(Air Liquide	DOCUMENT No : C1303-NT-400(5)	
	PROJECT: LCLS-II 4.5K COLD BOX SYSTEM	Page $1 / 137$

CONTROL PHILOSOPHY

Checked by: V. GRABIE Function: Technical advisor	Distribution:
Written by: Gilles FLAVIEN	
Function: Technical Manager gilles.flavien@airliquide.com	JLAB

MODIFICATIONS RECORDING

ISSUE OF MODIF	DATE	WRITTEN BY	$\begin{gathered} \text { CHECKED } \\ \mathrm{BY} \end{gathered}$	EVOLUTION OF THE DOCUMENT (Updated pages)	JUSTIFICATION OF THE MODIFICATION
(0)	07/27/2016	G.FLAVIEN	V. GRABIE	Issue for FDR	
(1)	10/18/2017	G.FLAVIEN		Update due to FMEA cómments and Vacuum skid clarification	- Control loops integration windup - LHe level update - Turbines Efficiency Calculation - Vacuum System Sequence - Emergency stop - Alarm, Interlock and Trip list update
(2)	08/29/2018	G.FLAVIEN		General Update following JLAB comments	- Meeting from Sept 27.28, 2018
(3)	01/21/2019	G.FLAVIEN		Update following JLAB comments	- JLAB Comments On January $10^{\text {th }}, 2019$
(4)	06/28/2019	G.FLAVIEN		Update following JLAB comments	- JLAB Comments On April 2nd, 2019
(5)	01/08/2020	G.FLAVIEN		Update following Dec 2019 Test Bench week at JLAB	-

DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)
PROJECT: LCLS-II 4.5K COLD BOX SYSTEM
\section*{TABLE OF CONTENTS}

Page: 2/137

1. INTRODUCTION 6
2. REFERENCE DOCUMENTS 6
3. GLOSSARY AND ABBREVIATIONS 6
4. CONTROL LOOPS 7
4.1 Control Loops - General 7
4.1.1 PID action definition. 7
4.1.2 Set points 7
4.1.3 Integration windup 7
4.1.4 Attenuators definition 7
4.1.5 SYSTEM ACTION AT FIRST SCAN 8
4.2 Control Loops Warm HP Flow sharing 9
4.2.1 Introduction 9
4.2.2 TIC-22400 - HP Flow sharing controller on PV-22400 and PV-22402 9
4.2.3 CORRESPONDANCE BETWEEN TIC-22400 OUTPUT AND PV-22400 and PV022402 OPENING 10
4.3 CONTROL LOOPS - LIC-22520 : LN2 LEVEL 11
4.4 Control Loops - AdSorbers regeneration Heaters 12
4.4.1 TIC-22418 (A \& B) - 80K Regeneration Heaters Temperature 12
4.4.2 TIC-22465-20K Regeneration Heaters Temperature 14
4.5 Control Loops - Turbines 16
4.5.1 PFD : Turbines Control 16
4.5.2 PIC-22405-Bearings Pressure 18
4.5.3 SIC-224X2 \& TIC-223X2 - Turbines speed 18
4.5.3.1 SIC-224X2 - Speed 20
4.5.3.2 TIC-224X2 / TIC-22466 - OUtlet Temperature 21
4.5.3.3 ATTENUATORS 22
4.5.4 PIC-224X6 \& EIC-224X6 - Turbines Brake and Efficiency. 25
4.5.4.1 PIC-224X6 - Brake Pressure 27
4.5.4.2 EIC-224X6 - "Efficiency" (optimal U1/C0) 28
4.5.4.3 Helium data for Turbine Efficiency Calculation 29
4.6 Control Loops - TURBINE 4 BY-PASS 33
4.6.1 PFD: 33
4.6.2 TIC-22485 - Turbine 4 by-pass. 33
4.6.3 Turbine 4 by-pass valve - Opening action when Turbine 4 stops 34
4.7 CONTROL LOOPS - Cold End BY PASS 36
4.7.1 PFD: 36
4.7.2 TIC-22389: Cold End by-pass 37
4.8 CONTROL LOOPS - TURBINE 4 DISCHARGE PRESSURE 37
4.8.1 PFD 38
4.8.2 Control Loops Overview 39
4.8.3 PIC-22393: Dewar supply 40
4.8.4 PIC-22485: Turbine 4 by-pass 40
4.8.5 PIC-22392: Cold Shields supply 40
4.8.6 PIC-22390 - Subcooler supply 41
4.8.7 PIC-22391: 4.5K supply. 41
4.9 Control Loops - Sub-cooler and Dewar Pressure 42
4.9.1 PFD: 42
4.9.2 PIC-22193: Subcooler pressure 42
4.9.3 PIC-22194: Dewar Pressure. 43
4.9.4 PIC-31020: Dewar Overpressure 43
4.10 Control Loops - Sub-cooler \& Dewar Level 44

DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)
 PROJECT: LCLS-II 4.5K COLD BOX SYSTEM

4.10.1 PFD 44
4.10.2 LIC-22195A - Subcooler LHe Level (Primary) 45
4.10.3 LIC-22195B - Subcooler LHe Level (Auxiliary) 46
4.10.4 LIC-22390 - Subcooler LHe Level (Auxiliary) 47
4.10.5 LIC-31000 - Dewar Level 47
4.11 CONTROL LOOPS - WARM SHIELDS 48
4.11.1 Connection Switch. 48
4.11.2 DPIC-22241 - Warm Shields Supply flow during Cool Down 48
4.11.3 DPIC-22242 - Warm Shields Supply flow during Nominal Operation 49
4.12 CONTROL LOOPS - COLD INTERCEPT 50
4.12.1 PFD: 50
4.12.2 PIC-22191 - Cold Intercept Pressure 50
4.12.3 TIC-22392 - Cold Intercept Temperature 51
5. COOL DOWN LINE LOGIC 52
5.1 Presentation 52
5.2 Transient Modes Cool Down Line Logic 53
5.3 Sub Atmospheric Recovery Cool Down Line Logic 55
6. OVERALL CONTROL PHILOSOPHY 57
7. SEQUENCE 410 / 430 - VACUUM SYSTEMS 58
7.1 Vacuum System - Pre Requisits 58
7.2 Vacuum System - Diffusion Pumps Thermal Snap Switches 58
7.3 VACUUM SYSTEM - Start 59
7.4 VACUUM SYSTEM - STOP OR TRIP 60
7.5 Vacuum System - Emergency stop 60
8. SEQUENCES - TURBINES 61
8.1 Sequence 510 - Turbine 1 61
8.1.1 Turbine 1 - Start 61
8.1.2 Turbine 1 - Stop 62
8.1.3 Turbine 1 - Trip 62
8.2 Sequence 520 - Turbine 2 63
8.2.1 Turbine 2 - Start 63
8.2.2 Turbine 2 - Stop 64
8.2.3 Turbine 2 - Trip 64
8.3 SEQUENCE 530 - TURBINE 3 65
8.3.1 Turbine 3 - Start. 65
8.3.2 Turbine 3 - Stop 66
8.3.3 Turbine 3 - Trip 66
8.4 Sequence 540 - Turbine 4 67
8.4.1 Turbine 4 - Start 67
8.4.2 Turbine 4 - Stop 68
8.4.3 Turbine 4 - Trip/Emergency Stop 69
9. MANUAL OPERATION - COLD BOX PREPARATION BEFORE COOL DOWN 71
9.1 Cold Box Preparation - Pre Requisits 71
9.2 Cold Box Preparation - Manual OPERATIONs 71
9.2.1 Start Turbine Bearings pressure Control Loop and all 4 Brake pressure Control Loops - From control system supervision 71
9.2.2 Connect Adsorbers to the HP Line 72
9.2.3 Connect HP Cold end to HP Line 72
9.2.4 Connection of the Cold Box to the MCS - From Upper Cold Box Platform 72
10. SEQUENCE 600 - COLD BOX COOL DOWN 73
DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)
PROJECT: LCLS-II 4.5K COLD BOX SYSTEM

Page: 4/137
10.1 Cold Box Cool-Down - Pre-Requisits 73
10.2 Cold Box Cool-Down - PFD 74
10.3 Cold Box Cool Down - Start 75
10.4 Cold Box Cool Down - Stop 79
10.5 Cold Box Cool Down - Trip / Emergency Stop 82
11. SEQUENCE 650 - LHE DEWAR CONNECTION MANAGEMENT 83
11.1 LHe Dewar Connection Management - Start 83
11.2 LHe Dewar Connection Management - Stop 85
11.3 LHe Dewar Connection Management - Trip / Emergency Stop 85
12. SEQUENCE 700 - WARM SHIELDS 86
12.1 WARM Shields - FLOW RETURN LOGIC 86
12.2 Warm Shields - Start 87
12.3 Warm Shields - Stop 88
12.4 Warm Shields - Trip / Emergency Stop 89
13. SEQUENCE 800 - COLD INTERCEPTS 90
13.1 Cold Intercepts - Start 90
13.2 COLD InTERCEPTS - Stop 91
13.3 Cold InTERCEPTS - TRIP / Emergency Stop 91
14. SEQUENCE 900-4.5K SUPPLY 92
14.1 4.5K Supply - Start 92
14.2 4.5K SUPPLY - STOP 93
14.3 4.5K SUPPLY - TRIP / EMERGENCY STOP 93
15. MANUAL OPERATION - WARM-UP 93
15.1 WARM-UP-Pre REQUISITS 93
15.2 Warm-Up-DiAgram 94
15.3 Warm-Up-Procedure 95
16. MANUAL OPERATION - ADSORBERS 97
16.1 Adsorbers: State 97
16.2 ADSORBERS: Regeneration Manual Sequence 99
16.2.1 Adsorber depressurization 99
16.2.2 Adsorber warm-up 100
16.2.3 Adsorber depressurization before pumping 101
16.2.4 Adsorber pumping 102
16.2.5 Adsorber filling. 103
16.2.6 Adsorber re-cool down 104
17. APPENDIXE 1 - ALARMS \& TRIPS LIST 105
18. APPENDIXE 2 - TRIPS ON PRESSURE AND SPEED VARIATION MEASUREMENT 119
18.1 Discharge Pressure Variation High 119
18.2 Speed Variation High 119
19. APPENDIXE 2 - INTERLOCKS TO AVOID TRIP SITUATIONS 120
20. APPENDIXE 3 - INSTRUMENTATION RANGES AND CALIBRATION TABLE 127
21. APPENDIXE 3 - VENTURI FLOW CALCULATION 131
21.1 Venturi Flow Calculation - Introduction 131
21.2 Venturi flow Calculation - Parameters 132
21.3 Venturi Flow Calculation - Parameters. 133
21.3.1 FT-22482 - Density Tabulation. 133

(Q) ${ }_{\text {creaire oxygen }}$ Liquide	DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5) PROJECT: LCLS-II 4.5K COLD BOX SYSTEM	Page : 5/137
21.3.2 F	2391 - Density Tabulation.	... 134
21.3.3	2392 - Density Tabulation.	... 134
22.	4 - CONTROL LOOPS PID VALUES 135
$\begin{array}{ll}22.1 & \text { CONTR } \\ 22.2 & \text { Contro }\end{array}$	L LOOPS PID - ALLEN BRADLEY PLC EQUATION:	... 135
	Loops PID - HP Line LINE and ADSORBERS 136
22.2 Contro	Oops PID - Turbines	.. 136
22.4 Contr	OOPs PID - Cold End 137
22.5 Contr	oops PID - Warm and Cold Shields	... 137

DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)

PROJECT: LCLS-II 4.5K COLD BOX SYSTEM
Page : 6/137

1. INTRODUCTION

This document explains how the cold box will operate.
It identifies and describes manual and automatic operations of LCLS-II 4.5K CB system.

2. REFERENCE DOCUMENTS

REF	Document Reference	Document Title
$[R 1]$	C1303 A 120	PID
$[R 2]$	C1303 DS 240	Turbines Data Sheets
$[R 3]$	C1303 A 116	PFD - Control Loops

3. GLOSSARY AND ABBREVIATIONS

LCB	Lower Cold Box
LPL	Low pressure
LPR	Cold Box Medium Pressure
MP	Compression Station Medium Pressure
HP	High Pressure
MCS	Main Compression Station
PINCH	Lecal temperature difference within an exchanger that is substantially less than either of two terminal differences and is minimum in the exchanger. By extension used also for terminal diferences.
SP	Set Point (value used by a regulation loop)
TRIM	Valve Lift (Different from actual CV opening)
UCB	Upper Cold Box LCB

4. CONTROL LOOPS

4.1 CONTROL LOOPS - GENERAL

4.1.1 PID action definition

Direct action: If the "Process Value" increases, the PID/actuator value increases.
(Sensor $\pi \rightarrow$ PID Output π).
Indirect action: If the "Process Value" increases, the PID/actuator value decreases,

$$
\text { (Sensor } \boldsymbol{\pi} \boldsymbol{\rightarrow} \text { PID Output У). }
$$

4.1.2 Set points

The set points of the control loops shall be adjustable from the HMI.
Modifications of these parameters are restricted to authorized personal.
Calculated set points (such as Turbines speed) shall be edged and the calculation shall not allow the set point to overpass the defined range.

4.1.3 Integration windup

Integral windup particularly occurs with process saturation, when the output of the process is limited at the top or bottom of its scale, making the error constant.

For example, the position of a valve cannot be any more open than fully open and also cannot be closed any more than fully closed.
Integral windup makes the actuator reaction way too long in case of a process change.
For instance, Turbines inlet valve may be 100% open for a long time, with Turbine speed still below the set point. In such condition, the speed controller must always be ready to decrease valve opening if Turbine speed needs to be limited.
In this case anti-windup can actually involve the integrator being turned off for periods of time until the response falls back into an acceptable range.

4.1.4 Attenuators definition

Attenuators can be implemented on control loops in order to avoid side effect which can be generated by the control loop.
For instance: discharge temperature of the turbine too low.
The attenuator is calculated and used as follows:

Attenuator	Sensor:	XT xxxxx	
	Sensor Value	X 1	X 2
	Attenuator Value	Y 1	Y 2

(a) Air Liquide	DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5) PROJECT: LCLS-II 4.5K COLD BOX SYSTEM	Page : 8/137

$\mathrm{X} 1, \mathrm{X} 2, \mathrm{Y} 1$ and Y 2 shall be adjustable from the HMI.
Modifications of these parameters are restricted to authorized personal.
NB: A control loop can have several attenuators. In this case, the product of the attenuators applies to the loop.

NB: The attenuator coefficient will then apply to the Set Point i.e.:
\checkmark Turbines: .. Speed
\checkmark Valves:... Opening
\qquad
\checkmark...

4.1.5 SYSTEM ACTION AT FIRST SCAN

At first scan (Power ON), all Automatic actuators (Control Valves, ON/OFF Valves, Heaters) shall be set in

JLAB:
System Action at First Scan: all automatic actuators is set to Automatic mode in their failure position.
In case previous mode was manual, then code will change the mode from manual to auto mode during first scan. Is it ok with you?
ALATUS:
Yes

PROJECT: LCLS-II 4.5K COLD BOX SYSTEM

4.2 CONTROL LOOPS WARM HP FLOW SHARING

4.2.1 Introduction

The duty of the HP flow sharing control is to limit the waste of refrigeration from LPR and LPL lines to limit the consumption of Liquid Nitrogen.
Two control valves (PV-22400 and PV-22402) on the HP line drive the flow towards the HP/LPR/LN2 Heat Exchanger (HX-1A) and the HP/LPL Heat Exchangers (HX-1B).

4.2.2 TIC-22400 - HP Flow sharing controller on PV-22400 and PV-22402

TIC-22400 tries to minimize the difference of temperature of the various flow streams returning from the Cold Box:

- If LPR or N 2 flows from HX-1A are colder than the LPL flow from HX-1B:
\rightarrow the controller will reduce HP flow to $\mathrm{HX}-1 \mathrm{~B}$ to force more exchange with cold flow from $\mathrm{HX}-1 \mathrm{~A}$.
- If LPR or N 2 flows from $\mathrm{HX}-1 \mathrm{~A}$ are warmer than the LPL flow from $\mathrm{HX}-1 \mathrm{~B}$:
\rightarrow the controller will reduce HP flow to $\mathrm{HX}-1 \mathrm{~A}$ to force more exchange with cold flow from $\mathrm{HX}-1 \mathrm{~B}$.

(Air Liquide	DOCUMENT N : $:$ C1303-NT-400(5)	
	PROJECT: LCLS-II 4.5K COLD BOX SYSTEM	Page : 10/137

TIC-22400: Warm HP flow repartition using PV-22400 and PV-22402

DTIC-22400	$\underline{\text { Object: }}$	$\underline{\text { HP flow control }}$
	Actuators:	PV-22400 and PV-22402
	Process Value:	Min(TT-22505,TT-22201)-TT-22101
	Set Point:	$\underline{0.0 K^{*}}$
	Action:	Direct

* Indicative Values: Accessible from HMI.

4.2.3 CORRESPONDANCE BETWEEN TIC-22400 OUTPUT AND PV-22400 and PV022402 OPENING

The correspondence between the controller output and the Valves opening shall be coded as follows:

- PV-22400:

CO shall be set at 45% and shall be adjustable from HMI .

- PV-22402

C2 shall be set at 55\% and shall be adjustable from HMI .

When TIC-22400 is turned OFF:

- TIC-22400 output is forced at 0\%
- PV-22400 and PV-22402 remains in their position (the program or the operator takes over on the control of these 2 valves)

When TIC-22400 is turned ON: - see cood down

- TIC-22400 output is forced at 0%
- PV-22402 opening to 100% shall be on a ramp 1\%/s

JLAB:
What is the failure position for TIC-22400 control? PV22402 $=100 \%$ and PV22400 $=0 \%$? Or both valve 0% ?
ALATUS:
Both Valves at 0\%

4.3 CONTROL LOOPS - LIC-22520 : LN2 LEVEL

The LN2 level regulator will control the level of LN2 in the phase separator using the LN2 inlet valve PV-22520.

- LIC-22520: LN2 phase separator level

LIC-22520	Object :	LN2 level
	Actuator :	PV-22520
	Process Value:	LT-22510
	Set Point :	$\mathbf{7 0 \% \sim 1 3 0 ~ m b a r ~}$
	Action:	Indirect

* Indicative Values: Accessible from HMI.

Conversion Formulae:

$$
\text { Level } \%=\frac{\text { LT }-22510[\text { mbar }]}{190[\text { mbar }]}
$$

PROJECT: LCLS-II 4.5K COLD BOX SYSTEM

4.4 CONTROL LOOPS - ADSORBERS REGENERATION HEATERS

The regeneration heaters are wrapped around the adsorber vessels.
The control will consist in an ON/OFF heating until heater temperature reaches a maximum value.

4.4.1 TIC-22418 (A \& B) - 80K Regeneration Heaters Temperature

■ TIC-22418 (A-B): 80K Adsorbers regeneration Heaters Temperature

Each 80 K Adsorber is equipped with a set of Heaters:

- 80 K Adsorber A:
- 3 sets of 2 Heaters (A-A-1, A-A-2), (A-A-3, A-A-4), (A-A-5, A-A-6) connected by default.
- 3 Heaters (A-B-1, A-B-2), (A-B-3, A-B-4), (A-B-5, A-B-6) not connected initially (Spares)
- 80K Adsorber B:
- 3 sets of 2 Heaters (B-A-1, B-A-2), (B-A-3, B-A-4), (B-A-5, B-A-6) connected by default.
- 3 Heaters (B-B-1, B-B-2), (B-B-3, B-B-4), (B-B-5, B-B-6) not connected initially (Spares)

Some Heating element are equipped with doubled Temperature sensors.
The program shall use the 2 temperature sensors corresponding to the 2 equipped heating elements being used.

The following describes the Heating elements with the corresponding Temperature sensors.

- 80 K Adsorber A:

Q) Air Liquide	DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5) PRoJECT: LCLS-II 4.5K COLD BOX SYSTEM	Page : 13/137

- 80K Adsorber B:

For the Heating control, the temperature to be controlled will be calculated as follows:

$$
\begin{aligned}
& \mathrm{TT}-22418 \mathrm{~A}=\operatorname{Max}[\mathrm{TT}-22418-\mathrm{AA} 1 / \mathrm{TT}-22418-\mathrm{AA} 2 / \mathrm{TT}-22418-\mathrm{AB} 1 / \mathrm{TT}-22418-\mathrm{AB} 2] \\
& \mathrm{TT}-22418 \mathrm{~B}=\operatorname{Max}[\mathrm{TT}-22418-\mathrm{BA} 1 / / \mathrm{T}-22418-\mathrm{BA} 2 / T \mathrm{~T}-22418-\mathrm{BB} 1 / \mathrm{TT}-22418-\mathrm{BB} 2]
\end{aligned}
$$

DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)
PROJECT: LCLS-II 4.5K COLD BOX SYSTEM
Page : 14/137

TIC-22418 (A/B)	Object	80K Adsorbers Heaters temperature
	Actuator :	80K Ads A \rightarrow EH-22418A 80K Ads $B \rightarrow E H-22418 B$
	Process Value:	80 K Ads $\mathrm{A} \rightarrow$ TT-22418 A
		80 K Ads B \rightarrow TT-22418 B
	Set Point :	350 K
	Action :	Indirect

Note: if TT-22418-AA1 / TT-22418-AA2 have more than 30C difference, an alarm shall be triggered. if TT-22418-AB1 / TT-22418-AB2 have more than 30C difference, an alarm shall be triggered.
Note: if TT-22418-BA1 / TT-22418-BA2 have more than 30C difference, an alarm shall be triggered. if TT-22418-BB1 / TT-22418-BB2 have more than 30C difference, an alarm shall be triggered.

4.4.2 TIC-22465 - 20K Regeneration Heaters Temperature

The 20K Adsorber is equipped with a set of Heaters:

- 3 Heaters A-1, A-2, A-3 connected by default.
- 3 Heaters B-1, B-2, B-3 not connected initially (Spares)

Each Heating element is equipped with doubled Temperature sensors.
The program shall use the 3 temperature sensors corresponding to the 3 heating elements being used.

