum: below 1x10⁻¹²Torr
 - Few room temperature systems obtain XHV
 - Electron sources for accelerators would benefit
 - Particle collider interaction regions
 - Reactive surface science applications
 - Nano-electronics
- Ionization gauges required to measure deep UHV
 - Hot filament gauges
 - Cold cathode gauges

Hot filament gauges

Bayard-Alpert Modulated Bayard-Alpert Extractor Bessel Box Bent Beam

Hot filament gauges

P = nkT

- Electrons produced by hot filament
- Electrons accelerated toward biased grid
- Gas molecules ionized by electron impact
- Ionized molecules collected on wire
- Collector current proportional to gas density

21 October 2008

4

Hot filament gauge errors

X-ray limit Inverse X-ray effect Electron Stimulated Desorption Outgassing from heated surfaces

Hot cathode gauge operation and errors

Anode

- 1. True gas ionization
 - Positive current
- 2. X-ray effect
 - e- on anode -> photons emitted
 - Photons on collector -> electrons emitted
 - Extra positive current
- 3. Inverse X-ray effect
 - e- on anode -> photons
 - Photons on walls -> electrons
 - Electrons to collector
 - Extra negative current
- 4. Electron stimulated desorption
 - e- strike gas molecules on anode
 - Gas ionized and reaches collector
 - can be distinguished with energy analysis
 - Neutral atom desorbed
 - Ionized within grid
 - Indistinguishable from real gas
 - Must eliminate souce

Reduction of x-ray and ESD errors

Modulation Geometry

- Extends BA gauge below 10⁻⁹ Torr
- Redhead modulated gauges 1960s
 - ETI / Teledyne sold commercial version
- Modulator varied between potentials near grid and collector voltages
 - Careful selection of potentials required to avoid changing ESD and x-ray currents
 - Real signal modulates, background constant
 - High pressure (10⁻⁸ Torr) determination of modulation constant

MBAG benefits

- Retrofit existing BAG with external modulation unit
- Unaffected by electrometer drift
 - Read pressure near/better? extractor gauge

Reduction of x-ray and ESD errors

- CERN style commerical MBAG coming from Volotek
 - CERN vendor for MBAG controllers
 - Finishing prototyping
 - Commercial manufacturing run soon
 - Hope to exceed extractor capabilities
 - XHV vacuum work
 - heat treat flanges
 - ceramic feedthroughs (previously glass)
 - 4.5" flange less wall interference
 - CERN working on qualification
- Televac/ETI have produced metal MBAG as special order – Kendall, custom electronics

Reduction of x-ray and ESD errors

Geometry

- Reduce collector solid angle (thin wire BA)
- Shield the collector from line of sight to the grid
 - Extractor
 - Bent Beam
 - > Helmer
 - > Ion Spectroscopy
 - Bessel Box
 - > AxTran
- Energy discrimination
 - Repeller in extractor
 - Bent beam gauges

Oerlikon Leybold Extractor gauge

X-ray limit measurements

Fumio Watanabe JVSTA 9 (1991).

Determines x-ray limit for certain setup Current at reflector > grid Current with voltages off

Gauge	X-ray Limit (Torr)
Watanabe A	2.1 x 10 ⁻¹²
Watanabe B	1.6 x 10 ⁻¹²
Watanabe C	1.9 x 10 ⁻¹²
JLab A	0.63 x 10 ⁻¹²
JLab Gun 2	>2 x 10 ⁻¹²
JLab Gun 3	>2 x 10 ⁻¹²

Modulated extractor gauge

- Cornell vacuum group with Charlie Sinclair (retired)
 - Modulate reflector potential with AC voltage
 - Read signal using Lock-in amplifier system
 - Measure field-off current (often negative) and account for this
 - Real time measurement with compensation for x-ray limit

Extractor gauge long-term stability data

- Excellent stability with near continuous operation for more than a decade
- Venting 3-4 times per year
- Largest sensitivity changes follow system bakeouts

Factors affecting stability

- Excessive heating deformation
- Contamination
- Mechanical damage
- Nude gauge mounting geometry
- Degas protocol

Energy analysis for ESD ions

Bent Beam Gauges

Bessel Box

Extractor (Torr)

.E.07 .E.06

1.E.12 .E.11 .E.10 .E.09 .E.08

Application notes

- Hot filament gauges will heat walls
 - Reduce heat of gauge (I mA instead of I0 mA)
 - Outgassing from walls reduced
 - More gas adsorbed on grid, walls -> ESD increased
 - Use better wall materials
 - BeCu Watanabe
 - Silco-steel[™] Kendall
 - Heat walls until molecules don't stick
 - Kendall: operation 700-800K eliminates adsorbed molecules on walls and grid
 - Eliminates ESD neutrals
 - Watanabe: heated grid / cold cathode gauge
- Electronics issues
 - Cable leakage
 - Replace coax cables with twin-ax or tri-ax
 - Electrometer stability
 - Always use same head/control unit combination
- Calibrate each gauge (vs. spinning rotor gauge) regularly for optimal performance

Cold Cathode Gauges

Magnetron Inverted Magnetron Double Inverted Magnetron Ion pump?

Cold Cathode Gauge Operation

- Electron cloud trapped in crossed electric and magnetic fields
 - Spontaneously starts in presence of electric field at HV pressures
 - Electron cloud density limited by space charge effects
- Ionized gas collected at cathode
 - UHV starting element
 - Radioactive
 - Thermal
 - ► UV

Modern Cold Cathode Gauge

Edwards

low field

magnet

design

SN

- No gauge heating
- Very rugged, low power consumption
 - Lunar missions, space applications
- Change in power law behavior at "magnetron knee" ~10⁻⁹ Torr
- Stray magnetic fields minimized in modern designs
- Accuracy for ELVAC modification of Televac CCG
 - Stronger magnets

Televac

Double

Inverted

design

- Smaller volume
- Precision alignment mounting jig
- Controller improvements

Kendall |VSTA 18

M. L. Stutzman and B. R. F. Kendall

1724 (2000).

Ion pump as a pressure gauge

- PE sputter DI pumps
 - Penning cell
- Power supply with Electrometer

- Current linear vs. extractor gauge
- Minimum voltage to sustain discharge

UHV ION PUMP SUPPL

 Does not work with all ion pump designs (Noble ion configuration)

Conclusions

Hot filament gauges

- X-ray limit, ESD ions
 - Geometry
 - Modulation
- ESD neutrals
 - Heated grid gauges
 - Novel materials
- Sensitive to abuse, contamination
- Lowest pressure measured with Helmer gauge

Cold cathode gauges

- Rugged, low energy consumption
 - Lunar, space applications
- Compensation for "knee" in electronics
- Ion pumps with sensitive current monitor shown to work as a relative pressure gauge
- Extension of conventional gauges toward XHV requires more work

Small market – few commercially available gauges Careful selection, utilization essential for accurate readings Deep UHV gauges essential for improvements toward XHV

