Experimental program

1) Polarization Studies

a) Polarization vs. Atomic Hydrogen Exposure
    i) H-clean a Spire wafer like Paul did; make repeated measurements of polarization after exposure to atomic hydrogen; 0 minutes, 15 minutes, 30 minutes, 60 minutes, 120 minutes total exposure time. QE scan for each test to provide accurate site reference. Keep sample orientation the same.
A new Spire wafer has been cut on May 21, 2001(sample labels).

NEW!!!!Photos from the lucky wafer removed after 7 months of cooperation (02-20-02)

    ii) Take one wafer and clean with atomic hydrogen in portable H station. Use a moveable mask and vary the exposure on a single wafer.
    iii) Test a Russian wafer. Does polarization depend on H exposure?
    iv) Anodize and strip a wafer the way SLAC prepares wafers for their guns. Compare QE and polarization to our technique.
    v) Look at GaAs surface under microscope (what kind of scope?). Strained layer samples - no H cleaning, small H cleaning (15 minutes), and excessive H cleaning (> 60 minutes). Similarly, look at the surface of bulk GaAs after exposure of atomic H.
    vi) Repeat polarization vs. H-exposure using a bulk GaAs sample. Do we see the same effect?

b) Polarization vs. sample thickness and dopant density.
    i) Repeat Peter's measurements but pay close attention to keeping H exposure constant and small. Perhaps Peter's results were inconclusive because he inadvertently "roughened" the surface of the material with too much atomic hydrogen. ("roughened" = whatever mechanism hurts polarization). I think we have unused material to make a complete reevaluation of all Peter's data. Perhaps we find we need to anodize and strip the samples the way SLAC prepares wafers for gun use.
    ii) Use the portable H cleaner as an H ion source and implant a bulk wafer with ions of different energy. The idea is to create different sample thicknesses at each ion implant zone. Use one wafer with a mask to vary the sample thickness. Need QE scans.
    iii) Purchase more SPIRE strained layer wafers with different active layer thicknesses; 50 nm, 75 nm. We already have 100 nm thick samples. Can we get beam polarization > 80% in this manner?

c) Continue to characterize new material
    i) New Spire material
    ii) Russian wafers (we have at least 4 more samples).

d) Higher beam polarization via two-photon absorption.

2) Lifetime Studies

a) Lifetime and the effects of ambient light
    i) Extract constant beam current (e.g., 100 microA) and measure lifetime versus laser wavelength. Use bulk GaAs and ti-sapphire laser located near the gun (i.e., eliminate the fiber). Use Brian Bevins' current lock to drive an attenuator and keep current constant throughout test. Use a Coulomb counter to log charge delivered to dump. Record ion pump current with floating picoammeter for each wavelength.
    ii) Measure lifetime vs laser radial position on cathode. Use unanodized bulk GaAs. Need QE scans after each position. Record ion pump current with floating picoammeter. Measure laser spot size (you get this indirectly with each qe scan).
    iii) Measure lifetime vs. active area diameter. Pick three (or more) anodized donut sizes; e.g., 9 mm, 5 mm, 3 mm.

b) Lifetime as a function of gas species.
For this we are using the thickness of the active layer as a "diagnostic". Ions of various species and energy will be implanted in the active area where they reduce QE or they are implanted behind the active layer where they do no harm to QE. Information from these studies may help us engineer better vacuum canisters.
    i) Measure lifetime versus base pressure of different gas species; H2, CH4, CO, CO2, Ar, etc. QE damage will depend on the following; pressure, radial location of laser spot, ionization cross section of residual gas species, and stopping depth. We are confident we are drawing the correct conclusions if we see QE scans that make sense. For example, when we poison the gun vacuum with H2, we should see QE damage at the electrostatic center and at laser spot location (no through). When we poison the gun vacuum with CH4, we should see a QE "trough" from electrostatic center to laser spot location.

c) Lifetime vs. laser spot size.
    i) Keep current constant but vary the size of the laser spot at the cathode. We suspect lifetime will grow with laser spot. Is this true? Are we justified quoting lifetime in units of charge/area?

3) Cathode Analyzing Power Studies

Need to define these studies. Or get in the habit of making analyzing power measurements for every sample and see what information falls out. It may be worthwhile to modify QE-Tool so that we "divide" two data sets; pockel cell off and pockel cell at halfwave voltage.

4) Helicity Correlated Beam Studies

Need to define these tests. Will require adding beamline diagnostics. Using the test cave gun is probably not necessary if Joe's tunnel/injector work starts to bear fruit.

 Site maintenance performed on June 30, 2003
 Maintained by baylac@jlab.org