The following describes the Heating elements with the corresponding Temperature sensors.

For the Heating control, the temperature to be controlled will be calculated as follows:
TT-22465 $=$ Max [TT-22465-A1 / TT-22465-A2 $/$ TT-22465-A3 $/$ TT-22465-B1 / TT-22465-B2 / TT-22465-B3]

DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)
PROJECT: LCLS-II 4.5K COLD BOX SYSTEM
Page: 15/137

TIC-22465	Object :	20K Adsorbers Heaters temperature
	Actuator:	EH-22465
	Process Value:	TT-22465
	Set Point :	350K
	Action :	Indirect

* Indicative Values: Accessible from HMI.

Note: if TT-22465-A1 / TT-22465-A2 / TT-22465-A3 have more than 30C difference, an alarm shall be
if TT-22465-B1 / TT-22465-B2 / TT-22465-B3 have more than 30C difference, an alarm shall be triggered.

PROJECT: LCLS-II 4.5K COLD BOX SYSTEM

4.5 CONTROL LOOPS - TURBINES

4.5.1 PFD : Turbines Control

The LN2, turbine 1, turbine 2 and turbine 3 provide cooling power to pre-cool the Helium before final Expansion through Turbine 4. For optimal pre-cooling, the turbines 1, 2 and 3 control the liquefier temperature profile. Turbine 4 controls the production rate.

TURBINES 1, 2, 3: Pre-Cooling \& Cold Box Temperature Profile

- Their speed is controlled by their inlet valves.
- Their speed is adapted to maintain a constant discharge temperature.
- However, T1, T2 and T3 will be slow down by controllers, if
- LPR or LPL Pressure is too High
- Level of LHe is too high
- Refer to section 4.5.3.3 for complete attenuator list

TURBINE 4: Production Rate

- Speed will be kept to its nominal value to maximize production.
- However, T4 will be slow down by controllers, if the production is such that:
- Adsorber Temperature 20K cannot be kept.
- Refer to part 4.5.3.3 for complete attenuator list

5 Control loops related to the Turbines are used:

- Bearing Pressure control loop (1 controller for all 4 Turbines)
- Speed Control loop
- Turbine discharge temperature Control loop
- Brake Pressure Control loop
- Efficiency optimization Control loop

() Air Liquide	DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)
PROJECT: LCLS-II 4.5K COLD BOX SYSTEM	

Page : 17/137

4.5.2 PIC-22405 - Bearings Pressure

Note: Bearing pressure controller PIC-22405 stait / stop automatically starts/stops all 4 Turbines Brake pressure controllers PIC-224X6.

PIC-22405	Object :	Turbines Bearings Pressure
	Actuator:	PV-22405
	Process Value:	PT-22405
	Set Point :	12 Atm* (Entering lowen value pi
	Action :	Indirect

The minimum pressure required at turbines bearing inlet determines the set point for this regulation.
Turbines bearing inlet pressure is continuously compared to the bearing discharge pressure to ensure a sufficient stiffness of the Bearing.
The following graph gives the nominal pressure conditions for the 4 Turbines:

12 Atm is the lowest acceptable set point for this control loop.

The discharge pressure is not expected to move far from a nominal 1.5 atm value.
\rightarrow The Bearing Pressure set point should thus be fix. But if the operation of the Cold Boxes shows that Turbines discharge pressure varies in wider proportions, a logic to adjust the set point can be developed.

4.5.3 SIC-224X2 \& TIC-223X2 - Turbines speed

Turbine Speed is controlled using a cascade regulation:

- Turbine discharge temperature: TIC-223x2
\rightarrow The output of this regulator is used as a set point for the $2^{\text {nd }}$ controller: Speed Control
- Turbine Speed: SIC- 224×3
\rightarrow Controls the turbine speed by adjusting the turbine inlet valve.
\rightarrow This controller will have attenuators to lower the turbine speed set point before it reaches OFFDESIGN or UNSAFE conditions.

Note: The objective is to operate the Turbines with the inlet valve 100% open. The set points for the Speed and for the discharge Temperature are therefore slightly further the nominal values (Speed slightly Higher, Temperature slightly lower), but still in the range of a safe operation of the turbines.
Note: For Turbine 4 (Joules Thomson), the discharge temperature is not controlled. \rightarrow Turbine upstream temperature is controlled (20K adsorber temperature is used for this controller).

(Q) Air Liquide	DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5) PROJECT: LCLS-II 4.5K COLD BOX SYSTEM	Page : 19/137

NOTE: WHILE STARTING CONTROL LOOPS IN CASCADE:

Starting the Control Loops shall be performed smoothly, using Tracking, i.e:

1. When the Speed Control Loops (SIC) is started:
a. The Output of the regulator is set equal to the Control Valve (CV) position. (no Step)
b. The SP (Set point) is equal to the PV (Process Value), i.e. the actual Turbine Speed.
2. When the Temperature Control Loops (TIC) is started:
a. The Output of the regulator is forced at Speed Control Loop SP (Set Point).
b. The SP is equal to the PV, i.e. the actual Turbine Discharge Temperature.

3. Once the SIC and TIC have been started:

a. TIC SP can be ramped to the defined value (refer to Turbine Sequences for Ramp value). \rightarrow This will increase TIC output, which will increase SIC set point progressively.
\rightarrow No step in Control Valve is expected!

JLAB:
SIC224X2 set point = Maximum speed if TIC224X2 is OFF.
We have no scenario in control philosophy where SIC is ON and TIC is OFF.
Only situation we can think -> At X514 (turbine nominal state), if operator make TIC loop manual, and then tries to dial in a X $\%$ to go to a specific speed point.
Do we foresee this condition of TIC OFF and ramping speed up to maximum speed automatically during commissioning? ALATUS:
I have no opinion just yet. I believe it can work in any condition with both controllers ON, but I let the window open for a possible disconnection of TIC if found necessary during commissioning

DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)

PROJECT: LCLS-II 4.5K COLD BOX SYSTEM

Page : 20/137

4.5.3.1 SIC-224X2 - SPEED

Note: It shall be possible to set a maximum opening for Each Turbine inlet valve that will be defined during the commissioning. This value will ensure a fast response time of the valve.

- SIC-22432: Turbine 1 Speed
tested

SIC-22432	Object	Turbine 1 speed	
	Actuator :	PV-22432	
	Process Value:	ST-22433	[\%]
	Set Point	2220 Hz if TIC-22332 is OFF TIC-22332 output if TIC-22332 is ON $[0 \%-100 \%] \rightarrow[1000 \mathrm{~Hz}-2220 \mathrm{~Hz}]$	
	Action :	Indirect	

SIC-22452: Turbine 2 Speed

SIC-22452	Object	Turbine 2 speed	
	Actuator	PV-22452	
	Process Value:	ST-22453	[\%]
	Set Point	2020 Hz if TIC-22352 is OFF	
		TIC-22352 output if TIC-22352 is ON	
		[0\%-100\%] \rightarrow [1200 Hz - 2020 Hz]	
	Action	Indirect	

SIC-22472: Turbine 3 Speed

SIC-22472	Object	Turbine 3 speed	
	Actuator	PV-22472	
	Process Value:	ST-22473	[\%]
	Set Point	1450 Hz if TIC-22372 is OFF TIC-22372 output if TIC-22372 is ON $[0 \%-100 \%] \rightarrow[850 \mathrm{~Hz}-1450 \mathrm{~Hz}]$	
	Action :	Indirect	

SIC-22482: Turbine 4 Speed

SIC-22482	Object :	Turbine 4 speed	
	Actuator :	PV-22482	
	Process Value:	ST-22483	[\%]
	Set Point :	1180 Hz if TIC-22466 is OFF TIC-22466 output if TIC-22466 is ON $[0 \%-100 \%] \rightarrow[800 \mathrm{~Hz}-1180 \mathrm{~Hz}]$	
	Action :	Indirect	

4.5.3.2 TIC-224X2 / TIC-22466 - OUTLET TEMPERATURE

Note: When TIC-223X2 is OFF, the PID calculation shall stop, and controller output must be aligned with Speed controller primary set point.

- TIC-22332: Turbine 1 discharge temperature

TIC-22432	Object :	Turbine 1 discharge temperature
	Actuator :	PID SIC-22432 for T1 speed set point calculation
	Process Value:	TT-22332
	Set Point :	34 K *
	Action :	Direct

- TIC-22352: Turbine 2 discharge temperature

TIC-22452	Object :	Turbine 2 discharge temperature
	Actuator :	PID SIC-22452 for T2 speed set point calculation
	Process Value:	TT-22352
	Set Point :	13 K *
	Action :	Direct

■ TIC-22372: Turbine 3 discharge temperature

TIC-22472	Object :	Turbine 3 discharge temperature
	Actuator :	PID SIC-22472 for T3 speed set point calculation
	Process Value:	TT-22372
	Set Point :	$6.5 \mathrm{~K}^{*}$
	Action :	Direct

TIC-22466: 20K adsorber outlet temperature

TIC-22466	Object :	20K Adsorber Outlet Temperature
	Actuator :	PID SIC-22482 for T4 speed set point calculation
	Process Value:	TT-22466
	Set Point :	$18.5 \mathrm{~K}^{*}$
	Action :	Indirect

4.5.3.3 ATTENUATORS

A speed controller controls the turbines. The turbine speed set point is computed from different parameters (discharge temperature for T1, T2 and T3, and Adsorbers temperature for T4).

The attenuators can decrease the turbine speed set point: SP = Computed $\mathrm{SP} \times \pi$ Attenuators.

ATTENUATORS SHALL BE CONSIDERED AS SAFE GUARDS. (Slow down turbine before Alarms/Trips)
When Turbine parameters approach UNSAFE or OFF-DESIGN conditions, the Turbine Speed Set point is decreased in order to avoid UNSAFE or OFF-DESIGN zones. The following Attenuators are implemented:

ATtENUATORS PARAMETERS ARE AVAILABLE FROM THE HMI FOR PROCESS ADJUSTMENT.

Speed set point is calculated by multiplication of Turbine nominal speed with a series of attenuators (value between 0.5 and 1), depending of process conditions, as follows:

```
Set Point = NS }\times[\mathrm{ ATFT }\times\mathrm{ ATBT }\times\mathrm{ ATLP }\times\mathrm{ ATDT }\times\mathrm{ ATDL }\times\mathrm{ ATOP]
    - NS = Nominal Speed
    - ATFT = Attenuator on Brake Temperature:
        Slows down turbine if the Brake is too hot.
    - ATBT = Attenuator on Bearing Temperature:
        Slows down turbine if the Bearing is too cold.
    - ATLP = Attenuator on LPL Line Pressure:
        Slows down turbine 3 if LP pressure is too high.
    - ATDT = Attenuator on Discharge Temperature:
        Slows down turbine if discharge temperature is too cold.
    - ATDL = Attenuator on Dewar Level:
        Slows down turbine Dewar Level is too high.
    - ATOP = Attenuator for the Operator: Allows the operator to manually slow down a turbine.
        The operator can directly enter a value for ATOP on the HMI.
```


If all attenuators $=1$ and TIC-224X2 $/$ TIC-22466 then Set Point $=$ Nominal Speed.

Q Air Liquide

DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)

PROJECT: LCLS-II 4.5K COLD BOX SYSTEM

Page : 23/137

- ATFT - Turbine Brake Temperature Attenuator:

Attenuator	Attenuator Parameters	Turbine 1	Turbine 2	Turbine 3	Turbine 4
ATFT	Sensor	TT-22436	TT-22456	TT-22476	TT-22486
	AT $_{\min }$	50%	50%	50%	50%
	AT \max	100%	100%	100%	100%
	FT 1	360 K	360 K	360 K	360 K
	FT 2	370 K	370 K	370 K	370 K

- ATBT - Turbine Bearing Temperature Attenuator:

Attenuator	Attenuator Parameters	Turbine 1	Turbine 2	Turbine 3	Turbine 4
ATBT	Sensor	TT-22435	TT-22455	TT-22475	TT-22485
	AT $_{\min }$	80%	80%	80%	80%
	AT $_{\max }$	100%	100%	100%	100%
	BT 1	275 K	275 K	275 K	275 K
	BT 2	280 K	280 K	280 K	280 K

- ATLP - LPL Line pressure attenuator:

Attenuator	Attenuator Parameters	Turbine 1	Turbine 2	Turbine 3	Turbine 4
ATLP	Sensor	-	-	PT-22101	-
	AT $_{\min }$	-	-	50%	-
	AT $_{\max }$	-	-	100%	-
	LP 1	-	-	1.2 atm	-
	LP 2	-	-	1.3 atm	-

PROJECT: LCLS-II 4.5K COLD BOX SYSTEM

- ATDT - Turbines Discharge Temperature Attenuator:

Attenuator	Attenuator Parameters	Turbine 1	Turbine 2	Turbine 3	Turbine 4
ATDT	Sensor	TT-22332	TT-22352	TT-22372	-
	AT $_{\min }$	50%	50%	50%	-
	AT $_{\max }$	100%	100%	100%	-
	TT 1	25 K	10 K	5 K	-
	TT 2	30 K	11 K	5.5 K	-

- ATDL - Dewar Level Attenuator:

*LT-31000 is the level transmitter on Customer Dewar.

Attenuator	Attenuator Parameters	Turbine 1	Turbine 2	Turbine 3	Turbine 4
ATDL	Sensor	LT-31000*	LT-31000*	LT-31000*	-
	AT $_{\min }$	70%	70%	70%	-
	AT \max	100%	100%	100%	-
	DL 1	75%	75%	75%	-
	DL 2	80%	80%	80%	-

- ATOP - Operator Attenuator:

Attenuator	Attenuator Parameters	Turbine 1	Turbine 2	Turbine 3	Turbine 4
ATOP	Sensor	Forced on HMI	Forced on HMI	Forced on HMI	Forced on HMI
	ATvalue	$20 \% \leq X \leq 100 \%$	DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)		

PROJECT: LCLS-II 4.5K COLD BOX SYSTEM

Page : 25/137

4.5.4 PIC-224X6 \& EIC-224X6 - Turbines Brake and Efficiency

An important parameter to consider for Turbo-expander performance is the U1/C0 factor. This is a nondimensional parameter where U1 is the tip speed of the wheel and C0 is the spouting velocity. The spouting velocity is the fluid speed that would be achieved if the entire isentropic enthalpy drop were to be converted into speed. In other words, it is the speed that is created from putting work into the system.

The following curves are the Efficiency characteristics for each of the 4 Turbines:

Turbine 1:
Expander Performance Curve Impeller Diameter : $\mathbf{5 0 . 0} \mathbf{~ m m}$

Turbine 3:
Expander Performance Curve Impeller Diameter : $\mathbf{4 5 . 5} \mathbf{~ m m}$

Turbine 2

Expander Performance Curve Impeller Diameter: $\mathbf{4 3 . 5} \mathbf{~ m m}$

Turbine 4
Expander Performance Curve Impeller Diameter: $\mathbf{2 5 . 5} \mathbf{~ m m}$

Air Liquide turbo-expanders are equipped with a brake pressure regulation: EIC-224X6

- Brake Pressure regulator:
- Use brake pressure measurement and compares it to the set point.
- The Output acts on Brake Electro-valve.

The set point of this regulation is fixed whenever the Turbine does not work close to its design temperature. When the turbine works in its design temperature range, the brake pressure set point is determined by the output of a $2^{\text {nd }}$ regulator, called Efficiency Regulator, set in cascade:

- Efficiency regulator: EIC-224X6
- Calculate the actual U1/C0 of the Turbo-expanders and compares it to the set point (optimal U1/C0 for the turbine).
- The Output defines the set point for the brake pressure regulation.
- The process variables for the calculation have the following units:

Wheel Diameter	m
Turbine Speed	Hz
Turbine Inlet / Outlet Temperature	K
Turbine Inlet / Outlet / Brake Pressure	atm

- Turbines wheel diameter:

PROJECT: LCLS-II 4.5K COLD BOX SYSTEM

4.5.4.1 PIC-224X6 - BRAKE PRESSURE

Note:
Brake pressure controllers PIC-224X6 are started / stopped with bearing pressure controller PIC22405.

When PIC-224X6 is stopped, EV-224X6 shall be closed.

- PIC-22436: Turbine 1 brake pressure

PIC-22436	Object:	Turbine 1 brake pressure
	Actuator :	EV-22436
	Process Value:	PT-22436
	Set Point :	- 5.0 atm if EIC- 22436 is OFF - EIC-22436 Output if EIC-22436 is ON: $[0 \%-100 \%] \rightarrow[4.0 \mathrm{~atm}-6.0 \mathrm{~atm}]$
	Action :	Indirect

PIC-22456: Turbine 2 brake pressure

PIC-22456	Object :	Turbine 2 brake pressure
	Actuator :	EV-22456
	Process Value:	PT-22456
	Set Point :	- 5.0 atm if EIC-22456 is OFF - EIC-22456 Output if EIC-22456 is ON: $[0 \%-100 \%] \rightarrow[2.0 \mathrm{~atm}-6.0 \mathrm{~atm}]$
	Action :	Indirect

PIC-22476: Turbine 3 brake pressure

PIC-22476	Object :	Turbine 3 brake pressure
	Actuator :	EV-22476
	Process Value:	PT-22476
	Set Point :	- 5.0 atm if EIC-22476 is OFF - EIC-22476 Output if EIC-22476 is ON: $[0 \%-100 \%] \rightarrow[3 \mathrm{~atm}-5.5 \mathrm{~atm}]$
	Action :	Indirect

- PIC-22486: Turbine 4 brake pressure

PIC-22486	Object	Turbine 4 brake pressure
	Actuator :	EV-22486
	Process Value:	PT-22486
	Set Point	- 5.0 atm if EIC-22486 is OFF - EIC-22486 Output if EIC-22486 is ON: $[0 \%-100 \%] \rightarrow[3.3 \mathrm{~atm}-5.5 \mathrm{~atm}]$
	Action :	Indirect

4.5.4.2 EIC-224X6 - "EFFICIENCY" (OPTIMAL U1/C0)

Note: The Efficiency controller has a direct action. When the U1/C0 calculation increases, the set point of the Brake control loop shall increase to slow-down the Turbine.
Note: When EIC-224X6 is OFF, the PID calculation shall stop, and controller output must be aligned with Brake Pressure controller primary set point.

■ EIC-22436: Turbine 1 U1/C0

EIC-22436	Object:	Turbine 1 U1/C0
	Actuator:	PID PIC-22436 for T1 brake pressure set point calculation
	Process Value:	Calculated U1/C0
	Set Point :	U1/C0 $=0.65$
	Action:	Direct

- EIC-22456: Turbine 2 brake pressure

EIC-22456	Object:	Turbine 2 U1/C0
	Actuator:	PID PIC-22456 for T2 brake pressure set point calculation
	Process Value:	Calculated U1/C0
	Set Point :	U1/C0 $=0.64$
	Action:	Direct

- EIC-22476: Turbine 3 brake pressure

EIC-22476	Object:	Turbine 3 U1/C0
	Actuator:	PID PIC-22476 for T3 brake pressure set point calculation
	Process Value:	Calculated U1/C0
	Set Point:	U1 $/ \mathrm{C0}=0.64$
	Action:	Direct

EIC-22486: Turbine 4 brake pressure

EIC-22486	Object:	Turbine 4 U1/C0
	Actuator:	PID PIC-22486 for T4 brake pressure set point calculation
	Process Value:	Calculated U1/C0
	Set Point:	U1/C0 $=0.62$
	Action:	Direct

DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)

PROJECT: LCLS-II 4.5K COLD BOX SYSTEM

> Page : 29/137

4.5.4.3 HELIUM DATA FOR TURBINE EFFICIENCY CALCULATION

The following Helium Tables are to be entered in the PLC and shall be used by Turbine Efficiency Controller. Helium data points shall be interpolated linearly in the PLC.
Note: If the U1/C0 calculation is "out of Range", the last valid value shall be kept and only replaced when the U1/C0 calculation gives a value in the range.
IMPORTANT NOTE: Enthalpy \& Entropy (Hin, Sin and Sout_ideal) tabular values hereunder are given in J/g.K and J / g for reading purpose. They shall be multiplied by 1000 to convert unit to $\mathrm{J} / \mathrm{kg} . \mathrm{K}$ and J / kg during PLC coding.

- Helium Data for Turbine 1

$\mathrm{P}_{\text {in }}$	7 atm		8 atm		9 tm		10 atm		11 atm		12 atm		13 atm		14 atm		15 atm		16 atm		17 atm		18 atm		19 atm		20 atm	
T_{in}	$\mathrm{H}_{\text {in }}$	$S_{\text {in }}$	$\mathrm{H}_{\text {in }}$	$S_{\text {in }}$	$\mathrm{H}_{\text {in }}$	$S_{\text {in }}$	$\mathrm{H}_{\text {in }}$	$\mathrm{S}_{\text {in }}$	$\mathrm{H}_{\text {m }}$	$\mathrm{S}_{\text {in }}$	$\mathrm{H}_{\text {in }}$	S_{1}	$\mathrm{H}_{\text {in }}$	$\mathrm{s}_{\text {im }}$														
70 K	380	20	381	19	381	19.5	381	19.2	381	19.0	381	18.9	82	8.7	82	18.5	382	18.4	382	18.3	383	18.1	383	18.0	383	17.9	383	17.8
69 K	5	19.9	375	19.6	376	19.4	376	19.2	376	19.0	376	18.8	376	18.6	377	18.5	377	18.3	377	18.2	377	18.0	378	17.9	378	17.8	378	17.7
68	370	19.8	370	19.5	370	19.3	371	19.1	371	18.9	371	18.7	371	18.5	371	18.4	372	18.2	372	18.1	372	18.0	372	17.9	373	17.7	373	17.6
67 K	55	19.7	65	19.5	365	19.2	365	19.0	366	18.8	366	18.6	366	18.5	366	18.3	366	18.2	367	18.0	367	17.9	367	17.8	367	17.7	367	17.6
66 K	359	19.7	360	19	360	19.1	360	18.9	360	18.7	361	18.5	361	18.4	361	18.2	361	18.1	361	17.9	362	17.8	362	17.7	362	17.6	362	17.5
65 K	354	19.6	354	19	355	19	355	18.8	355	18.6	355	18.5	355	18.3	356	18.1	356	18.0	356	17.9	356	17.7	357	17.6	357	17.5	357	17.4
64 k	349	19.5	349	19.2	349	19.0	350	18.8	350	18.6	350	18.4	350	18.2	350	18.1	351	17.9	351	17.8	351	17.7	351	17.5	351	17.4	352	17.3
63 k	344	19.4	344	19.1	344	18.9	344	18.7	345	18.5	345	18.3	345	18.1	345	18.0	345	17.8	346	17.7	346	17.6	346	17.	346	17.3	346	17.2
62 K	339	19.3	339	19.1	339	18.8	339	18.6	339	18.4	34	18.2	340	18.1	340	17.9	340	17.8	340	17.6	34	17.5	341	17.4	34	17.3	341	17.1
61 K	333	19.3	334	19.0	334	18.7	334	18.5	334	18.3	334	18.1	334	18.0	335	17.8	335	17.7	335	17.5	33	17.4	335	17.3	336	17.2	336	17.1
60 K	328	19.2	328	18.	329	18.6	329	18.4	329	18.2	329	18.0	329	17.9	329	17.7	330	17.6	33	17.4	33	17.3	330	17.2	330	17.1	33	17.0
59 K	323	19.1	323	18	323	18.	323	18.3	324	18.1	32	18.0	324	17.8	324	17.6	324	17.5	325	17.4	325	17.2	325	17.1	325	17.0	325	16.9
58 K	318	19.0	318	18.7	318	18.5	318	18.2	318	18.1	319	17.9	319	17.7	319	17.5	319	17	319	17.3	319	17.	32	17.	32	16.9	320	16.8
57 K	312	18.9	313	18.6	313	18.4	313	18.2	31	18.0	313	17.8	313	17.6	31	17.5	31	17.	314	17.2	31	17.0	31	16.9	31	16.8	315	16.7
56 K	307	18.8	307	18.5	308	18.3	30	18.1	30	17.9	30	17.7	30	17.5	308	17.4	30	17.2	30	17.1	309	17.0	30	16.8	30	16.7	309	16.6
55 K	302	18.7	302	18.4	302	18	302	18.0	303	17.8	30	17.6	303	17.4	303	17	303	17.1	303	17.	304	16.9	30	16.7	304	16.6	304	16.5
54 K	297	18.6	297	18	297	18.1	297	17	297	17.7	297	17.5	298	17.3	298	17.	298	17.	298	16.	298	16.8	298	16.6	299	16.5	299	16.4
53 K	291	18.5	292	18.2	292	18.0	292	17	292	17.6	292	17.	292	17.2	293	17.1	293	16.9	293	16.8	293	16.	29	16.5	29	16.	293	16.3
52 K	286	18.4	286	18.1	287	17.9	287	17.7	287	17.5	287	17.3	287	17.1	287	17.0	287	16.8	288	16.7	288	16.6	288	16.4	28	16.	288	16.2
51 K	281	18.3	281	18.0	281	17.8	281	17.6	282	17.4	282	17.2	282	17.0	282	16.9	282	16.7	282	16.6	282	16	282	16.3	283	16.2	283	16.
50 K	276	18.2	276	17.9	276	17.7	276	17.5	276	17.3	276	17.1	277	16.9	277	16.8	277	16.6	277	16.5	277	16.3	277	16.2	277	16.1	277	16.0
49 K	271	18.1	271	17.8	271	17.6	271	17.4	271	17.2	271	17.0	271	16.8	271	16.7	271	16.5	272	16.4	272	16.2	272	16.1	27	16.0	272	15.9
48 K	265	18.0	265	17.7	265	17.5	266	17.3	266	17.1	266	16.9	266	16.7	266	16.5	266	16.4	266	16.3	266	16.1	267	16.0	267	15.9	267	15.8
47 K	260	17.9	260	17.6	260	17.4	260	17.1	260	16.9	261	16.8	261	16.6	261	16.4	261	16.3	261	16.1	261	16.0	261	15.9	261	15.8	261	15.
46 K	255	17.8	255	17.5	255	17.3	255	17.0	255	16.8	255	16.6	255	16.5	255	16.3	256	16.2	256	16.0	256	15.9	256	15.8	256	15.7	256	15.6
45 K	249	17.7	250	17.4	250	17.1	250	16.9	250	16.7	250	16.5	250	16.4	250	16.2	250	16.1	250	15.9	250	15.8	250	15.7	251	15.5	251	15.
44 K	244	17.5	244	17.3	244	17.0	244	16.8	245	16.6	245	16.4	245	16.2	245	16.1	245	15.9	245	15.8	245	15.7	245	15.5	245	15.4	245	15.
43 K	239	17.4	239	17.1	239	16.9	239	16.7	239	16.5	239	16.3	239	16.1	239	16.0	240	15.8	240	15.7	240	15.5	240	15.4	240	15.3	24	15.2
42 K	234	17.3	234	17.0	234	16.8	234	16.5	234	16.3	234	16.2	234	16.0	234	15.8	234	15.7	234	15.5	234	15.4	234	15.3	234	15.2	235	15.1
41 K	228	17.2	228	16.9	229	16.6	229	16.4	229	16.	229	16	229	15	229	15.7	229	15.6	229	15.4	229	15.3	229	15.2	229	15.0	229	14.9

Inlet Enthalpy (J / g) and Entropy ($\mathrm{J} / \mathrm{g} . \mathrm{K}$) function of Inlet Pressure and Temperature

$\mathrm{P}_{\text {out }}$	1 atm	1.25 atm	1.5 atm	1.75 atm	2 atm	2.25 atm	2.5 atm	2.75 atm	3 atm	3.25 atm	3.5 atm	3.75 atm	4 atm	4.25 atm	4.5 atm
$S_{\text {onujued }}$ Sin	$\mathrm{H}_{\text {outideal }}$														
20	183	199	212	225	237	247	257	267	276	284	292	300	308	315	322
19.5	167	182	194	206	216	226	235	244	252	260	267	274	281	288	294
19	153	166	178	188	198	207	215	223	230	237	244	250	257	263	268
18.5	141	153	163	172	181	189	197	204	210	217	223	229	235	240	245
18	129	140	149	158	166	173	180	186	193	198	204	209	214	219	224
17.5	119	128	137	145	152	159	165	171	176	182	187	191	196	201	205
17	109	118	126	133	139	145	151	156	161	166	171	175	179	184	188
16.5	100	108	116	122	128	133	139	143	148	152	156	160	164	168	172
16	93	100	106	112	117	122	127	132	136	140	143	147	151	154	157
15.5	85	92	98	103	108	112	117	121	125	128	132	135	138	141	144
15	79	85	90	95	99	103	107	111	114	118	121	124	127	129	132
14.5	73	78	83	87	91	95	99	102	105	108	111	114	116	119	121
14	67	72	77	81	84	88	91	94	97	99	102	104	107	109	111

Outlet Ideal Enthalpy (J/g) function of Inlet Entropy (J/g.K) and Outlet Pressure

- Helium Data for Turbine 2

$\mathrm{P}_{\text {in }}$	4 atm		5 atm		6 atm		7 atm		8 atm		9 atm		10 atm		11 atm		12 atm		13 atm		14 atm		15 atm		16 atm		17 atm		18 atm		19 atm		20 atm	
$\mathrm{T}_{\text {in }}$	$\mathrm{H}_{\text {in }}$	$\mathrm{S}_{\text {in }}$																																
45 K	24	18.8	249	18.4	249	18.0	249	17.7	250	17.4	250	17.1	250	16.9	250	16.7	250	16.5	250	16.4	250	16.2	250	16.1	250	15.9	250	15.8	250	15.7	251	15.5	251	15.4
44 K	244	18.	24	18.	244	17.9	244	17.5	24	17.3	44	17.0	244	16.8	245	16.6	245	16.4	245	16.2	245	16.1	245	15.9	245	15.8	245	15.7	245	15.5	245	15.4	245	15.3
43 K	239	18.6	239	18	239	17.7	239	17.4	239	17.	239	16	23	16.7	239	16.5	239	16.3	239	16.1	239	16.0	240	15.8	240	15.7	240	15.5	240	15.4	240	15.3	240	15.2
42 K	23	18.5	23	18.	234	17.6	234	17.3	234	17.0	234	16.8	234	16.5	234	16.	234	16.	23	16.	234	15.	234	15	234	15.5	234	15.4	234	15.3	234	15.2	235	15.1
41 K	228	18.4	22	17.9	228	17.5	228	17.2	228	16.9	29	16.6	229	16.4	229	16.2	229	16.0	229	15.9	229	15.7	229	15.6	229	15.4	229	15.3	229	15.2	229	15.0	229	14.9
40 K	223	18.2	22	17.8	223	17.4	223	17.0	223	16.8	23	16.5	22	16.3	223	16.1	223	15.9	223	15.7	223	15	223	15.4	223	15.3	224	15.2	224	15.0	224	14.9	224	14.8
39 K	218	18.1	218	17.	218	17.2	218	16.9	218	16.6	218	16.4	218	16.2	218	16.	218	15.	218	15	218	15.	218	15.	218	15.1	218	15.0	218	14.9	218	14.	218	14.7
38	213	18.	21	17	21	17	213	16.8	213	16.5	213	16.2	213	16.0	213	15.8	21	15	213	15	213	15	213	15.1	213	15.	213	14.9	213	14.8	21	14.6	213	14.5
37 K	207	17.8	20	17.3	207	17.0	207	16.	207	16.3	207	16.	20	15	20	15	207	15	207	15	207	15	207	15.0	207	14.9	207	14.7	207	14.6	207	14.5	207	14.4
36 K	202	17.	202	17.	202	16.8	20	16.5	202	16.2	202	16.	202	15.	202	15.	202	15	20	15	20	15	202	14.	202	14.7	202	14.6	202	14.	202	14	202	14.2
35 k	197	17.	197	17.	197	16.7	19	16.3	197	16.1	197	15.8	197	15.6	197	15	196	15.	196	15.	19	14.	19	14.	196	14.6	19	14.4	196	14.3	196	14.2	196	14.1
34 K	192	17.	191	16.9	19	16.5	191	16	191	15.9	91	15	191	15	191	15	191	15	191	14	191	14.7	191	14.5	191	14.4	91	14.3	191	14.1	191	14.0	191	13.9
33 K	86	17.2	186	16.	18	16.4	186	16.0	186	15.	186	15.5	186	15.3	186	15.	186	14	186	14.	186	14.	186	14.	18	14.	18	14.	185	14.	185	13.9	185	13.7
32 K	181	17.0	181	16.	181	16.2	181	15.9	181	15.6	181	15.3	180	15.1	180	14	180	14.	180	14.5	18	14	18	14.	180	14	180	13.9	180	13.8	180	13.7	180	13.6
31 K	176	16.9	176	16.	175	16.0	175	15	175	15.4	175	15	175	14.9	175	14.7	17	14.5	17	14.4	175	14.2	175	14.0	174	13.9	174	13.8	174	13.6	174	13.5	174	13.4
30 K	170	16.7	170	16.2	170	15.8	17	15.	170	15	170	15.0	170	14	169	14	169	14	169	14	169	14.	169	13.	169	13	169	13.6	169	13.5	169	13.3	16	13.2
29 K	165	16.5	165	16.	165	15.7	16	15.3	164	15	64	14.8	164	14.6	164	14.4	16	14.2	16	14.0	164	13.8	163	13	163	13.5	163	13.4	163	13.3	163	13.1	163	13.0
28	160	16.3	160	15.	15	15.5	15	15.1	159	14.9	159	14.6	159	14	159	14.	158	14	158	13.8	158	13.6	158	13.5	158	13.3	158	13.2	158	13.1	157	12.9	157	12
27 K	155	16.1	154	15.7	154	15.3	154	14.9	154	14.7	153	14.4	153	14.2	153	14.	153	13.	15	13	153	13.	15	13	152	13.1	152	13.0	152	12.	152	12	15	12.6
26	149	15.	149	15	14	15.1	148	14	148	14	148	14.2	148	14	148	13	14	13	14	13.4	147	13.2	147	13.1	147	12.9	146	12.8	146	12.6	146	12.5	146	
25 K	144	15.	14	15	14	14	143	14.5	143	14.2	142	14.0	142	13.7	142	13.	142	13	142	13.2	14	13.	14	12.	141	12	141	12.	140	12	140	12	140	12,2
24 K	139	15.5	138	15.0	138	14.6	138	14.3	137	14.0	137	13.8	137	13.5	136	13.3	136	13.	136	12.	13	12.	13	12	135	12	135	12.3	135	12.	134	12.	13	11.9
23 K	133	15.3	133	14.	13	14.	13	14.1	13	13.8	131	13.5	131	13.3	131	13.	130	12	13	12	13	12	13	12	129	12.2	129	12	129	11	129	11.8	128	11.7
22 K	128	15.	127	14.	127	14.2	127	13.8	126	13.5	126	13.3	125	13.0	125	12.	125	12.	124	12	124	12.	124	12	124	12.0	123	11.8	123	11	123	11	123	
21 K	122	14.8	122	14.3	122	13.9	121	13.6	121	13.3	120	13.0	120	12.8	119	12.6	119	12	119	12.	118	12.	118	11	118	11.	117	11.	117	11	117	11	117	
20 K	117	14.5	116	14.	116	13.6	11	13.3	115	13.0	115	12	114	12.5	114	12.3	113	12.1	113	11.9	112	11.7	112	11.5	112	11.4	111	11.2	111	11.1	111	11.0	110	10.9

Inlet Enthalpy (J/g) and Entropy (J/g.K) function of Inlet Pressure and Temperature

$\mathrm{P}_{\text {out }}$	1 atm	1.25 atm	1.5 atm	1.75 atm	2 atm	2.25 atm	2.5 atm	2.75 atm	3 atm	3.25 atm	3.5 ta
Soutideal	$\mathrm{H}_{\text {outideal }}$										
19.0	153	166	178	188	198	207	215	223	230	237	244
18.5	141	153	163	172	181	189	197	204	210	217	223
18.0	129	140	149	158	166	173	180	186	193	198	204
17.5	119	128	137	145	152	159	165	171	176	182	187
17.0	109	118	126	133	139	145	151	156	161	166	171
16.5	100	108	116	122	128	133	139	143	148	152	156
16.0	93	100	106	112	117	122	127	132	136	140	143
15.5	85	92	98	103	108	112	117	121	125	128	132
15.0	79	85	90	95	99	103	107	111	114	118	121
14.5	73	78	83	87	91	95	99	102	105	108	111
14.0	67	72	77	81	84	88	91	94	97	99	102
13.5	62	67	71	74	78	81	84	86	89	91	94
13.0	58	62	66	69	72	75	77	80	82	84	86
12.5	54	57	61	64	66	69	71	73	75	77	79
12.0	50	53	56	59	61	64	66	68	70	71	73
11.5	47	50	52	55	57	59	61	62	64	66	67
11.0	43	46	48	51	52	54	56	58	59	61	62

Outlet Ideal Enthalpy (J/g) function of Inlet Entropy (J/g.K) and Outlet Pressure

DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)
PRoJECT: LCLS-II 4.5K COLD BOX SYSTEM
Page : 31/137

- Helium Data for Turbine 3

$\mathrm{P}_{\text {in }}$	4 atm		5 atm		6 atm		7 atm		8 atm		9 atm		10 atm		11 atm		12 atm		13 atm		14 atm		15 atm		16 atm		17 atm		18 atm		19 atm		20 atm	
$\mathrm{T}_{\text {in }}$	$\mathrm{H}_{\text {in }}$	$\mathrm{S}_{\text {in }}$	$\mathrm{H}_{\text {in }}$	$\mathrm{S}_{\text {in }}$	$\mathrm{H}_{\text {in }}$	$S_{\text {in }}$	$\mathrm{H}_{\text {in }}$	$\mathrm{S}_{\text {in }}$																										
25 K	144	15.7	144	15.3	143	14.9	143	14.5	143	14.2	142	14.0	142	13.7	142	13.5	142	13.3	142	13.2	141	13.0	141	12.8	141	12.7	141	12.6	140	12.4	140	12.3	140	12.2
24 K	139	15.5	138	15.0	138	14.6	138	14.3	137	14.0	137	13.8	137	13.5	136	13.3	136	13.1	136	12.9	136	12.8	135	12.6	135	12.5	135	12.3	135	12.2	134	12.1	134	11.9
23 K	133	15.3	133	14.8	132	14.4	132	14.1	132	13.8	131	13.5	131	13.3	131	13.1	130	12.9	130	12.7	130	12.5	130	12.4	129	12.2	129	12.1	129	11.9	129	11.8	128	11.7
22 K	128	15.1	127	14.6	127	14.2	127	13.8	126	13.5	126	13.3	125	13.0	125	12.8	125	12.6	124	12.4	124	12.3	124	12.1	124	12.0	123	11.8	123	11.7	123	11.	123	11.4
21 K	122	14.8	122	14.3	122	13.9	121	13.6	121	13.3	120	13.0	120	12.8	119	12.6	119	12.4	119	12.2	118	12.0	118	11.8	118	11.7	117	11.5	117	11.4	117	11.3	117	11.1
20 K	117	14.5	116	14.1	116	13.6	116	13.3	115	13.0	115	12.7	114	12.5	114	12.3	113	12.1	113	11.9	112	11.7	112	11.5	112	11.4	111	11.2	111	11.1	111	11.0	110	10.9
19 K	112	14.3	111	13.8	110	13.4	110	13.0	109	12.7	109	12.4	108	12.2	108	12.0	107	11.8	107	11.6	107	11.4	106	11.2	106	11.1	105	10.9	105	10.8	105	10.7	104	10.5
18 K	106	14.0	105	13.5	105	13.1	104	12.7	104	12.4	103	12.1	103	11.9	102	11.7	101	11.4	101	11.3	100	11.1	100	10.9	100	10.7	99	10.6	99	10.5	98	10.3	98	10.2
17 K	101	13.7	100	13.2	99	12.7	99	12.4	98	12.1	97	11.8	97	11.5	96	11.3	95	11.1	95	10.9	94	10.7	94	10.6	93	10.	93	10.2	92	10.1	92	10.0	92	9.8
16 K	95	13.3	94	12.8	94	12.4	93	12.0	92	11.7	91	11.4	91	11.2	90	10.9	89	10.7	89	10.5	88	10.3	88	10.2	87	10.0	87	9.9	86	9.7	86	9.6	85	9.4
15 K	90	13.0	89	12.4	88	12.0	87	11.7	86	11.3	85	11.	84	10.8	84	10.5	83	10.3	82	10.1	82	9.9	81	9.8	80	9.6	80	9.4	79	9.3	79	9.2	79	9.0
14 K	84	12.6	83	12.0	82	11.6	81	11.2	80	10.9	79	10.6	78	10.3	77	10.1	77	9.9	76	9.7	75	9.5	74	9.3	74	9.1	73	9.0	73	8.8	72	8.7	72	8.6
13 K	78	12.1	77	11.6	76	11.2	75	10.8	74	10.4	73	10.1	72	9.9	71	9.6	70	9.4	69	9.2	68	9.0	68	8.8	67	8.6	66	8.5	66	8.3	66	8.2	65	8.1
12 K	72	11.7	71	11.1	70	10.7	68	10.3	67	9.9	66	9.6	65	9.3	64	9.1	63	8.8	62	8.6	61	8.4	61	8.2	60	8.1	59	7.9	59	7.8	59	7.6	58	7.5
11 K	66	11.2	65	10.6	63	10.1	62	9.7	60	9.3	59	9.0	58	8.7	57	8.4	56	8.2	55	8.0	54	7.8	53	7.6	53	7.4	52	7.3	52	7.1	52	7.0	51	6.9
10 K	60	10.6	58	10.0	57	9.5	55	9.0	53	8.6	52	8.3	50	8.0	49	7.7	48	7.5	47	7.3	47	7.1	46	6.9	46	6.7	45	6.6	45	6.5	45	6.4	45	6.3
9 K	54	9.9	51	9.2	49	8.7	47	8.2	45	7.8	44	7.4	42	7.1	41	6.9	40	6.6	40	6.5	39	6.3	39	6.1	39	6.0	39	5.9	39	5.8	39	5.7	39	5.6
8 K	47	9.0	44	8.3	41	7.7	38	7.2	36	6.8	35	6.4	34	6.2	33	5.9	33	5.8	33	5.6	32	5.5	32	5.4	33	5.3	33	5.2	33	5.1	33	5.1	33	5.0

Inlet Enthalpy (J / g) and Entropy ($\mathrm{J} / \mathrm{g} . \mathrm{K}$) function of Inlet Pressure and Temperature

$\mathrm{P}_{\text {out }}$	0.5 atm	0.75 atm	1 atm	1.25 atm	1.5 atm	1.75 atm
$\mathrm{S}_{\text {out_ideal }}$	$\mathrm{H}_{\text {out_ideal }}$					
16.0	74	84	93	100	106	112
15.5	68	78	85	92	98	103
15.0	63	72	79	85	90	95
14.5	59	67	73	78	83	87
14.0	55	62	67	72	77	81
13.5	51	57	62	67	71	74
13.0	48	53	58	62	66	69
12.5	45	50	54	57	61	64
12.0	42	46	50	53	56	59
11.5	39	43	47	50	52	55
11.0	37	40	43	46	48	51
10.5	34	38	41	43	45	47
10.0	32	35	38	40	42	43
9.5	31	33	35	37	39	40
9.0	29	31	33	35	36	37
8.5	27	29	31	32	34	35
8.0	25	27	29	30	31	32
7.5	23	25	27	28	29	30
7.0	22	23	25	26	26	27
6.5	20	21	22	23	24	25
6.0	18	19	20	21	22	22
5.5	16	17	18	19	19	20
5.0	14	15	16	17	17	17

Outlet Ideal Enthalpy (J/g) function of Inlet Entropy (J/g.K) and Outlet Pressure

- Helium Data for Turbine 4

$\frac{P_{\text {in }}}{T_{\text {in }}}$	4 atm		5 atm		6 atm		7 atm		8 atm		9 atm		10 atm		11 atm		12 atm		13 atm		14 atm		15 atm		16 atm		17 atm		18 atm		19 atm		20 atm	
	$\mathrm{H}_{\text {in }}$	$\mathrm{S}_{\text {in }}$	$\mathrm{H}_{\text {in }}$	$S_{\text {in }}$	$\mathrm{H}_{\text {in }}$	$\mathrm{S}_{\text {in }}$	$\mathrm{H}_{\text {in }}$	$S_{\text {in }}$	$\mathrm{H}_{\text {in }}$	$\mathrm{S}_{\text {in }}$	$\mathrm{H}_{\text {in }}$	$S_{\text {in }}$	$\mathrm{H}_{\text {in }}$	$\mathrm{S}_{\text {in }}$	$\mathrm{H}_{\text {in }}$	$\mathrm{S}_{\text {in }}$	$\mathrm{H}_{\text {in }}$	$\mathrm{S}_{\text {in }}$																
7.0 K	38	7.9	34	7.0	30	6.3	28	5.9	27	5.5	27	5.3	26	5.2	26	5.0	26	4.9	27	4.8	27	4.7	27	4.7	27	4.6	28	4.5	28	4.5	28	4.4	29	4.4
6.9 K	37	7.7	32	6.8	29	6.2	27	5.7	26	5.4	26	5.2	26	5.1	26	4.9	26	4.8	26	4.7	26	4.7	27	4.6	27	4.5	27	4.5	28	4.4	28	4.4	28	4.3
6.8 K	36	7.6	31	6.6	28	6.0	26	5.6	26	5.3	25	5.1	25	5.0	25	4.9	25	4.8	26	4.7	26	4.6	26	4.5	26	4.5	27	4.4	27	4.4	27	4.3	28	4.3
6.7 K	35	7.4	30	6.5	27	5.8	26	5.4	25	5.2	25	5.0	25	4.9	25	4.8	25	4.7	25	4.6	25	4.5	26	4.5	26	4.4	26	4.3	27	4.3	27	4.2	27	4.2
6.6 K	33	7.2	29	6.3	26	5.7	25	5.3	24	5.1	24	4.9	24	4.8	24	4.7	24	4.6	25	4.5	25	4.5	25	4.4	25	4.3	26	4.3	26	4.2	27	4.2	27	4.1
6.5 K	32	7.0	27	6.1	25	5.5	24	5.2	23	5.0	23	4.8	23	4.7	24	4.6	24	4.5	24	4.5	24	4.4	25	4.3	25	4.3	25	4.2	26	4.2	26	4.1	27	4.1
6.4 K	31	6.8	26	5.8	24	5.3	23	5.1	23	4.9	23	4.7	23	4.6	23	4.5	23	4.5	24	4.4	24	4.3	24	4.3	25	4.2	25	4.1	25	4.1	26	4.1	26	4.0
6.3 K	29	6.6	25	5.6	23	5.2	22	5.0	22	4.8	22	4.7	22	4.5	23	4.5	23	4.4	23	4.3	23	4.2	24	4.2	24	4.1	25	4.1	25	4.0	25	4.0	26	4.0
6.2 K	28	6.3	23	5.4	22	5.1	22	4.8	22	4.7	22	4.6	22	4.5	22	4.4	22	4.3	23	4.2	23	4.2	23	4.1	24	4.1	24	4.0	25	4.0	25	3.9	25	3.9
6.1 K	26	6.0	22	5.3	21	4.9	21	4.7	21	4.6	21	4.5	21	4.4	22	4.3	22	4.2	22	4.2	23	4.1	23	4.0	23	4.0	24	4.0	24	3.9	25	3.9	25	3.8
6.0 K	24	5.7	21	5.1	21	4.8	20	4.6	20	4.5	21	4.4	21	4.3	21	4.2	21	4.2	22	4.1	22	4.0	23	4.0	23	3.9	23	3.9	24	3.8	24	3.8	25	3.8
5.9 K	22	5.5	20	4.9	20	4.7	20	4.5	20	4.4	20	4.3	20	4.2	21	4.1	21	4.1	21	4.0	22	4.0	22	3.9	23	3.9	23	3.8	23	3.8	24	3.7	24	3.7
5.8 K	21	5.2	20	4.8	19	4.6	19	4.4	19	4.3	20	4.2	20	4.1	20	4.1	21	4.0	21	3.9	21	3.9	22	3.8	22	3.8	23	3.8	23	3.7	24	3.7	24	3.7
5.7 K	20	5.0	19	4.7	19	4.5	19	4.3	19	4.2	19	4.1	19	4.1	20	4.0	20	3.9	21	3.9	21	3.8	21	3.8	22	3.7	22	3.7	23	3.7	23	3.6	24	3.6
5.6 K	19	4.8	18	4.5	18	4.4	18	4.2	18	4.1	19	4.1	19	4.0	19	3.9	20	3.9	20	3.8	21	3.8	21	3.7	21	3.7	22	3.6	22	3.6	23	3.6	23	3.5
5.5 K	18	4.6	17	4.4	17	4.3	18	4.2	18	4.1	18	4.0	19	3.9	19	3.8	19	3.8	20	3.7	20	3.7	21	3.7	21	3.6	22	3.6	22	3.5	23	3.5	23	3.5
5.4 K	17	4.5	17	4.3	17	4.2	17	4.1	17	4.0	18	3.9	18	3.8	19	3.8	19	3.7	19	3.7	20	3.6	20	3.6	21	3.5	21	3.5	22	3.5	22	3.4	23	3.4
5.3 K	16	4.4	16	4.2	16	4.1	17	4.0	17	3.9	17	3.8	18	3.8	18	3.7	19	3.6	19	3.6	19	3.6	20	3.5	20	3.5	21	3.4	21	3.4	22	3.4	22	3.3
5.2 K	16	4.2	16	4.1	16	4.0	16	3.9	17	3.8	17	3.7	17	3.7	18	3.6	18	3.6	19	3.5	19	3.5	20	3.5	20	3.4	21	3.4	21	3.3	22	3.3	22	3.3
5.1 K	15	4.1	15	4.0	15	3.9	16	3.8	16	3.7	17	3.7	17	3.6	17	3.6	18	3.5	18	3.5	19	3.4	19	3.4	20	3.4	20	3.3	21	3.3	21	3.3	22	3.2
5.0 K	14	4.0	15	3.9	15	3.8	15	3.7	16	3.6	16	3.6	17	3.5	17	3.5	17	3.4	18	3.4	18	3.4	19	3.3	19	3.3	20	3.3	20	3.2	21	3.2	21	3.2

Inlet Enthalpy and Entropy (J/g.K) function of Inlet Pressure and Temperature

Outlet Ideal Enthalpy (J / g) function of Inlet Entropy ($\mathrm{J} / \mathrm{g} . \mathrm{K}$) and Outlet Pressure

- 20

4.6 CONTROL LOOPS - TURBINE 4 BY-PASS

4.6.1 PFD:

4.6.2 TIC-22485 - Turbine 4 by-pass

TIC-22485	Object :	20K Adsorber Temperature by allowing more or less flow in HP Line
	Actuator:	PIC-22485 minimum output (ie PV-22485 minimum opening)
	Process Value:	TT-22466
	Set Point :	18K*
	Action :	Indirect

* Indicative Values: Accessible from HMI.

Note: By acting on PIC-22485 minimum output, this regulator imposes PV-22485 minimum opening. Since PIC-22485 as a Set Point lower than the nominal value for PT-22393 (see section 4.8.4), PIC-22485 will always tend to have a minimum output, and therefore TIC-22485 will act on PV-22485 opening.
PV-22485 shall always remain slightly open even during T4 operation to maintain it cold and ready to operate without disturbing the process.

Therefore, this control loop will always have a minimum output (5% for instance, to be tested and adjusted onsite).

PROJECT: LCLS-II 4.5K COLD BOX SYSTEM

Page : 34/137

4.6.3 Turbine 4 by-pass valve - Opening action when Turbine 4 stops

When the Turbine 4 is Stopped or Tripped, the by-pass valve PV-22485 already controls the Temperature TT-22466, but may be closed on its minimum opening value (5\%).
PV-22485 opening shall be forced by the system at a higher value. This allows a faster reaction of the valve and avoids too important flow variations in HP Line.
The opening value for PV-22485 shall be calculated to match with the flow in Turbine 4 when the stop occurs. This logic is used in Turbine 4 Stop and Trip sequences.
The calculation below approximates the required valve opening depending on Turbine 4 Flow.
1/ Turbine 4 Flow as a function of Turbine 4 inlet pressure PT-22482:
We can use Turbine 4 inlet pressure PT-22482 as arepresentation of the flow in turbine 4:

\rightarrow We will use this function: $Q m_{\text {Turbine } 4}=14.115 \times P T 22482+90.925$

2/ CV of PV-22485 as a function of the calculated Mass Flowrate

PV-22485 shall open to a value that withallow a flow similar to the one in Turbine 4.
In operation, the temperature at PV-22485 will remain between 5.5 K and 7 K and the pressure between 9 atm and 18 atm.
In this Pressure/Temperature range, the helium density varies from $108 \mathrm{~kg} / \mathrm{m}^{3}$ to $152 \mathrm{~kg} / \mathrm{m}^{3}$, which represents a total variation of maximum 40%.

$P(\mathrm{~atm})$	Density @5.5K $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	Density @6K $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	Density @6.5K $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	Density @7K $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
9	134.9	127.5	118.8	108.4
10	137.6	130.9	123.1	114.1
11	140.0	133.8	126.8	118.7
12	142.2	136.4	129.9	122.7
13	144.2	138.8	132.8	126.0
14	146.1	141.0	135.3	129.0
15	147.8	143.0	137.6	131.7
16	149.5	144.8	139.7	134.2
17	151.0	146.6	141.7	136.4
18	152.5	148.2	143.6	138.5

DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)
PROJECT: LCLS-II 4.5K COLD BOX SYSTEM
Page : 35/137

We consider the following for PV-22485 Cv calculation:

- Inlet Pressure $=$ Constant $\rightarrow 14 \mathrm{~atm}$.
- Inlet Temperature $=$ Constant $\rightarrow 6.5 \mathrm{~K}$.
- Density of gas $=$ Constant $\rightarrow 136 \mathrm{~kg} / \mathrm{m}^{3}$
- Cv relation: $C v=k \times Q m \rightarrow k=\sqrt{\rho \times \operatorname{Tin}} /(245 \times \operatorname{Pin})=0.00866$
\rightarrow We use this function: $C v=0.00866 \times Q m$
3/ \% Opening of PV-22485 as a function of the calculated CV
The relation between PV-22485 Cv/and its opening is given below:

\rightarrow We use this function: \%Opening ${ }_{P V-22485}=20.745 \times \operatorname{Ln}(C v)+49.41$
Finally, the approximate required opening for PV-22485 based on PT-22482 before a stop of Turbine 4 would be:

$$
\% \text { Opening } P_{P V-22485}=20.745 \times \Delta n[0.00866 \times(14.115 \times P T 22482+90.925)]+49.41
$$

The table below gives examples of the calculated opening of PV-22485:

PT-22482 (atm)	Qm $(\mathrm{g} / \mathrm{s})$	CV $($ USGPM $)$	PV-22485 \%Open
2	119	1.03	50
3	133	1.15	52
4	147	1.28	54
5	162	1.40	56
6	176	1.52	58
7	190	1.64	60
8	204	1.77	61
9	218	1.89	63
10	232	2.01	64
11	246	2.13	65
12	260	2.25	66
13	274	2.38	67
14	289	2.50	68
15	303	2.62	69
16	317	2.74	70
17	331	2.87	71

Conclusion: Calculation in this Section provides an overall idea about opening range for PV-22485 when T4 is stops: 50% to 71%. In order to simplify the logic, as soon as a turbine 4 trip/stop is detected, the system shall jump/ramp open PV-22485 to 50% and then let PID loops (PIC-22485 and TIC-22485) to handle the additional opening regulation.

(1) Air Liquide	DOCUMENT N$: ~$ C1303-NT-400(5)	
	PROJECT: LCLS-II 4.5K COLD BOX SYSTEM	Page: 36/137

4.7 CONTROL LOOPS - COLD END BY PASS

4.7.1 PFD:

The Cold End by-pass is used to force flow in the Cold Box during the cool down.

TIC-22389 diagram:

PROJECT: LCLS-II 4.5K COLD BOX SYSTEM

4.7.2 TIC-22389: Cold End by-pass

During the cool down of the cold box, PV-22389 has two main roles:

- Drive as much warm gas as possible towards the cold end of the cold box when Cold Box is warm.
- Adjust the gas flow towards the cold end when cold box is cold, and helium gas is more dense.

At the beginning of the cold box, PV-22389 will be fully open.
When the cold box cools down, a controller adjusts the position of PV-22389 to adapt the flow in the HP line to the cool down capacity of the Cold Box.
The comparison between the temperature at 20K adsorber level (TT-22466) and the temperature at PV-22389 level (TT-22386) determines the flow in the HP line.

TIC-22389	Object :	Cold end by pass flow
	Actuator:	PV-22389
	Process Value:	TT-22386
	Set Point:	SP: $1.3^{*} \times$ TT-22466 if TT-22466 $>30 \mathrm{~K}$
		SP: 1.15* \times TT-22466 if $25 \mathrm{~K}<$ TT-22466 $\leq 30 \mathrm{~K}$
		SP: TT-22466 if TT-22466 $\leq 25 \mathrm{~K}$
	Action:	Direct

* Indicative Values: Accessible from HMI.

- V 1 and V 2 shall allow minimum and maximum opening on PV-22389.
- These parameters shall be accessible from the HMI.
- By default, the following values can be set:
(o $\quad V 1=10 \%$
V2=100\%
- These values will be adjusted during commissioning

4.8 CONTROL LOOPS - TURBINE 4 DISCHARGE PRESSURE

Turbine 4 discharge pressure is a critical parameter to control.
Indeed, the other turbines are discharging in LPL line or LPR. The discharge volume is important and acts as a buffer, which limits pressure variations.

Turbine 4 discharges in the HP line, a restricted volume limited by five control valves, and located at a temperature level where Helium density varies a lot.
The control philosophy described in this section is inspired from JLAB experience based on the 18 kW Cold Box currently in operation on CHL2.

() Air Liquide	DOCUMENT N$: ~$ C1303-NT-400(5)	
	PROJECT: LCLS-II 4.5K COLD BOX SYSTEM	Page : 38/137

4.8.1 PFD

4.8.2 Control Loops Overview

Five control valves edge turbine 4 discharge circuit. A pressure controller controls each of them directly or indirectly.

PIC-22393 acts on PV-22393 (Dewar inlet valve) and is the main Turbine 4 discharge pressure controller.
The four other pressure controllers will act consecutively to maintain Turbine 4 discharge pressure above its low trip level:

- PV-22393: Dewar inlet valve
- Controlled by PIC-22393, which is the main controller for Turbine 4 discharge pressure.
- PV-22485: Turbine 4 by-pass valve
- Primarily controlled by a Temperature controller TIC-22485 on TT-22466
- A Pressure controller PIC-22485 acts on the minimum output of TIC-22485 to force the valve to open if Turbine 4 discharge pressure drops below 3.0 atm .
- PV-22392: Cold Shields supply valve
- Primarily controlled by a Temperature controller TIC-22392 on TT-22392
- A Pressure controller PIC-22392 acts on the minimum output of TIC-22392 to force the valve to open if Turbine 4 discharge pressure drops below 2.9 atm .
- PV-22390: Subcooler inlet valve
- Primarily controlled by a Level controller LIC-22390 on LT-22195A (see section 4.10.4)
- A Pressure controller PIC-22390 acts on the maximum output of LIC-22390 to force the valve to open if Turbine 4 discharge pressure drops below 2.8 atm.
- PV-22391: 4.5K supply valve
- This valve is more an interface valve than a regulation valve
- However, controller PIC-22391 will close it if Turbine 4 discharge pressure becomes too low.

PROJECT: LCLS-II 4.5K COLD BOX SYSTEM

4.8.3 PIC-22393: Dewar supply

The Dewar supply valve's main objective is to produce LHe in the Dewar. The pressure at Turbine 4 discharge is a good indicator for this valve:

- If the pressure tends to be high, it means that a lot of flow comes from Turbine 4 level.
- The temperature in the Cold Box tends to be cold (Higher liquefaction capacity),
- One of the cold consumers demand decreased (the excess of gas can be liquefied and stored in the Dewar).
- On the contrary, if the pressure tends to be low, it means that a less flow comes from Turbine 4 level:
- The temperature in the Cold Box tends to be high (Lower liquefaction capacity),
- One of the cold consumers demand increased (the deficit of gas shall be compensated by a decrease of the amount of gas that is liquefied and stored in the Dewar).

PIC-22393	Object :	Turbine 4 discharge pressure
	Actuator :	PV-22393
	Process Value:	PT-22393
	Set Point :	3.25 atm
	Action :	Direct

* Indicative Values: Accessible from HMI.

4.8.4 PIC-22485: Turbine 4 by-pass

The Turbine 4 by-pass valve has two main objectives:

- Adjusting the flow in the HP line to cold consumers by controlling the temperature at 20K Adsorbers level (see section 4.6 on TIC-22485), especially when Turbine 4 is Off.
- Helping Controlling the pressure at Turbine 4 discharge

PIC-22485	Object :	Turbine 4 discharge pressure
	Actuator:	PV-22485
	Process Value:	PT-22393
	Set Point :	3.0 atm *
	Action :	Indirect

* Indicative Values: Accessible from HMI.

4.8.5 PIC-22392: Cold Shields supply

The Cold Intercepts supply valve has two main objectives:

- Adjusting the flow to the Cold Intercepts by controlling the return temperature (see section 4.12.3 on TIC-22392)
- Helping Controlling the pressure at Turbine 4 discharge

PIC-22392	Object :	Turbine 4 discharge pressure
	Actuator :	Maximum Output of TIC-22392, acting on PV-22392
	Process Value:	PT-22393
	Set Point :	2.9 atm *
	Action:	Direct

[^0]| (Qir Liquide | DOCUMENT N ${ }^{\text {: C1303-NT-400(5) }}$ |
| :---: | :---: |
| | PROJECT: LCLS-II 4.5K COLD BOX SYSTEM |

Page : 41/137

4.8.6 PIC-22390 - Subcooler supply

The Subcooler supply valve has two main objectives:

- Supplying cold or liquid Helium to the Subcooler (see section 4.10.4 on LIC-22390)
- Helping Controlling the pressure at Turbine 4 discharge

PIC-22390	Object :	Turbine 4 discharge pressure
	Actuator :	Maximum Output of LIC-22390, acting on PV-22390
	Process Value:	PT-22393
	Set Point :	2.8 atm *
	Action :	Direct

4.8.7 PIC-22391: 4.5K supply

PIC-22391	Object :	Turbine 4 discharge pressure
	Actuator :	PV-22391
	Process Value:	PT-22393
	Set Point :	2.7 atm*
	Action:	Direct

* Indicative Values: Accessible from HMI.

DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)
PROJECT: LCLS-II 4.5K COLD BOX SYSTEM

4.9 CONTROL LOOPS - SUB-COOLER AND DEWAR PRESSURE

4.9.1 PFD:

The Subcooler return valve can control the pressure in the subcooler. The set point of the controller PIC22193 will be set at a very low value (1.05 atm for instance) to be sure that PV-22193 is 100% open. It could be interesting to control the pressure in the subcooler during LINAC pump down to avoid backflow in return line (tbd during commissioning).

4.9.2 PIC-22193: Subcooler pressure

PIC-22193	Object :	Subcooler pressure control
	Actuator :	PV-22193
	Process Value:	PT-22195
	Set Point :	1.05 atm*
	Action :	Direct

* Indicative Values: Accessible from HMI.

© Air Liquid

DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)
PROJECT: LCLS-II 4.5K COLD BOX SYSTEM
Page : 43/137

4.9.3 PIC-22194: Dewar Pressure

The dewar vapor return valve is dedicated to the control of the pressure in the dewar. Controlling a higher pressure in the dewar compared to the subcooler allows transferring LYe to the subcooler.

PIC-22194	Object :	Dewar pressure control
	Actuator:	PV-22194
	Process Value:	PT-31005
	Set Point :	1.5 atm *
	Action :	Direct

* Indicative Values: Accessible from HMI.

4.9.4 PIC-31020: Dewar Overpressure

An additional line supplied by JLAB allows depressurizing the Dewar to the Compression Station via the Atmospheric Heat Exchanger. This depressurization line will be used as a back-up if the pressure increase too much in the Dewar.

PIC-31020	Object:	Dewar pressure control
	Actuator:	PV-31020
	Process Value:	PT-31005
	Set Point:	$1.7 \mathrm{~atm}^{*}$
	Action:	Direct

* Indicative Values: Accessible from HMI.

$$
\text { Ple-31020,SP } \rightarrow 1.2 \text { atm (Dewar stop sequence) }
$$

4.10 CONTROL LOOPS - SUB-COOLER \& DEWAR LEVEL

4.10.1 PFD:

As described in section 4.8.3, the Dewar supply valve will control the pressure downstream Turbine 4.
Therefore, LHe produced by the cold box will primarily be delivered to the Dewar.
The LHe in the subcooler will thus come from the Dewar.
If the cold box capacity exceeds the refrigeration requirements from the users, the LHe level will increase in the Dewar. The Heaters in the Dewar will be used to control the level in the Dewar.

C) Air Liquide	DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5) PRoJECT: LCLS-II 4.5K Cold box system	Page : 45/137

4.10.2 LIC-22195A - Subcooler LHe Level (Primary)

LIC-22195A	Object:	Subcooler level control
	Actuator:	PV-22195
	Process Value:	LT-22195A (Superconductive probe)*
	Set Point :	$70 \%^{*}$
	Action:	Indirect

* Indicative Values: Accessible from HMI.

Note: While 3 different instrumentations are dedicated to the measure of the LHe level in the LHe phase separator, only the lower superconductive probe will be used to control the level.
 DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)

PROJECT: LCLS-II 4.5K COLD BOX SYSTEM

Page : 46/137

The differential pressure transmitter LT-22195C may be used in place of the superconductive probeLT22195A if it is found to offer a more reliable measurement.
Based on the profile of the LHe phase separator and the density of Helium of $120 \mathrm{~kg} / \mathrm{m} 3$ at 1.2 atm pressure, the expected measurements are:

LT-22195C	Height (in)	Height (mm)	Pressure (mbar)	DPT-22195C	Description
-	0	0	0.0	0%	Bottom of the LHe phase separator
0%	2.4	59.7	0.7	2.3%	Zero of LT 22195A
9%	10.4	262.9	3.2	10.7%	Heaters Interlock
14%	14.4	364.5	4.5	15.0%	Heaters Interlock reset
50%	47.4	1202.7	14.7	49.0%	Top of the Subcooler Exchanger
63%	58.5	1484.6	18.2	60.7%	Level Controller Set Point
75%	70.5	1789.4	21.9	73%	High Level Alarm reset
81%	74.5	1891.0	23.2	77.3%	High Level Alarm
90%	82.5	2095.5	25.7	85.7%	100% of LT-22195A / Zero of LT 22195B
95%	86.9	2207.3	27.0	90.0%	Interlock PV-22390 and PV-22195 closed
100%	91.3	2319.0	28.4	94.7%	100% of LT 22195B

4.10.3 LIC-22195B - Subcooler LHe Level (Auxiliary)

In case the level would be too high in the subcooler (when cold box is running not connected to the Dewar for instance), a controller acts on the power supply unit HT-22195 which control three pre-wired heaters (EH-22195A, EH-22195B, EH-22195C) in the subcooler.
The set point is set to a high value so that the heater shall not act in normal operation of the system.

LIC-22195B	Object :	Subcooler level control
	Actuator:	HT-22195
	Process Value:	LT-22195A (Superconductive probe)*
	Set Point:	$90 \%^{*}$
	Action:	Direct

* Indicative Values: Accessible from HMI.

DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)

PROJECT: LCLS-II 4.5K COLD BOX SYSTEM

Page : 47/137

4.10.4 LIC-22390 - Subcooler LHe Level (Auxiliary)

The subcooler supply valve PV-22390 will supply LHe to the subcooler when the Dewar is not doing it.
The set point will be defined at a lower value than LIC-22195A to ensure that the Dewar remains the primary LHe source to the subcooler.

LIC-22390	Object :	Subcooler level control
	Actuator :	PV-22390
	Process Value:	LT-22195A (Superconductive probe)*
	Set Point :	$50 \%{ }^{*}$
	Action :	Indirect

A minimum output on this controller acts as a minimum opening on PV-22390 to ensure that the valve remains always cold in operation.
The Turbine 4 pressure controller PIC-22390, which helps increasing the pressure if required to avoid Turbine 4 trip, controls the maximum output (refer to section 4.8.6).

4.10.5 LIC-31000 - Dewar Level

In order to limit the level in the Dewar, the heaters installed in the Dewar are used to decrease the level.

LIC-31000	Object :	Dewar level control
	Actuator:	EH-31000
	Process Value:	LT-31000 (Superconductive probe)
	Set Point :	$90 \% *$
	Action :	Direct

* Indicative Values: Accessible from HMI.

() Air Liquide	DOCUMENT N$: ~$ C1303-NT-400(5)	
	PROJECT: LCLS-II 4.5K COLD BOX SYSTEM	Page : 48/137

4.11 CONTROL LOOPS - WARM SHIELDS

4.11.1 Connection Switch

The warm shields can be connected or disconnected from the Cold Box.
To allow this selection, a dedicated switch must be available on the supervision.

4.11.2 DPIC-22241 - Warm Shields Supply flow during Cool Down

During the cool down phase of the Warm Shields, the cold gas is supplied by PV-22441 which will allow cooling the shields down to 80K.

PV-22441 controls a constant pressure drop across the shields. The pressure difference controller acting on PV-22441 is only used:

- during the warm shields cool down
- or during nominal operation of the Warm Shields, when Turbine 1 is OFF

PIC-22441 shall have a set point higher than the one controlled in nominal operation to allow a sufficient cooling flow:

■ DPIC-22441: Warm Shields Pressure drop control (Cool Down)

DPIC-22241	Object :	Warm Shields Pressure drop control - Cool Down
	Actuator:	PV-22441
	Process Value:	PT-22245-PT-22249
	Set Point:	2.5 atm
	Action:	Indirect

* Indicative Values: Accessible from HMI.

4.11.3 DPIC-22242 - Warm Shields Supply flow during Nominal Operation

In nominal operation, the flow to the warm shields is provided from the outlet line of Turbine 1 via valve PV22245 which is set 100% open.

In order to allow sufficient flow to the Warm shields, a constant pressure drop across them will be controlled using PV-22242, which duty is to increase the pressure downstream T1:

(\%)

V1 is the minimum position for PV-22242

- Avoids complete closure of the valve
- This shall be accessible from the HMI.
- Indicative value: 20\%

■ DPIC-22242: Warm Shields Pressure drop control (Nominal Operation)

DPIC-22242	Object :	Warm Shields Pressure drop control
	Actuator:	PV-22242
	Process Value:	PT-22245-PT-22249
	Set Point:	1 atm
	Action:	Direct

* Indicative Values: Accessible from HMI.

4.12 CONTROL LOOPS - COLD INTERCEPT

4.12.1 PFD:

4.12.2 PIC-22191 - Cold Intercept Pressure

The control of the pressure in the Cold Intercepts guaranties that the flow is never diphasic.
The pressure in the Cold Intercepts is controlled using the return valve PV-22191.
PIC-22191: Cold Intercepts return Pressure control

PIC-22191	Object :	Cold Intercepts Pressure control
	Actuator:	PV-22191
	Process Value:	PT-22191
	Set Point :	2.3 atm*
	Action :	Direct

* Indicative Values: Accessible from HMI.

Note: During the cool down of the cold intercepts, the valve used is PV-22192 and the gas is returned in the cool down line. This control loop is used only when the gas returning from the cold intercepts is below 10K. Refer to section 13.1.

DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)
PROJECT: LCLS-II 4.5K COLD BOX SYSTEM
Page : 51/137

4.12.3 TIC-22392 - Cold Intercept Temperature

The flow sent to the Cold Intercepts is controlled by monitoring the return temperature.

- TIC-22392: Cold Intercepts return Temperature control

TIC-22392	Object :	Cold Intercepts return Temperature control
	Actuator :	PV-22392
	Process Value:	TT-22191
	Set Point :	$8 \mathrm{KK}^{*}$
	Action :	Direct

Note: This control loop shall be very slow so as not to disturb to much the pressure regulation downstream Turbine 4.
Test Heaters:

1. Warm Shield Heater: EHTR22240
Contactor Command to be on: EHTR22240CMD
User Heat Request \%: EHRT22240RQST [of 30,000 Watts]
Heat Readback: EHTR22240WM
Heater Contactor Status: EHTR22240R
The Conditions for turning off will be if return temp TD22249 $>100 \mathrm{~K}$. Flow F $122245<25 \mathrm{~g} / \mathrm{s}$, or the valves PV22245/PV22441 being closed or-in-state $\times 600$. OR Signal fatare (TD22249, PDT22245)
2. Cold Shield Heater: EHTR22191
Contactor Command to be on: EHTR22191CMD
User Heat Request \%: EHRT22191RQST [of 4,000 watts]
Heat Readback: EHTR22191 WM
Heater Contactor Status: EHTR22191R
The Conditions for turning off will be if return temp TD $22191>25 \mathrm{~K}$, Flow FT22392<10 g/s, or the valves PV221910/PV221920 being closed or in state X 600 .
3.4.5K Supply Heater: EHTR22190
Contactor Command to be on: EHTR22190CMD
User Heat Request \%: EHRT22190RQST [of 40,000 watts]
Heat Readback: EHTR22190WM
Heater Contactor Status: EHTR22190R
The Conditions for turning off will be if return temp TD22190>100K. Flow FT22190<20 g/s, or the valve PV/22393 being closed

$$
22190, P D T 22190)
$$

DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)
PROJECT: LCLS-II 4.5K COLD BOX SYSTEM
Page : 52/137

5. COOL DOWN LINE LOGIC

5.1 PRESENTATION

The cool-down line allows recovering cold helium from:

- The 2K Cold Box (From Sub Atmospheric Line)
- The Cold Intercepts, during their cool down
- The Cold Box cold end by-pass, during cold box cool down.

Note: The Cool Down line also recovers Helium from Warm Shields cool down, but the logic is associated to the Warm Shields Cool Down Logic (See section 12.1).
The temperature inside this line can vary continuously. Helium must be distributed to the corresponding temperature level in the cold box.
Two Cool down line logics are developed:

- One for Cold Box Cool Down and Cold Intercepts Cool Down.
- We call this logic "Transient Modes Cool Down Line Logic"
- This logic is active when:
- Sequence 600 - Cold Box Cool Down is not in Initial step X600
- And PV-22220 is closed (Warm Shields not in Initial Cool Down)
- And Sequence 900-4.5K Supply is in initial step X900.
- This logic uses TT-22189 as main temperature sensor.
- One for Sub Atmospheric line recovery
- We call this logic "Sub Atmospheric Recovery Cool Down Line Logic"
- This logic is active when:
- Sequence 600 - Cold Box Cool Down is in Nominal step X61d
-in X608 or X609 or X610 as in page 92 - in X620 in page 79 (This requires cool down logic to remain active as in X620 we still have 4.5 k Supply ON)
- And Sequence 900-4.5K Supply is not in initial step X900.
- This logic uses TT-22190 as main temperature sensor.

Note: An interlock forces open PV-22110 when PT-22190>3 atm and PT-22190>PT-21000.

Q Air Liquide	DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5) PROJECT: LCLS-II 4.5K COLD BOX SYSTEM	Page : 53/137

5.2 TRANSIENT MODES COOL DOWN LINE LOGIC

© Air Liquide

DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)

PROJECT: LCLS-II 4.5K COLD BOX SYSTEM

The cool down line valves opening logic is as follows:

Valve	Opening Speed	Closing Speed	Opening Condition	
PV-22110	$5 \% / \mathrm{sec}$	10\%/sec	- Not opening condition for PV-22115 \& PV-22135 \& PV-22140 \& PV-22150 \& PV-22 160 \& PV-22180	
PV-22115	2\%/sec	10\%/sec	- \|TT-22189-TT-22411	<30K TT-22189 $\geq 70 \mathrm{~K}$
PV-22135	$2 \% / \sec J$	$10 \% / \mathrm{sec}$	- \|TT-22189-TT-22430	< $<30 \mathrm{~K} J$ - $70 \mathrm{~K}>$ TT-22189 $\geq 40 \mathrm{~K}$
PV-22140	2\%/sec	$10 \% / \mathrm{sec}$	- \|TT-22189 - TT-22440	<30K - $40 \mathrm{~K}>\mathrm{TT}-22189 \geq 30 \mathrm{~K}$
PV-22150	2\%/sec	10\%/sec	- \|TT-22189-TT-22450	<30K - $30 \mathrm{~K}>\mathrm{TT}-22189 \geq 20 \mathrm{~K}$
PV-22160	$2 \% /$ sec		- \|TT-22189-TT-22466	<30K - $20 \mathrm{~K}>$ TT-22189 $\geq 10 \mathrm{~K}$
PV-22180	$2 \% / \mathrm{sec}$	$10 \% / \mathrm{sec}$	$\|T T-22189-T T-22470\|<30 K$ $10 K>T T-22189$	

Note: When the logic is lost for one valve, it starts to close only when the following valve to open is opened at 100\%

C) Air Liquide	DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5) PROJECT: LCLS-II 4.5K COLD BOX SYSTEM	Page : 55/137

5.3 SUB ATMOSPHERIC RECOVERY COOL DOWN LINE LOGIC

PROJECT: LCLS-II 4.5K COLD BOX SYSTEM
The cool down line valves opening logic is as follows:

Valve	Opening Speed	Closing Speed	Opening Condition	
PV-22110	5\%/sec	10\%/sec	- Not opening condition for PV-22115 \& PV-22135 \& PV-22140 \& PV-22150 \& PV-22160 \& PV-22180	
PV-22115	2\%/sec	10\%/sec	- \|TT-22190 - TT-22411	<30K - TT-22190 $\geq 70 \mathrm{~K}$
PV-22135	2\%/sec	10\%/sec	- ITT-22190-TT-22430\|<30K - $70 \mathrm{~K}>\mathrm{TT}-22190 \geq 40 \mathrm{~K}$	
PV-22140	2\%/sec	10\%/sec	- \|TT-22190 - TT-22440	< 30K - $40 \mathrm{~K}>\mathrm{TT}-22190 \geq 30 \mathrm{~K}$
PV-22150	2\%/sec	10\%/sec	- \|TT-22190-TT-22450	<30K - $30 \mathrm{~K}>\mathrm{TT}-22190 \geq 20 \mathrm{~K}$
PV-22160	2\%/sec	- $10 \% / \mathrm{sec}$	- \|TT-22190-TT-22466	<30K - $20 \mathrm{~K}>\mathrm{TT}-22190 \geq 10 \mathrm{~K}$
PV-22180	2\%/sec	10\%/sec	- \|TT-22190-TT-22470	<30K - $10 \mathrm{~K}>\mathrm{TT}-22190>6 \mathrm{~K}$
PV-22190	0.5\%/sec	10\%/sec	- 6K > TT-22190	

Note: When the logic is lost for one valve, it starts to close only when the following valve to open is opened at 100\%

DOCUMENT No : C1303-NT-400(5)
PROJECT: LCLS-II 4.5K COLD BOX SYSTEM
Page : 57/137

6. OVERALL CONTROL PHILOSOPHY

The following graph is a simplified representation of the overall operation logic. It shows all the automatic sequences and the manual operations allowing operating the Cold Box.

PRoJECT: LCLS-II 4.5K COLD BOX SYSTEM

7. SEQUENCE 410 / 430 - VACUUM SYSTEMS

The logic shall be the same for the Upper Cold Box vacuum system (Sequence 410) and the Lower Cold Box Vacuum System (Sequence 430).
This section will be developed based on the tags from Upper Cold Box Vacuum System.
Same logic sequence will be used for LCB Vacuum Sequence replacing the tags in PLC programming.

7.1 VACUUM SYSTEM - PRE REQUISITS

- Operator check list (Manual Operation):
- Roughing Pump Disconnect switched "ON"
- Diffusion Pump Disconnect switched "ON"
- Cooling water supply and return valves open (MV-23411, MV-23419)
- MV-23611 (Vacuum Gauge Vent) "Closed"
- MV-23610 (Vacuum Gauge Isolation Valve) "Open"
- MV-23613 (Diffusion Pump Oil Add Port) "Closed"
- MV-23612 (Vacuum Cart Valve) "Closed"
- MV-23616 (Vacuum Cart Valve) "Closed"
- MV-23615 (Roughing Pump Isolation Valve) "Open"
\rightarrow In order to avoid roughing pump overheating, MV-23615 shall be partially open only to limit the flow in the roughing pump until the pressure in the Vacuum shell is lower. This procedure is described in the Operator Manual.
- System permissive:
- E-Stop not engaged
- Instrument Air "ON"
- All actuators to be controllable by the control system (No operator mode)
- No active Alarm or interlock

7.2 VACUUM SYSTEM - DIFFUSION PUMPS THERMAL SNAP SWITCHES

- "Cooling-fail thermal snap-switch" - TSH-23610:

This component protects the Diffstak against damage due to failure of the cooling-water supply. If the temperature of the Diffstak increases above the normal operating level, the switch will operate to disconnect the heater from the electrical supply. The switch is preset during manufacture and automatically resets when the temperature of the pump returns to normal. The switch is mounted on the fixing plate, which is permanently attached to the cooling-coil on the Diffstak body.

- "Pump-ready thermal snap-switch" - TSH-23611:

This switch indicates when the pump is in a fully operational state. The switch will operate at a preset temperature level when the jet system in the pump has reached operating temperature. The switch is positioned at the end of the ejector-stage housing.

$\cup C B$
$L \subset B$
Air Liquide

PROJECT: LCLS-II 4.5K COLD BOX SYSTEM

Page : 59/137

7.3 VACUUM SYSTEM - START

PROJECT: LCLS-II 4.5K COLD BOX SYSTEM

7.4 VACUUM SYSTEM - STOP OR TRIP

UCB Vacuum Sequence - Stop or Trip		
X416	-Close PV-23611 and PV-23616 - Stop EH-23610 - Start Timer 1 minute	Isolate Vacuum Chamber Stop Diffusion Pump
416	- ZSL-23611 - End Timer 1 minute	Gate Valve closed Vacuum Pump Cool down
X410	- Close PV-23611, PV-23614 and PV-23616 -Stop VP-23610 - Stop EH-23610	Isolate Vacuum Chamber Stop Roughing Pump Stop Diffusion Pump

7.5 VACUUM SYSTEM - EMERGENCY STOP

If an E-stop generates the following:

- Sequence is stopped and reset (Step 410)
- All actuators fail in their safe position

TURBINE SEQUENCES

JLAB: While entering state X514: SIC is OFF -> SIC output is equal to X\% of the PV22432 opening in order to reach 200 Hz .
SIC turns ON -> TIC turns ON at the same time. Is it required to ramp the speed up to either (i) minimum speed (1000 Hz for T 1) or (ii) maximum speed (2220 Hz for T 1) in a $50 \mathrm{~Hz} / \mathrm{s}$ ramp before and then turn TIC ON for further regulation?
ALATUS:(i): No, (ii): No
JLAB:We need to ramp the speed to the new speed set point (in between $1000-2220 \mathrm{~Hz}$) obtained from Attenuators (and TIC as soon as TIC is ON).
ALATUS:Yes. And if we want to have the option not to start TIC, we can ramp set point to Calculated speed (which is maximal speed * Attenuators coefficients)

TURBINE SEQUENCES

JLAB:
Before starting SIC, TIC and EIC control loop, do we need to unlatch the manual mode (only once while entering to step X514) and set it to auto mode. This may eliminate error possibility of code if user left it in manual mode during previous run and forget.
ALATUS: Yes
JLAB: Counter argument is $->$ if user really wants to keep one of these control loops in manual mode at X514, then what? ALATUS: He should be able to turn it in manual once it is $1^{\text {st }}$ automatically started in X514.

(1) Air Liquide	DOCUMENT N$: ~$ C1303-NT-400(5)	
	PROJECT: LCLS-II 4.5K COLD BOX SYSTEM	Page : 61/137

8. SEQUENCES - TURBINES

Turbo-expanders rotation is generated by a pressure difference on the Turbo wheel. Starting the turbines consists in opening the inlet valve progressively. The four turbines being on different configurations, there operating sequences slightly differ from one to another.

8.1 SEQUENCE 510 - TURBINE 1

8.1.1 Turbine 1 - Start

Turbine 1 Sequence - Start

510	- Turbine 1 Authorization	Switch on the Supervision to be activated by the operator
		If Turbine 1 Authorization switch is removed and Turbine Sequence in step 511, 512, 513 or 514, go to step 515.
	- Turbine 1 Start Order - No Turbine 1 Alarm or Trip condition activated Cool Down Sequence in Step X602 to X610	From Seq 600 or Switch on the Supervision
		Cold Box Cool Down Sequence
X511	=Open PV-22242 at 100\%	Ramp 1\%/s until 20% then open at 100\%
511\downarrow	-PV-22242 at 100\%	
	- ZSH-22242 active	PV-22242 open status check
X512	$\begin{aligned} & \text {-Open EV- } 22432 \\ & \text {-Open PV-22432 } \end{aligned}$	PV-22432 Air supply / fast discharge valve Ramp 0.5\%/s
$\underset{\downarrow}{512}$ ¢ ST-22433 $>200 \mathrm{~Hz}$	-ST-22433 $>200 \mathrm{~Hz}$	
X513	- Stop Ramping and Fix opening of PV-22432 at the current value	Stabilization
513 \downarrow -Timer 10 sec	- Timer 10 sec	
X514	-Start Control loops: -SIC-22432 - TIC-22332 - Ramp TIC-22332 set point -When TT-22432 < 70K, start Control loop -EIC-22436	Speed Control Loop Ramp speed Set Point (up and down) 50Hz/s Discharge Temperature Control Loop Ramp $=5 \mathrm{~K} / \mathrm{min}$ from Current to Nominal Efficiency Control Loop (stopped whenever Turbine inlet temperature is higher than 70K or other process values outside of Table Range)

At this step, the turbine is in nominal mode. The next steps will stop the Turbine.
JLAB:
At X514, if EIC224X6 is OFF; what is the ramp rate (X atm/s) to go back PIC224X6 set point of 5.0 atm ?
ALATUS:
We canagree ondmec

(1) Air Liquide	DOCUMENT N : C1303-NT-400(5)	
	PROJECT: LCLS-II 4.5K COLD BOX SYSTEM	Page :62/137

8.1.2 Turbine 1 - Stop

Turbine 1 Sequence - Stop
Furbine 1 Stop Order
14 Or
$\downarrow \quad$ Not Turbine 1 Authorization from step 511, 512, 513 or 514

X515	Stop Control loops: -SIC-22432 -TIC-22332 -EIC-22436 Close PV-22432	Ramp 5\%/sec	
$\begin{gathered} 515 \\ \downarrow \end{gathered}$	$- \text { PV-22432 at } 0 \%$		
X516	Close EV-22432 Close PV-22242 -Close PV-22245	Ramp 5\%/s.	.

PV-22242 = 0\%
ZSL-22242 Activated PV-22242 close status check

516	ZSL-22242 Activated And PV-22245 = 0\% ZSL-22245Activated	PV-22242 close status check PV-22245 close status check
X510	$\begin{aligned} & \text {-Stop Control loops: } \\ & \text {-SIC-22432 } \\ & \text {-TIC-22332 } \\ & \text {-EIC-22436 } \\ & \text {-Close PV-22432, PV-22242 \& PV-22245 } \\ & \text { - Close EV-22432 } \end{aligned}$	Close ato\% with no Ramp PV-22432 Air supply / fast discharge valve

8.1.3 Turbine 1 - Trip

Turbine 1 Sequence - Trip
511, 512
513, 514, - Cold Box General Trip
515, 516 - Turbine 1 Trip
\downarrow

© Air Liquide

PROJECT: LCLS-II 4.5K COLD BOX SYSTEM
Page : 63/137

8.2 SEQUENCE 520 - TURBINE 2

8.2.1 Turbine 2 - Start

Turbine 2 Sequence - Start

- Turbine 2 Authorization		Switch on the Supervision to be activated by the operator
520 - Turbine 2 Start Order		If Turbine 2 Authorization switch is removed and Turbine Sequence in step 521, 522, 523 or 524, go to step 525.
		From Seq 600 or Switch on the Supervision
	No Turbine 2 Alarm or Trip condition activated Cool down Sequence in Step X603 to X610	Cold Box Cool Down Sequence
X521	- Open PV-22358	
521\downarrow		
X522	- Open EV-22452 - Open PV-22452	PV-22452 Air supply / fast discharge valve Ramp 0.5\%/s
$\begin{gathered} 522 \\ \downarrow \end{gathered} \quad-\mathrm{ST}-22453>200 \mathrm{~Hz}$		
X523	- Stop Ramping and Fix opening of PV-22452 at the current value	Stabilization
523$\downarrow$$\quad$-Timer 10 sec		
X524	-Start Control loops: - SIC-22452 -TIC-22352 - Ramp TIC-22352 set point -When TT-22452 < 45K, start Control loop - EIC-22456	Speed Control Loop Ramp speed Set Point (up and down) 50Hz/s Discharge Temperature Control Loop Ramp $=-5 \mathrm{~K} / \mathrm{min}$ from Current to Nominal Efficiency Control Loop (stopped whenever Turbine inlet temperature is higher than 45 K or other process values outside of Table Range)

At this step, the turbine is in nominal mode. The next steps will stop the Turbine

8.2.2 Turbine 2 - Stop

Turbine 2 Sequence - Stop
Turbine 2 Stop Order

Not Turbine 2 Authorization from step 521, 522, 523
or 524

X525	-Stop Control loops -SIC-22452 -TIC-22352 -EIC-22456 Close PV-22452	Ramp 5\%/sec	,
525	-PV-22452 at 0\%		
X526	Close EV-22452		
526	ZSL-22358		

X520	-Stop Control loops:	
	-SIC-22452	
	-EIC-22352	
	-Close PV-22456 \& PV-22358	
-Close EV-22452	Close at 0\% with no Ramp	
PV-22452 Air supply / fast discharge valve		

8.2.3 Turbine 2 - Trip

Turbine 2 Sequence - Trip
$\begin{array}{cl}521,522, \\ 523,524, \\ 525,526 \\ \downarrow & \text { - Cold Box General Trip } \\ & \text { - Turbine } 2 \text { Trip }\end{array}$

DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)
PROJECT: LCLS-II 4.5K COLD BOX SYSTEM
Page : 65/137

8.3 SEQUENCE 530 - TURBINE 3

8.3.1 Turbine 3 - Start

Turbine 3 Sequence - Start

	- Turbine 3 Authorization	Switch on the Supervision to be activated by the operator
	- Turbine 3 Start Order - No Turbine 3 Alarm or Trip condition activated - Cool down Sequence in Step X604 to X610	If Turbine 3 Authorization switch is removed and Turbine Sequence in step 531, 532, 533 or 534, go to step 535. From Seq 600 or Switch on the Supervision Cold Box Cool Down Sequence
X531	-Open PV-22378	
$\underset{\substack{531 \\ \downarrow}}{\text { ¢ }}$		
X532	- Open EV-22472 -Open PV-22472	PV-22472 Air supply / fast discharge valve Ramp 0.5\%/s
$\begin{gathered} 532 \\ \downarrow \end{gathered}$	- ST-22473>200Hz	
X533	-Stop Ramping and Fix opening of PV-22472 at the current value	Stabilization
$\begin{gathered} 533 \\ \downarrow \end{gathered}$	-Timer 10 sec	
X534	$\begin{aligned} &- \text { Start Control loops: } \\ & \text {-SIC-22472 } \\ &=\text { TIC-22372 } \\ & \text {-Ramp TIC-22372 set point }\end{aligned}$ VIf TT-22472 - TT-22372 $\geq 50 \mathrm{~K}$ Then hold Ramp on TIC-22372 set point. -When TT-22472 < 25K, start Control loop =EIC-22476	Speed Control Loop Ramp speed Set Point (up and down) 50Hz/s Discharge Temperature Control Loop Ramp $=-5 \mathrm{~K} / \mathrm{min}$ from Current to Nominal Avoid the risk of having a too high Temperature difference on HX-9. Efficiency Control Loop (stopped whenever Turbine inlet temperature is higher than 25 K or other process values outside of Table Range)

At this step, the turbine is in nominal mode. The next steps will stop the Turbine

DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)
PROJECT: LCLS-II 4.5K COLD BOX SYSTEM
Page : 66/137

8.3.2 Turbine 3 - Stop

Turbine 3 Sequence - Stop

Turbine 3 Stop Order

534	Turbine 3 Stop Order Or
l	Not Turbine 3 Authorization from step 531, 532, 533

X535	-Stop-Control loops: -SIC-22472 - TIC-22372 - EIC-22476 Close PV-22472	Ramp 5\%/sec
535	V-22472 at 0\%	

\downarrow PV-22472 at 0\%

| X536 | $\frac{- \text { Close EV-22472 }}{\text {-Close PV-22378 }}$ |
| :--- | :--- | :--- |

$\begin{gathered} 536 \\ \downarrow \end{gathered}$	ZSL-22378	
X530	- Stop Control loops: - SIC-22472 - TIC-22372 - EIC-22476 - Close PV-22472 \& PV-22378 - Close EV-22472	Close at 0\% with no Ramp PV-22472 Air supply / fast discharge valve

8.3.3 Turbine 3 - Trip

Turbine 3 Sequence - Trip
531, 532,
533, 534

- Cold Box General Trip

535, 536

- Turbine 3 Trip

X530	- Stop Control loops:	
	- SIC-22472	
	- TIC-22372 -EIC-22476	
	- Close PV-22472 \& PV-22378	Close at 0\% with no Ramp
	- Close EV-22472	PV-22472 Air supply / fast discharge valve

DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)
PROJECT: LCLS-II 4.5K COLD BOX SYSTEM
Page : 67/137

8.4 SEQUENCE 540 - TURBINE 4

8.4.1 Turbine 4 - Start

The Turbines 4 is a Joules Thomson Turbine. As such, it is installed in line with the HP Line.
When the Turbine 4 is stopped, the HP Joules Thomson flow is controlled by Turbine 4 by-pass control loop TIC-22485.
This control loop is not stopped when Turbine 4 is in operation.
However, PV-22485 needs to have a lower opening \% compared to PV-22482, the reason being that the flow through Turbine 4 shall be maximized.
Therefore, TIC-22466 set point is set at a higher value than TIC-22485 set point:

- TIC-22466 SP $=18.5 \mathrm{~K}$
- TIC-22485 SP $=18 \mathrm{~K}$

Turbine 4 Sequence - Start

- Turbine 4 Authorization

- Turbine 4 Start Order
No Turbine 4 Alarm or Trip condition activated
- No Turbine 4 Alarm or Trip condition activated
- Cold Box Cool Down Sequence in Step X610

Switch on the Supervision to be activated by the operator
If Turbine 4 Authorization switch is removed and Turbine Sequence in step 541, 542, 543 or 544, go to step 545.
From Seq 600 or Switch on the Supervision

Cold Box Cool Down Sequence

X541	-Open PV-22388	
541 \downarrow	- ZSH-22388	
X542	-Open EV-22482 -Open PV-22482	PV-22472 Air supply / fast discharge valve Ramp 0.2\%/s (slower than other turbines)
542 \downarrow	-ST-22483 $>200 \mathrm{~Hz}$	

Note: The cool down of Turbine 4 is a tricky transient phase for the Cold box since it will force warm flow toward the LHe stored in the Subcooler and the Dewar. It must be done very slowly so as to limit the flow of LHe vaporized, and thus limiting the perturbation for the Cold Box.

X543	-Stop Ramping and Fix opening of PV-22482 at the current value	Stabilization
	-Timer 10 sec	
$\qquad 43$	And	Turbine 4 circuits cold enough to allow more flow through the Turbine
	-TT-22382 <10K	

© Air Liquide

DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)
PROJECT: LCLS-II 4.5K COLD BOX SYSTEM
Page : 68/137

X544	- Start Control loops: -SIC-22482 -TIC-22466 - Ramp TIC-22466 set point - EIC-22486	Speed Control Loop Ramp speed Set Point (up and down) 50Hz/s 20K Adsorber Outlet Temperature Control Loop Ramp $=+/-0.5 \mathrm{~K} / \mathrm{min}$ from Current to Nominal Efficiency Control Loop (stopped whenever Turbine inlet temperature is higher than 7K)

At this step, the turbine is in nominal mode. The next steps will stop the Turbine.

8.4.2 Turbine 4 - Stop

Turbine 4 Sequence - Stop

Turbine 4 Stop Order

544	Or	
	Not Turbine 4 Authorization from step 541, 542, 543 or 544	
X545	- Record PT-22482 -lffPV-22485<50\% Hold TIC-22485 and R Then restart TIC-22485	Ramp 5\%/sec (refer to Section 4.6.3) This is to anticipate the closing of Turbine 4 inlet valve and minimize the impact on the Joules Thomson flow. TIC-22485 remains active
	$P V-22482$ and $P V-22485$ are ramped at the same time: $P V-22482$ to 0\% and PV-22485 to a fixed value.	
$\begin{gathered} 545 \\ \downarrow \end{gathered}$	-PV-22482 at 0\%	
X546	$\frac{\text { - Close EV-22482 }}{\text { - Close PV-22388 }}$	
$\begin{gathered} 546 \\ \downarrow \end{gathered} \quad \text { ZSL-22388 }$		
X540	$\begin{array}{r} \hline \text { Stop Control loops: } \\ \text { - SIC-22482 } \\ \text { - TIC-22466 } \\ \text { - EIC-22486 } \\ \text {-Close PV-22482 } \\ \text { - Close EV-22482 } \end{array}$	PV-22482 Air supply / fast discharge valve

DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)
PROJECT: LCLS-II 4.5K COLD BOX SYSTEM
Page : 69/137

8.4.3 Turbine 4 - Trip/Emergency Stop

When Turbine 4 is tripped, as when it is stopped, the by-pass valve PV-22485 shall be forced open to a certain value so as to allow HP flow towards the JT valve.

The controller TIC-22485 is already activated (not stopped during Turbine 4 operation), but forcing opening the valve will allow a faster reaction of the system.

2 different Turbine 4 Trips are to be considered however:

- Turbine 4 Trip only: The Trip is not due to a general Cold Box Trip or Emergency Stop.
- Turbine 4 Trip from Cold Box Trip or Emergency Stop.

The difference between the 2 cases is that:

- After a Turbine 4 Trip, the controller TIC-22485 acting on PV-22485 remains active.
- After a Cold Box Trip, the controller TIC-22485 acting on PV-22485 is stopped.

Turbine 4 Sequence - Trip (Turbine 4 Trip only)

Q. Air Liquide	DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)	
ceantroxgen		
PROJECT: LCLS-II 4.5K COLD BOX SYSTEM	Page : 70/137	

Turbine 4 Sequence - Trip (Cold Box Trip or Emergency Stop)
541,542,
543,544
545,546
545,546 - Cold Box General Trip / Emergency Stop

PROJECT: LCLS-II 4.5K COLD BOX SYSTEM

Page : 71/137

9. MANUAL OPERATION - COLD BOX PREPARATION BEFORE COOL DOWN

The Cold Box preparation is a manual operation that is performed from the Supervision system as well as from the Upper Cold Box platform and the Turbines area.

9.1 COLD BOX PREPARATION - PRE REQUISITS

- All the utilities are available (compressed air, water, electricity).
- The compression station is in nominal operation.
- Automatic valves are in manual mode and in their failure position (control loop associated).
- Control loops in Manual mode (Stopped).
- No fault is displayed or in progress.
- Turbines bearings valves open:

9.2 COLD BOX PREPARATION - MANUAL OPERATIONS

9.2.1 Start Turbine Bearings pressure Control Loop and all 4 Brake pressüre Control Loops- From control system supervision

- Open PV-22405 in manual progressively so as not to disturb MCS HP control loop.
- When PT-22405 = 11 Atm, turn ON PIC-22405.
- Turn ON PIC-22436, PIC-22456, PIC-22476, PIC-22486.

DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)
PROJECT: LCLS-II 4.5K COLD BOX SYSTEM
Page : 72/137

9.2.2 Connect Adsorbers to the HP Line

- Connect the 80K adsorber to be used during Cold Box Cool Down
- Open the outlet valve PV-22420A or PV-22420B Opening ramp $=0.5 \% / 5$
- Open the inlet valve PV-22415A or PV-22415B
- Connect the 20 K adsorber
- Open the outlet valve PV-22466
- Open the inlet valve PV-22461

9.2.3 Connect HP Cold end to HP Line

- Open T4 by-pass valve at 100%

9.2.4 Connection of the Cold Box to the MCS - From Upper Cold Box Platform

- Connect LPL line to the MCS
- Use MV-22101 to equalize pressures between Cold Box and MCS
- Open MV-22100
- Close MV-22101.
- Connect LPR line to the MCS
- Use MV-22201 to equalize pressures between Cold Box and MCS
- Open MV-22200
- Close MV-22201.
- Prepare Cool Down Line
- Check that the Manual Valve between the Vaporizer and the MCS LP Line is open
- Open PV-22110 to equalize pressure between Cool Down Line and MCS
- If PT-22190<1.1 atm, then close PV-22110.
- Connect HP line to the MCS
- Use MV-22401 or MV-22407 to pressurize the Cold Box HP line if PT-22393 $=$ PT-22400

- Close MV-22401 or MV-22407.

pr 22402.

Page : 73/137

10. SEQUENCE 600 - COLD BOX COOL DOWN

10.1 COLD BOX COOL-DOWN - PRE-REQUISITS

- MCS is running in nominal operation.
- Cold Box is pressurized and connected:
- ZSH -22100 \& ZSH -22200
- PV-22400 @ 100\% \& PV-22402 @ 100\%.
- Cold Box vacuum in Upper and Lower Cold Boxes OK
- PT-23610 < 10-3 mbar.
- PT-23630 < 10-3 mbar.
- Adsorbers are connected or by-pass line open:
- PV-22415A \& PV-22420A @100\%, or PV-22415B \& PV-22420B @100\%, or PV-22421 @100\%.
- PV-22461 \& PV22466 @100\%, or PV-22460 @100\%.

A check is necessary to ensure that beds are regenerated before connection.
Else, cool-down can be done using adsorber by-pass.

- LN2 is available

()Air Liquide	DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5) PROJECT: LCLS-II 4.5K COLD BOX SYSTEM	Page : 74/137

10.2 COLD BOX COOL-DOWN - PFD

lAir Liquid	DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)	
	PROJECT: LCLS-III 4.5K COLD BOX SYSTEM	Page : 75/137

10.3 COLD BOX COOL DOWN - START

During the first step of the cool down, the cold power is mainly brought by the first three turbines and by the liquid nitrogen through HX1A.
Important Note:
During this $1^{\text {st }}$ part of the cool down, a small amount of LN2 is used to minimize temperature difference between:

- HX2 HP stream (Warm) and HX2 LN2 stream (Cold)
- HX1A HP and LPR streams (Warm) and HX1A GN2 stream (Cold)

LN2 control loop is not started, and the control system will only open LN2 supply valve at a small opening so as not to have Liquid level in the LN2 phase separator.
During the beginning of the cool down, only the HP flow sharing control on HX-1B is started.

Cool Down from 300K to 120 K

Cold Box Preparation and Flow Circulation

- COLD BOX COOL DOWN START order MCS-is-running in nominal-operationNot a code condition - Manual
checking Cold Box is pressurized and LPR and LPL Lines are connected:

> EZSH-22100\& ZSH-22200

- |P T-22400 - PT -22402|<200 mbar.

HP Line pressurized and ready for connection

- PT -23610 < 10-3 mban

Vacuum in Upper and Lower Cold Boxes OK
600
-PT-23630 < 10-3 mbar.
-80K Adsorbers or by pass valves are connected
\downarrow
-PV-22415A \& PV-22420A @100\%
-or PV-22415B and PV-22420B @100\% -or PV-22421 @100\%

- 20K Adsorber or by pass valves are connected
-PV-22461 \& PV22466 @100\%
- or PV-22460 @ 100%
- PV-22246 (Failed Open) open at 100\% -PIC-22405 ON and Bearings pressure OK

601
\downarrow
-End of Timer 2 min

Subcooler Connection

X602	$\left.\frac{\text { Start TIC-22400 }}{- \text { Start PIC-22193 }} \text { (Set sp-1:0.5 }\right)$	$\begin{aligned} & \text { Initial Output 0\% (PV-22400 closed) } \\ & \text { Set point } 1.05 \mathrm{~atm} \end{aligned}$
	- Start Cold end by-pass control loop TIC-22389 with a minimum output (minimum opening) at 10%.	Refer to section 4.7
cond.	22390 at 20	Opening Ramp 0.2\%/s
	- Close PV-22390 if PT-22195 > 1.5 Atm	Closing Ramp 1\%/s
$\times 662$	- Start Timer 2 min	

602
\downarrow -End of Timer 2 min
TURBINES 1, 2, 3 START

At this step (X605), the system will start LN2 supply and Helium circulation in the Cold Box via the Cool down line and the Subcooler.

DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)
PROJECT: LCLS-II 4.5K COLD BOX SYSTEM
Page : 77/137

LN2 PRE COOLING START

X606	- If LN2 pre-cooling authorized, Start LN2 preliminary supply: If $\left\lvert\, \begin{aligned} & \text { TT- } 22520>120 \mathrm{~K} \\ & \text { TDT-22520A>-25K } \\ & \text { TDT-22520B>-25K }\end{aligned}\right.$ \rightarrow Open PV-22520 at TDT-22520A_SP If \rightarrow Open PV-22520 at TDT-22520B_SP Else \rightarrow Close PV-22520 -Ramp Maximum Opening of TIC-22389 at 80\%	LN2 pre-cooling Authorization is a variable that can be activated from a the HMI by operator TDT-22520A $=$ TT-22525 - TT-22412 TDT-22520B = TT-22511 - TT-22412 TDT-22520A_SP $=20 \%$ (to be adjusted) Opening Ramp 1\%/s TDT-22520B_SP $=5 \%$ (to be adjusted, the valve shall just be cracked open at this stage to maintain the supply line cold) Opening Ramp 1\%/s Closing Ramp 5\%/s Ramp 2\%/s Opening value to be adjustable from HMI if needed to be reduced.

Note: PV-22520 opening values shall be adjustable parameters from HMI.
The next step of the cool down happens when the HP temperature downstream HX-1A reaches 120K. At this step, LN2 can be used in normal conditions.

At this step, the cold end-by pass position shall also be continuously adjusted son that the flow in the cool down line is limited while temperature in the cold box decreases.

Q Air Liquide	DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5) PROJECT: LCLS-II 4.5K COLD BOX SYSTEM	Page : 78/

COOL DOWN FINAL

606 \downarrow	Alarm implemented if TT-22412 $>120 \mathrm{~K}$ and LT-22510>25\%		
X607	- Start LN2 Control Loop LIC-22520		\rightarrow Set Point (LN2 level) forced at 0% and then
:---			
ramped by 2% / min until the set point value is 70%			

When the 20K adsorber reaches its nominal temperature around 18K, the JT flow control based on PV-22485 (Turbine 4 by-pass) is started:

$\begin{gathered} 607 \\ \downarrow \end{gathered}$	[-TT-22466 < 19K	20K Adsorber at its nominal temperature
X608	- Set TIC-22485 output at PV-22485 value -then Start TIC-22485 - Start PIC-22485 eClose-PV-22190 (Subcooler Outlet to Cooll Down Line) -Stop TIC-22389: Set-PV-22389 min opening at 0% and Close PV-22389	Set Point $=$ TT-22466 then Ramp $0.05 \mathrm{~K} / \mathrm{min}$ to 18 K (Refer to section 4.6) Set Point $=$ PT-22393 then Ramp $0.05 \mathrm{~atm} / \mathrm{s}$ to 3. Oatm (Refer to section 4.8.4) $\rightarrow P V-22485$ will close slowly Ramp 1\%/s

TIC-22485 acting on PIC-22485, it is important that the output is initially set at PV-22485 current value to avoid a fast closing of the valve.

At this step, the only remaining condition for the Cold box to be in nominal step is to have the Dewar connection sequence also in nominal step.

609

- Dewar connection sequence in Step X654 Nominal step

X610	Cold Box in Nominal Step	

This step corresponds to the nominal step for the Cold Box.
At this step, Turbine 4 sequence can start or stop upon request of the operator.

DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)
PROJECT: LCLS-II 4.5K COLD BOX SYSTEM
Page : 79/137

10.4 COLD BOX COOL DOWN - STOP

The Cold Box stop sequence stops the Turbines, the LN2 pre-cooling, and isolate the Cold box from its cold interfaces.

Cold Box Cool Down - Stop

600, 601, 602,
603, 604, 605,
606, 607, 608, Cold Box Stop Order 609, 610
\downarrow

X620	-Reset Cold box Start order - Sut "Cold Box in Nominal mode" variable at 0	

620
\downarrow

X621	- Turbine 3 Stop order -4.5K Supply Stop order - Cold Intercepts Stop order -Stop PIC-22390 and LIC-22390 - Close PV-22390 at 0\% - LHe Dewar connection Stop order	No Ramp Will activate step X658

621
\downarrow

- Turbine 3 Sequence in step 530
$\downarrow \quad-4.5 \mathrm{~K}$ Supply Sequence in step 900
- LHe Dewar Sequence in step 650

X622	- Stop TIC-22400 - Close PV-22400 at 0\% - Open PV-22402 at 100% - Turbine 2 Stop order - Warm Shields Stop order - Stop TIC-22485 and PIC-22485 - Open PV-22485 at 30\%	Ramp 1\%/sec Ramp 1\%/sec Ramp 5\%/s	
$\begin{gathered} 622 \\ \downarrow \end{gathered}$	-Turbine 2 Sequence in step 520		
X623	- Turbine 1 Stop order - Stop LIC-22520 and close PV-22520	arnamalay	No rainlo

623 - Turbine 1 Sequence in step 510,
\downarrow-PV-22520 closed

PROJECT: LCLS-II 4.5K COLD BOX SYSTEM

X624	- Close 80K Adsorbers Valves	Closing Ramp 10\%/sec
	- Open PV-22421 0\%	No Ramp
	- Close PV-22402 at 100%	Ramp 1\%/sec
	- Set 80K Adsorber that was connected "Offline"	See section 16.1
	- Close 20KAdsorber Valves	Closing Ramp 10\%/sec
	- Open PV-22460	No Ramp
	- Set 20K Adsorber "Offline"3	
	- Open PV-22389 at 20\%	Ramp 0.5\%/sec

At this step, the cold box is stopped and isolated from its cold interfaces.
The warm shields and cold intercepts may still be in their 30 minutes timing to allow cold gas expansion towards the Cool Down line.

The Cold by-pass PV-22389 is opened to depressurize the HP Line.

$\begin{gathered} 624 \\ \downarrow \end{gathered}$	- Cold Intercepts Sequence in step 800 - Warm Shields Sequence in step 700	$p \vee 22421 /$
X600	-Stop TIC-22485, PIC-22485 and Close PV-22485 - Stop TIC-22400 -Close PV-22400 - Close PV-22402 - Stop LIC-22520 and close PV-22520 - Close PV-22421 -Close PV-22415A / PV-22415B - Close PV-22420A / PV-22420B - Stop TIC-22418A/B and stop EHTR-22418A/B - Close PV-22460 - Close PV-22461 / PV-22466 Stop TIC-22465 and stop EHTR-22465 - Stop PIC-22193 and Close PV-22193 - Stop PIC-22390, LIC-22390 and close PV-22390 - Stop LIC-22195B and Stop EH-22195 - Stop TIC-22389 and Close PV-22389 - Stop PIC-22405 and close PV-22405 - Stop PIC-22436 and close PV-22436 -Stop PIC-22456 and close PV-22456 - Stop PIC-22476 and close PV-22476 - Stop PIC-22486 and close PV-22486 - Stop "Transient Modes Cool down line logic" -Stop "Sub Atmospheric Recovery Cool Down Line Logic"	

(). Air Liquide	DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)	Page : 81/137

All Cold Box control loops are stopped and all automatic valves are in their failure position
The Cold Box can be warmed -up manually.
Note: The operator may also want to leave the cold box in cold conditions (for a quick restart operation). In this case, he will open manually all required valves to allow gas expansion in internal lines toward the cool down line (refer to associated Manual operation procedure).
Note: \quad All actions in step X600 shall be latched so that valves can be opened by the operator when Cold Box Cool Down sequence is not started.

DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)

PROJECT: LCLS-II 4.5K COLD BOX SYSTEM

Page : 82/137

10.5 COLD BOX COOL DOWN - TRIP / EMERGENCY STOP

The Cold Box TRIP / Emergency Stop can either be launched by:

- A Cold Box Trip order (refer to the Alarm, Interlock and Trip list)
- The activation of an Emergency switch on the system.

The Cold Box TRIP / Emergency Stop will:

- Force all auxiliary sequences in their initial step (Except the Vacuum Sequence).
- Stop and reset all the control loops,
- Turn all Cold Boxes actuators in their failure position (Except Vacuum skids actuators).

Cold Box Cool Down - Trip / Stop

600, 601, 602,
$603,604,605$,
$606,607,608$,
$609,610,620$, - Cold Box General Trip / Emergency Stop
$621,622,623$,
624
\downarrow

Note: All actions in step X600 shall be latched so that valves can be opened by the operator when Cold Box Cool Down sequence is not started.

DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)
PROJECT: LCLS-II 4.5K COLD BOX SYSTEM
Page : 83/137

11. SEQUENCE 650 - LHE DEWAR CONNECTION MANAGEMENT

This sequence controls the connection of the Dewar with the cold box during the Cold Box Cool Down.
This sequence monitors the temperature difference between the Dewar and the Cold Box to connect the Dewar at the right time. It also adapts the opening of the subcooler during the cool down, depending on the opening condition of the Dewar. This will ensure that not too much flow is sent in the Cold Box.

11.1 LHE DEWAR CONNECTION MANAGEMENT - START

LHE DEWAR CONNECTION

650	"LHe Dewar connection" start order
\downarrow	And
- Sequence 600 in either of steps X603	
to X610.	

Operator Order from HMI And
Cool down sequence in appropriate step

The subcooler is already connected in the Cold Box in Step X602.
The Dewar is slowly connected to the cold-box. Indeed, the CB and LHe storage can be at cryogenic temperature while the connection line is warm. (A few hours without gas circulation can warm the line up to ambient temperature).

X651	-Close PV-22393, PV-22194 and PV-22195 if: -PT-22100 > 1.2 atm -Close PV-22393 if: -PT-31000 > 1.6 atm -Close PV-22195 at 5\% if: -TT-22195<80K Else: Open Dewar Vapor return valve PV 22194 at 100\%/ - Open Dewar LHe return valve PV-22195 at\|100\% -Open Dewar supply valve PV-22393 at 20\%	Ramp 5 \%/s Ramp 5 \%/s Ramp 5 \%/s Opening Ramp 0.05\%/s Opening Ramp 0.05\%/s Opening Ramp 0.01\%/s

The conditions on PT-22100 and PT-31000 will help avoiding a fast vaporization of LHe during the connection.

Note: The temperature of the Dewar is regarded all along the sequence and drives the opening of PV-22195

- If the Dewar is warm, PV-22195 can be opened to help cold gas circulation in the Dewar
- If the Dewar is cold, this valve does not require to be opened to more than 5%. The small opening allows maintaining the valve cold and limits the transfer of LHe (if any) to the Subcooler.
- If the Dewar is cold, the sequence will move down to the following Steps. These precautions prevents any issue until the sequence reaches the appropriate step.

() Air Liquide

PROJECT: LCLS-II 4.5K COLD BOX SYSTEM

651
\downarrow

X652	Start Dewar pressure control loop PIC-22194 -PV-22195 closed at 5\% if: -TT-22195 < 80K else: Freezes in place - Continue Opening Dewar supply valve PV-22393 at 20\%
$\begin{gathered} 652 \\ \downarrow \end{gathered}$	-TT-22466<19K

LHe Dewar is connected
LHe Dewar is depressurized

Same condition that transition 607 in Cold
Box cool down sequence
Set Point = PT-22393 then Ramp 0.05 $\mathrm{atm} / \mathrm{min}$ to 3.25 atm

Dewar is at Liquid Helium Temperature
Enough Level in the Dewar to start Subcooler level main Control loop

- All Set points ramped to their nominal values.

X654	Start Dewar level control LIC-31000 - Set a minimum opening of PV-22195 at 5\% $\frac{\text {-If LT-31000 }>25 \% \text { then Start LIC-22195A }}{- \text { Initial Set Point = LT-22195A }}$	(Refer section 4.10.5)
	Then Ramp Set Point to 70%	Ramp 0.1\%/min

Step X654 is the nominal step of this sequence.

(A) Air Liquide	DOCUMENT No : C1303-NT-400(5)	
AROJECT: LCLS-II 4.5K COLD BOX SYSTEM	Page : 85/137	

11.2 LHE DEWAR CONNECTION MANAGEMENT - STOP

LHE DEWAR CONNECTION STOP

651, 652,

653, 654, - "LHe Dewar connection" stop order
\downarrow

X655	-Stop LIC-22195A and Close PV-22195 -Stop LIC-31000 and Stop Dewar Heaters - Start PIC-31020	Ramp 5\%/s Set Point = PT- 3100 then ramp at $0.001 \mathrm{~atm} / \mathrm{min}$ to 1.2 atm
655	-PV-22195 closed	
X656	-Stop PIC-22393 and close PV-22393	Ramp 0.5\%/s
656	-PV-22393 closed PV-22195 closed Cd NH d tho	
X650	-Stop PIC-22194 and closed PV-22194 - Stop PIC-22393 and close PV-22393 - Stop LIC-22195A and Close PV-22195 - Stop LIC-31000 and Stop Dewar Heaters f	

655 \downarrow

X655	-Stop LIC-22195A and Close PV-22195 -Stop LIC-31000 and Stop Dewar Heaters - Start PIC-31020	Ramp 5\%/s Set Point = PT- 3100 then ramp at $0.001 \mathrm{~atm} / \mathrm{min}$ to 1.2 atm
655	-PV-22195 closed	
X656	-Stop PIC-22393 and close PV-22393	Ramp 0.5\%/s
656	-PV-22393 closed PV-22195 closed Cd NH d tho	
X650	-Stop PIC-22194 and closed PV-22194 - Stop PIC-22393 and close PV-22393 - Stop LIC-22195A and Close PV-22195 - Stop LIC-31000 and Stop Dewar Heaters f	

11.3 LHE DEWAR CONNECTION MANAGEMENT - TRIP / EMERGENCY STOP

LHE DEWAR CONNECTION STOP

$\begin{aligned} & 651,652,653, \\ & 654,655,656, \end{aligned}$	- Cold Box General Trip / Emergency Stop		
X650	- Stop PIC-22194 and closed PV-22194 - Stop PIC-22393 and close PV-22393 - Stop LIC-22195A and Close PV-22195 - Stop LIC-31000 and Stop Dewar Heaters		1

$\longrightarrow-1+2$

\qquad
From Cold Box Cool Down sequence Step X621 3

12. SEQUENCE 700 - WARM SHIELDS

12.1 WARM SHIELDS - FLOW RETURN LOGIC

The temperature returned from the warm Shields will vary:

- During shields cool down, it will go from 300K down to the nominal temperature $\sim 50 \mathrm{~K}$.
- During shields warm-up, temperature will rise up again.

Therefore, the return line is equipped with three valves allowing the distribution of the gas at the appropriated temperature level in the cold box. The logic will act during the warm shields cool down and warm-up sequences.

$\pi-22249$

Valve	Opening Speed	Closing Speed	Opening Condition
PV-22110	$5 \% / \mathrm{sec}$	$10 \% / \mathrm{sec}$	- PV-22220 Opened - MV-22115 Glosed Not open 50
PV-22115	$\xrightarrow{2} \% / \mathrm{sec}$	10\%/sec	- PV-22220 Opened - Not opening condition for PV22135 \& PV22140\&PV22150 \& PV22160 \& PV22180 \& PV22190
PV-22220	4\%/sec	10\%/sec	- TT-22249 > 80K
PV-22225	5\%/sec	10\%/sec	- $80 \mathrm{~K} \geq$ TT-22249 $>65 \mathrm{~K}$
PV-22249	- $5 \% / \mathrm{sec}$	10\%/sec	- TT-22249 565 K

When the logic is lost for one valve, the valve starts to close only when the following valve opening reaches 50%.

DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)
PROJECT: LCLS-II 4.5K COLD BOX SYSTEM
Page : 87/137

12.2 WARM SHIELDS - START

Note: Warm Shields sequence can be started at any step of the cold box cool down sequence, but it shall not be started while the Cold Intercepts are also in Cool Down sequence. A permissive in the initial transition of the Warm Shields Cool Down prevents this sequence to start if the Cold Intercepts cool down sequence is active.

Warm Shields - Start to Nominal

This step is the Nominal Step for the Warm Shields

If Turbine 1 stops, the sequence needs to go back to step X702 to supply the Warm Shields with PV-22441:

Air Liquide

DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)
PROJECT: LCLS-II 4.5K COLD BOX SYSTEM
Page : 88/137

12.3 WARM SHIELDS - STOP

Warm Shields - Stop

Step 700 corresponds to the initial step for the Warm Shields.
Step 705 is a "Normal Stop" step before returning to initial step. It allows opening PV-22220 during 30 minutes to allow gas expansion exhaust in the shields return line.

Q. Air Liquide

12.4 WARM SHIELDS - TRIP / EMERGENCY STOP

During a General Cold Box trip or an Emergency Stop, the sequence would go directly back to step 700.

Warm Shields - Trip / Emergency Stop

701,702,
703,704,
705
\downarrow

DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)
PROJECT: LCLS-II 4.5K COLD BOX SYSTEM
Page: 90/137

13. SEQUENCE 800 - COLD INTERCEPTS

13.1 COLD INTERCEPTS - START

Note: Cold Shields sequence can only be started when Cold Box is in Nominal Mode.
The Cold Shields can be cooled down simultaneously with the Warm Shields only if warm shields return temperature is below 70K.
In this mode, the Cool down Line is also in Nominal Mode. The gas returning from the Cold Shields will be returned at the appropriate level of Temperature, in the Cold Box.

Cold Intercepts - Start

- Cold Box Cool Down sequence in step 608, 609 or 610 and PT- $22393<4$ atm
-TT-22249<80K \& PV-22220 closed
- Cold Shields Start Order -Cool Down Line logic active

Cold Box Cold end pressure shall be controlled and low enough to allow cold intercept opening
When TT-22249 <80K (in steps 702 to 704 of Warm Shields), and PV-22220 is closed, it shall be possible to start cold intercept cool-down

X801	-Open PV-22192 at 20\%	Ramp 1\%/s
$\begin{gathered} 801 \\ \downarrow \end{gathered}$	- PV-22192 at 20\% -PT-22191<1.4 atm	
X802	- Start Cold Shields Temperature control TIC-22392 - Start Turbine 4 discharge pressure auxiliary control PIC-22392 with initial output at 100\%	See section 4.12.3 See section 4.8.5
802	-TT-22191<10K	
X803	- Open PV-22191 at 20\%	Ramp 0.5\%/s
803	-PV-22191 at 20\%	
X804	- Close PV-22192 at 0\%	Ramp 2\%/s
804	-PV-22192 at 0\%	
X805	- Start Cold Shields Pressure control PIC-22191	See section 4.12.2

This step is the Nominal Step for the Cold Shields

PROJECT: LCLS-II 4.5K COLD BOX SYSTEM

13.2 COLD INTERCEPTS - STOP

Cold Intercepts - Stop

801, 802
$\begin{array}{ll}\text { 803, } 804 \text { Fold Shields Stop Order } & \text { From the Operator on HMI or from Cold } \\ 805 & \text { Box Stop Sequence }\end{array}$
\downarrow

807
\downarrow

X800	-Stop Cold Shields Temperature Regulation		
	IC-22392		
	- Stop Turbine 4 discharge pressure auxiliary control PIC-22392		
	- Close PV-22392 at 0\%		
	- Stop Cold Shields Pressure Regulation PIC-22191		
	- Close PV-22191 at 0\% - Open PV-22192 at 0\% Gose		

Step 800 corresponds to the initial step for the Cold Shields.
Step 806 is a "Normal Stop" step before returning to initial step. It allows opening PV-22192 during 30 minutes to allow gas expansion exhaust in the shields return-line.

13.3 COLD INTERCEPTS - TRIP / EMERGENCY STOP

During a General Cold Box trip or an Emergency Stop, the sequence would go directly backto step 800.

DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)
PROJECT: LCLS-II 4.5K COLD BOX SYSTEM
Page : 92/137

Cold Intercepts - Trip / Emergency Stop

801, 802
803, 804
805, 806

- Cold Box General Trip / Emergency Stop
\downarrow

14. SEQUENCE 900-4.5K SUPPLY

Note: 4.5 K Supply sequence can only be started when Cold Box is in Nominal Mode. The 4.5 K Supply will not be cooled down simultaneously with the Warm Shields.

In this mode, the Cool down Line is also in Nominal Mode. The gas returning from the 2 K Cold Box cool down will be returned at the appropriate level of Temperature, in the Cold Box.

14.1 4.5K SUPPLY - START

4.5K Supply - Start

- Cold Box Cool Down sequence in step 608,609 or 610 and PT-22393 < 4atm
$900-$ TT-22249 < 80K \& PV-22220 closed
\downarrow
-4.5K Supply Start Order

X901	- Open PV-22391 at 100\% -Start Cool Down Line Logic for Sub Atmospheric Recovery -Stop "Transient Modes Cool Down Line Logic"	Ramp 0.5\%/s Refer to Section 5
901	-PV-22391 at 100\%.	
902	- Start Turbine 4 discharge pressure auxiliary control PIC-22391 with initial output at 100\% and Set Point at 2.7 atm	See Section 4.8.7

This step is the Nominal Step for the 4.5K Supply

Q Air Liquide	DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5) PRoJECT: LCLS-II 4.5K COLD BOX SYSTEM	Page : 93/137

14.2 4.5K SUPPLY - STOP

4.5K Supply - Stop

$\begin{gathered} 901,902 \\ \downarrow \end{gathered}$	$\begin{aligned} & \text {-4.5K Supply Stop Order } \\ & \text { OR } \\ & \text { Cold Box stop Order } \end{aligned}$	
X905	- Stop Turbine 4 discharge pressure auxiliary control PIC-22391 - Close PV-22391	Ramp 5\%/s
$\begin{gathered} 905 \\ \downarrow \end{gathered}$	-PV-22391 closed	
X900	-Stop Turbine 4 discharge pressure auxiliary control PIC-22391. -Close PV-22391 at 0\% Stop Cool Down Line Logic for Sub Atmospheric Recovery	

14.3 4.5K SUPPLY - TRIP / EMERGENCY STOP

4.5K Supply - Trip / Emergency Stop

15. MANUAL OPERATION - WARM-UP

15.1 WARM-UP - PRE REQUISITS

- All the utilities are available (compressed air, water, electricity).
- The compression station is in nominal operation.
- Cold Box stopped sequence completed \rightarrow Step X600
- Automatic valves are in manual mode and in their failure position (control loop associated).
- All Control loops Stopped.
- No fault is displayed or in progress.
- Turbines bearings valves open.

Page : 94/137

15.2 WARM-UP - DIAGRAM

PROJECT: LCLS-II 4.5K COLD BOX SYSTEM

15.3 WARM-UP - PROCEDURE

Only the Turbines bearing pressure control loop shall be maintained during this sequence to protect the turbines against any mistaken opening of inlet or outlet valves while Cold Box lines are under pressure.

WARM-UP Manual Procedure

- Check that Turbines Inlet and Outlet valves are closed.
$\downarrow \quad$ - Check that Turbines bearings are operating properly.
- Check that MV-22200 \& MV-22100 are open (ZSH-22200 \& ZSH-22100 active).

Step 1	Adsorbers Depressurization, Warm-Up and Regeneration
1	For each adsorber that was used and is cold and under pressure, follow the procedures described in sections: 16.2.1 - Adsorber depressurization - Adsorber warm-up 16.2.2 - Adsorber depressurization before pumping 16.2.5 - Adsorber pumping

$\downarrow \quad 80 \mathrm{~K}$ and 20K Adsorbers are warm, clean, and filled with Helium at 1 atm.

Step 2	LN2 Phase Separator Draining
2	If LN2 is remaining in LN2 phase separator, it must be drained before starting the Warm-up: - Drain LN2 using HV-22512

$\downarrow \quad$ - LN2 Phase separator fully drained

Step 3	Emptying LHe phase separator
3	If LHe is remaining in the Subcooler, it must be evacuated before starting the warm-up: - Close MV-22100 - Open PV-22110 - Open PV-22190 - Vaporize LHe from subcooler using EH-22195 (This will avoid sub cooling the Heat Exchangers and freezing the LPL outlet Line)

Note: Step 1, 2 and 3 can be performed simultaneously.

(Al	uide	DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5) PROJECT: LCLS-II 4.5K COLD BOX SYSTEM		Page : 96/137
Step 4	Preparation for Warm-Up			
4	- Open following valves: - PV-22400 \& PV-22402 at 100\% HX1a \& HX1B HP Valves - PV-22421 at 100\% 80K Adsorbers by-pass - PV-22460 at 100\% 20K Adsorbers by-pass - PV-22485 at 100\% Turbine 4 by-pass - PV-22193 at 100\% Sub-Cooler outlet - PV-22191 at 100\% LPL to Cool Down Line - PV-22110 at 100\% Cool Down Line to 300K - Leave Open LPR and LPL inlet valves to allow gas expansion - MV-22100 LPL Outlet Valve - MV-22200 LPR Outlet Valve - Close 80K and 20K Adsorbers: - PV-22415 A/B, PV-22420 A/B 80K Adsorbers in \& out - PV-22461 and PV-22466 20K Adsorbers in \& out			

$\downarrow \quad$ All valves in position and MCS still running

Step 5	Warm Up Cold Box internals
	Open progressively (not more than 5\% steps every 10 sec to avoid Compression Station issues) - PV-22390 up to 50\% - PV-22389 up to 80\% Sub-Cooler inlet Cool Down by-pass
5	Note: Position of PV-22390 and PV-22389 to be adjusted according to: - The Flow available from the compression station - The capacity of the Atmospheric Exchanger recovering gas from the Cool Down Line along the Continuous Warm-Up

$\downarrow \quad$ Warm up complete:

Step 6	Stop Warm-Up and Isolate Cold Box
6	Close PV-22390 and PV22389 progressively (not more than 5\% steps every 10 sec to avoid Compression Station issues) Close all valves opened in Step 3
$\quad \downarrow \quad$ All Valves Closed.	

Warm-Up is completed.

(1) Air Liquide	DOCUMENT N$: ~$ C1303-NT-400(5)	
	PROJECT: LCLS-II 4.5K COLD BOX SYSTEM	Page : 97/137

16. MANUAL OPERATION - ADSORBERS

16.1 ADSORBERS: STATE

Adsorbers operation is Manual.

The following logic is a proposal intended to help the operation team.
It may or may not be implemented by JLAB.
$\left.\begin{array}{|c|c|c|}\hline \text { Adsorber } & 80 \mathrm{~K} & 20 \mathrm{~K} \\ \hline \text { Composition } & \begin{array}{c}\mathrm{He} \\ +5 \mathrm{ppm} \mathrm{N} \\ 2\end{array}+1 \mathrm{ppm} \mathrm{O}\end{array}\right)$

NOTE: The exact operating time can be adapted if the system is used at partial load or with an impurity content lower than the design values.

The adsorbers can be in different states depending on their temperature, the position of their inlet and outlet valves, the operation of the regeneration Heater, the duration spent online...

Adsorber State is "detected" by the program and displayed to inform the Operating Team.
The logic to switch from one state to the following one is as follows:

Q Airliquide	DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5) PROJECT: LCLS-II 4.5K COLD BOX SYSTEM	Page : 98/137

16.2 ADSORBERS: REGENERATION MANUAL SEQUENCE

Step 1: Isolation
Step 2: Depressurization
Step 3: Warm-up
Step 4: Purging
Step 5: Filling/Connection

16.2.1 Adsorber depressurization

In order to limit the waste of He , adsorbers can be depressurized in the Cold Box LPL Line toward the Compression station.
\rightarrow This is allowed only if adsorber temperature is:

- Below 90K for 80K adsorbers
- Below 25K for 20K adsorber.

If temperature is higher, then it is depressurized via the clean-up distribution system to the atmosphere.

PROJECT: LCLS-II 4.5K COLD BOX SYSTEM

After having isolated the adsorber from the cycle (inlet and outlet process valves closed), the adsorber is depressurized by the operator to the low pressure circuit.
Note: The depressurization of the Adsorber must be smooth, using the depressurization line equipped with the orifice (JLAB scope). This is important to avoid increasing the pressure on the LPL line to the MCS, as well as the risk of fluidization of the Adsorber bed.

When the pressure inside the adsorbers and in the regeneration circuit is below 1,20 atm then depressurization is finished.

16.2.2 Adsorber warm-up

The adsorber is depressurized and ready for warm-up.
The electrical heater control loop shall be started from the supervision.
The pressure in the circuit will increase due to helium thermal expansion AND impurities desorption.

() Air Liquide	DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5)	
	PROJECT: LCLS-III 4.5K COLD BOX SYSTEM	Pa1/137

The operator shall open the vent valve to the atmosphere to continuously release the pressure.
The warm-up is considered completed when the internal adsorber temperature reaches:

- 200 K for 80 K adsorbers.
- 120 K for 20 K adsorber

Note: \quad Adsorber wall temperature shall be limited to $100^{\circ} \mathrm{C}(373 \mathrm{~K})$ to avoid insulation damage.

16.2.3 Adsorber depressurization before pumping

Regeneration Heater is stopped.
The pressure in the adsorber may be higher than 1 atm depending on the setting pressure of RV23702A in this example.

The pressure shall be decreased down to atmospheric pressure before pumping.

Q) Air Liquide	DOCUMENT N $:$: C1303-NT-400(5)	
PROJECT: LCLS-II 4.5K COLD BOX SYSTEM	Page : 102/137	

16.2.4 Adsorber pumping

Adsorber is depressurized, the purging pump is started.

The valve to be used on the Atmospheric Heater manifold is the the unrestricted one to limit the pressure drop between the pump and the adsorber.
The pumping operation is intended to remove all impurities remaining in the adsorber.
The pressure in the adsorber at the end of the pumping phase shall be lower than 50 mbar (less than 10 mbar at pump suction).
© Air Liquide

16.2.5 Adsorber filling

The valve to the purge pump is closed.
The filling operation is intended to fill the adsorber up to 1 atm using the 3 atm He distribution System (JLAB Scope).

Pumping + Filling cycle shall be repeated 3 times to complete the regeneration of the adsorber.

©) Air Liquid	DOCUMENT N ${ }^{\circ}$: C1303-NT-400(5) PROJECT: LCLS-II 4.5K COLD BOX SYSTEM	Page : 104/137

16.2.6 Adsorber re-cool down

The re-cool down of the adsorber after the regeneration is done using cold pure helium from the online adsorber (for the 80K adsorber) or from the by-pass line (for the 20K adsorber).

The discharge valve of the adsorber is open at 10%.

The cold Helium used to re-cool the adsorber is sent back to the Cold Box LPL line via the atmospheric Heater. The valve to be used on the atmospheric Heater manifold is the one associated with the restriction orifice, to help limiting the cool down flow, and maintain the pressure in the adsorber.

The re-cool down operation is completed when the temperature of the adsorber inlet temperature is as close as 2 K from the outlet temperature.

Q Air Liquide	DOCUMENT No : C1303-NT-400(0) PROJECT: LCLS-II 4.5K COLD BOX SYSTEM	Page : 106/137

HAZOP node	Alarm / Trip Name	Type	Phase (if specified)	Sensor	Condition	Action	Message	Reset Conditions		
HX DELTA TEMPERATURES										
\#1	-TDT-22400NHiHi	Alarm		$\begin{aligned} & \text { TT-22505 } \\ & \& \\ & \text { TT-22400 } \end{aligned}$	$\begin{gathered} \mid \text { TT- } 22400-\mathrm{TT}-22505 \mid>30 \mathrm{~K} \\ \text { and } \\ \text { LT- } 22510>25 \% \end{gathered}$		High Temperature difference on $\mathrm{HX}-1 \mathrm{~A}$ Warm End N2 Stream	$\begin{gathered} \mid \text { TT- } 22400-\mathrm{TT}-22505 \mid<25 \mathrm{~K} \\ \mathrm{Or} \\ \text { LT- } 22510<25 \% \end{gathered}$		
\#1	TDT-22400NTriphi	Trip		$\begin{gathered} \text { IT-22505 } \\ \& \\ \text { TT-22400 } \end{gathered}$	\mid TT-22400-TT-22505\|>50K and LT-22510 > 25\%	Cold Box Cool Down Sequence 600 Trip	Too High Temperature difference on HX-1A Warm End N2 Stream	Operator Reset and Or \|TT-22400-TT-22505	<40K Or LT-22510<25\%	
\#1	TDT-22400MHiHi	Alarm		$\begin{gathered} \text { TT-22201 } \\ \& \\ \text { TT-22400 } \end{gathered}$	\|TT-22400-TT-22201	>30K and Or Turbine 1 Sequence not in step $\times 510$ Or Turbine 2 Sequence not in step X520 Or Warm Shields Sequence not in step X700		High Temperature difference on HX -1A Warm End LPR Stream	\mid TT-22400-TT-22201\|<25K Or And Turbine 1 Sequence in step $\times 510$ And Turbine 2 Sequence in step $\times 520$ And Warm Shields Sequence in step $\times 700$	
\#1	TDT-22400MTripHi	Trip		$\begin{gathered} \text { TT-22201 } \\ \& \\ \text { TT-22400 } \end{gathered}$	\|TT-22400-TT-22201	>50K and Or Turbine-1 Sequence not in step $\times 510$ Or Turbine 2 Sequence not in step $\times 520$ Or Warm Shields Sequence not in step X700	Cold Box Cool Down Sequence 600 Trip	Too High Temperature difference on HX -1A Warm End LPR Stream	Operator Reset and $\|\mathrm{TT}-22400-\mathrm{TT}-22201\|<40 \mathrm{~K} \mathrm{Or}$ And Turbine 1 Sequence in step X510 And Turbine 2 Sequence in step X520 And Warm Shields Sequence in step X700	
\#1	TDT-22400LHiHi	Alarm		$\begin{aligned} & \text { TT-22101 } \\ & \& \\ & \text { TT-22400 } \end{aligned}$	\|TT-22400-TT-22101	>30K and Or Turbine 3 Sequence not in step X530 Or PV-22193 >0\%, Or PV-22115>0\% Or PV-22135 >0\%, Or PV-22140>0\% Or PV-22150 >0\%, Or PV-22160 >0\% Or PV-22180 >0\%, Or PV-22190>0\%		High Temperature difference on HX -1B Warm End LPL Stream	\|TT-22400-TT-22101	<25K Or And Turbine 3 Sequence in step $\times 530$ And PV-22193=0\%, And PV-22115=0\% And PV-22135=0\%, And PV-22140=0\% And PV-22150=0\%, And PV-22160=0\% And PV-22180=0\%, And PV-22190=0\%
\#1	(TDT-22400LTripHi)	Trip		$\begin{gathered} \text { TT-22101 } \\ \& \\ \text { TT-22400 } \end{gathered}$	TTT-22400-TT-22101\|>50K and Or Turbine 3 Sequence not in step $X 530$ Or PV-22193>0\%, Or PV-22115>0\% OrPV-22135 >0\%, Or PV-22140>0\% Or PV-22150 >0\%, Or PV-22160>0\% Or PV-22180 >0\%, Or PV-22190>0\%	Cold Box Cool Down Sequence 600 Trip	Too High Temperature difference on HX-1B Warm End LPL Stream	Operator-Reset And Or Or- $\|T-22101\|<40 \mathrm{~K}$ And Turbine 32400 Sequence in step $\times 530$ And $\mathrm{PV}-22193=0 \%$, And $\mathrm{PV}-22115=0 \%$ And $\mathrm{PV}-22135=0 \%$. And $\mathrm{PV}-22140=0 \%$ And $\mathrm{PV}-22150=0 \%$, And $\mathrm{PV}-22160=0 \%$ And $\mathrm{PV}-22180=0 \%$, And $\mathrm{PV}-22190=0 \%$		
\#1	TDT-22412NHiHi	Alarm		$\begin{gathered} \text { TT-22511 } \\ \& \\ \text { TT-22412 } \end{gathered}$	$\begin{gathered} \mid \text { TT- } 22412-\mathrm{TT}-22511 \mid>30 \mathrm{~K} \\ \text { and } \\ \text { LT- } 22510>25 \% \end{gathered}$		High Temperature difference on HX-1A Cold End N2 Stream	$\begin{gathered} \mid \text { TT- } 22412-\text { TT- } 22511 \mid<25 \mathrm{~K} \\ \text { Or } \\ \text { LT- } 22510<25 \% \end{gathered}$		
\#1	UDT-22412NTripHis	Trip		$\begin{gathered} \text { TT-22511 } \\ \& \\ \text { TT-22412 } \end{gathered}$	$\begin{gathered} \|T \mathrm{~T}-22412-\mathrm{TT}-22511\|>50 \mathrm{~K} \\ \text { and } \\ 4 \mathrm{~T}-22510>25 \% \end{gathered}$	Cold Box Cool Down Sequence 600 Trip	Too High Temperature difference on HX-1A Cold End N2 Stream	Operator-Reset and Or \|TT-22412-TT-22511	<40K Or LT-22510 $<25 \%$	

QAir Liquide	DOCUMENT N ${ }^{\circ}$: C1303-NT-400(0)	Page : 108/137

(1) Air Liquide	DOCUMENT N ${ }^{\circ}$: C1303-NT-400(0) cratro oryon	Page : 110/137

LEL／ELレ：∂ ¢ed	W＇HLSAS XOG đTOD YS＇も II－STDT ：LDGrO甘d $\text { (0)00t-」N-\&0દเつ : „N } \perp N \exists W \cap \supset O \square$	әр！̣nb！ 1 リ！

		 Air Liquide creative oxygen		DOCUMENT N ${ }^{\circ}$: C1303-NT-400(0) PROJECT: LCLS-II 4.5K COLD BOX SYSTEM			$\text { ISTEM } \left\lvert\, \begin{aligned} & \text { Page : } 11 \end{aligned}\right.$	
HAZOP node	Alarm : Trip Name	Type	Phase (if specified)	Sensor	Condition	Action	Message	Reset Conditions
\#14	TT-22372LoLo	Alarm		TT-22372	TT-22372 < 5.5K		Turbine 3 Discharge Temperature Low	TT-22372 > 5.5K
\#14	TT-22372TripLo	Trip		TT-22372	TT-22372 < 5.0K	Turbine 3 Trip	Turbine 3 Discharge Temperature Too Low	Operator Reset and TT-22372 > 5.5K
\#11	TT-22476HiHi	Alarm		TT-22476	TT-22476 > 370 K		Turbine 3 brake temperature high	TT-22476 < 365 K
\#11	$\begin{array}{\|c\|} \hline \text { TT-22475TripHi } \\ \hline 6 \\ \hline \end{array}$	Trip	-	TT-22476	TT-22476 > 375 K	Turbine 3 Trip	Turbine 3 brake temperature too high	Operator Reset and TT-22476 < 365 K
\#11	TT-22475LOLO	Alarm		TT-22475	TT-22475 < 275 K		Turbine 3 bearings temperature low	TT-22475 > 280 K
\#11	TT-22475TripLo	Trip		TT-22475	TT-22475 < 270 K	Turbine 3 Trip	Turbine 3 bearings temperature too low	Operator Reset and TT-22475 > 280 K
\#11	ST-22473TripLo	Trip	Turbine 3 sequence not in step X530	ST-22473	ST-22473 < 30 Hz during 5secANDPV-22472 > 10\%	Turbine 3 Trip	Turbine 3 no speed	Operator Reset and PV-22472 closed
\#11	ST-22473 HiHi	Alarm		ST-22473	ST-22473 > 1456 Hz		Turbine 3 speed high	ST-22473 < 1450 Hz
\#11	ST-22473TripHi	Trip		ST-22473	ST-22473 > 1498 Hz	Turbine 3 Trip	Turbine 3 speed too high	Operator Reset and ST-22473 < 1450 Hz
\#11	ST-22473CrCr	Alarm		ST-22473	$\begin{gathered} \text { ST- } 22473>760 \mathrm{~Hz} \& \\ \text { ST-22473 }<840 \mathrm{~Hz} \\ \text { During } 120 \mathrm{sec} \\ \hline \end{gathered}$		Turbine 3 in Critical speed Zone	$\begin{gathered} \text { ST- } 22473<760 \mathrm{~Hz} \text { or } \\ \text { ST- } 22473>840 \mathrm{~Hz} \end{gathered}$
\#11	ST-22473TripCr	Trip		ST-22473	$\begin{gathered} \hline \text { ST- } 22473>760 \mathrm{~Hz} \& \\ \text { ST-22473 }<840 \mathrm{~Hz} \\ \text { During } 180 \mathrm{sec} \\ \hline \end{gathered}$	Turbine 3 Trip	Turbine 3 in Critical speed Zone 1	$\begin{gathered} \text { Operator Reset and } \\ \text { ST- } 22473<760 \mathrm{~Hz} \text { or } \\ \text { ST- } 22473>840 \mathrm{~Hz} \end{gathered}$
\#15	PT-22372TripVH	Trip		d (PT-22372) / dt	$\frac{\mathrm{d}(\mathrm{PT}-22372 / \mathrm{dt})}{\mathrm{PT}-22372}>30 \% / \mathrm{s}$	Turbine 3 Trip	T3 discharge pressure Variation High	Operator Reset
\#11	ST-22473TripVH	Trip		d(ST-22473) / dt	d(ST-22473/dt) > $200 \mathrm{~Hz} / \mathrm{s}$	Turbine 3 Trip	T3 speed Variation too High	Operator Reset
\#11	PV-22472TripLo	Trip	Turbine 3 sequence not in step X530	PV-22472	PV-22472 closed during 180s (Valve Position feedback < 3\%)	Turbine 3 Trip	T3 inlet valve closed	Operator Reset
\#11	PV-22373 TripLo	Trip	, *	ZSH-22378	$\begin{gathered} \text { Not ZSH-22378 during } \\ -180 \text { s in Steps X531 and X536 } \\ \hline-5 s \text { in any other step } \end{gathered}$	Turbine 3 Trip	T3 Outlet valve opening issue	Operator Reset

OAirLiquide	Document n: C1303.NT-4000) Project: LCLS-II $4.5 K$ K Cold box SYSTEM	Page: :15/137

HAZOP node	Alarm / Trip Name	Type	Phase (if specified)	Sensor	Condition	Action	Message	Reset Conditions
Turbine 4								
\#12	PT-22482 HiHi	Alarm		PT-22482	PT-22482 > 18.9 atm		Turbine 4 inlet pressure high	PT-22482 < 18.5 atm
\#12	PT-22482TripHi-	Trip		PT-22482	PT-22482 > 19.35 atm	Turbine 4 Trip	Turbine 4 inlet pressure too high	Operator Reset and PT-22482 < 18.5 atm
\#13	PT-22382LoLo	Alarm	Turbine 4 sequence not in step X540	PT-22382	PT-22382 < 2.76 atm		Turbine 4 discharge pressure low	PT-22382 > 2.8 atm
\#13	PT-22382TripLo	Trip	Turbine 4 sequence not in step X540	PT-22382	PT-22382 < 2.6 atm	Turbine 4 Trip	Turbine 4 discharge pressure too low	Operator Reset and PT-22382 > 2.8 atm
\#13	PT-22382HiHi	Alarm		PT-22382	PT-22382 > 3.9 atm		Turbine 4 discharge pressure High	PT-22382 < 3.7 atm
\#13	PT-22382TripHi	Trip		PT-22382	PT-22382 > 4.06 atm	Turbine 4 Trip	Turbine 4 discharge pressure too High	Operator Reset and PT-22382 < 3.7 atm
\#12	PDT-22×85LoLo	Alarm		$\begin{aligned} & \text { PT-22485 \& } \\ & \text { PT-22185 } \end{aligned}$	$\frac{\mathrm{PT}-22485-4.6}{\mathrm{PT}-22185}<2.13$		Turbine 4 Bearing Pressure difference low	$\frac{\text { PT }-22485-4.55}{\text { PT }-22185}>2.1$
\#12	PDT-22X85TripLo	Trip		$\begin{aligned} & \text { PT-22485 \& } \\ & \text { PT-22185 } \end{aligned}$	$\frac{\text { PT }-22485-4.4}{\text { PT }-22185}<2.13$	Turbine 4 Trip	Turbine 4 Bearing Pressure difference too low	$\begin{aligned} & \begin{array}{c} \text { Operator Reset and } \\ \frac{\text { PT }-22485-4.55}{\text { PT }-22185}>2.1 \end{array} ~ \end{aligned}$
\#12	PDT-22X8XLoLo	Alarm		PT-22486	PT-22486-PT-22382<-0.06 atm		Turbine 4 brake pressure low	PT-22486-PT-22382> -0.06 atm
\#12	PDT-22×8XTriplo	Trip		PT-22486	PT-22486 - PT-22382<-0.19 atm	Turbine 4 Trip	Turbine 4 brake pressure too low	Operator Reset and PT-22486 - PT-22382> -0.06 atm
\#12	PDT-22×8×HiHi	Alarm		PT-22486	PT-22486 - PT-22382> 2.74 atm		Turbine 4 brake pressure high	PT-22486 - PT-22382<2.74 atm
\#12	PDT-22×8×TripH	Trip		PT-22486	PT-22486 - PT-22382> 2.87 atm	Turbine 4 Trip	Turbine 4 brake pressure high	Operator Reset and PT-22486 - PT-22382<2.74 atm
\#12	\checkmark	Turbine 4 Wheel Pressure Formula: PT				$>\mathrm{K} \times \mathrm{PT}$	$\times\left(\frac{P T-22482}{P T-22382}\right)^{\sigma-1}$ with $\sigma=0.53$	
\#12	T4-KHiHi	Alarm		PT-22488	$K>1.20$		Turbine 4 wheel pressure high	$\mathrm{K}<1.20$
\#12	4_KTripHi	Trip		PT-22488	$K>1.25$	Turbine 4 Trip	Turbine 4 wheel pressure too high	Operator Reset and $K<1.20$
\#12	PT-2248×HiHi	Alarm		$\begin{gathered} \text { PT-22483 \& } \\ \text { PT-22484 } \end{gathered}$	PT-22483-PT-22484 > 1.5 tm		Turbine 4 inlet filter pressure drop High	PT-22483-PT-22484 < 0.2 atm
\#12	PT-2248XTripHi	Trip		$\begin{aligned} & \text { PT-22483 \& } \\ & \text { PT-22484 } \end{aligned}$	PT-22483-PT-22484 > 2.5 atm	Turbine 4 Trip	Turbine 4 inlet filter pressure drop too High	Operator Reset and PT-22483 - PT-22484 < 0.2 atm

		Air Liquide creative oxygen		DOCUMENT N ${ }^{\circ}$: C1303-NT-400(0) PROJECT: LCLS-II 4.5K COLD BOX SYSTEM				Page : 116/137
HAZOP node	Alarm / Trip Name	Type	Phase (if specified)	Sensor	Condition	Action	Message	Reset Conditions
\#14	TT-22382LoLo	Alarm		TT-22382	TT-22382 < 5.0K		Turbine 4 Discharge Temperature Low	TT-22382 > 5.2 K
\#14	TT-22382TripLo	Trip		TT-22382	TT-22382 < 4.5K	Turbine 4 Trip	Turbine 4 Discharge Temperature Too Low	Operator Reset and TT-22382 > 5.2 K
\#12	TT-22486HiHi	Alarm		TT-22486	TT-22486 > 370 K		Turbine 4 brake temperature high	TT-22486 < 365 K
\#12	TT-22486TripHi	Trip		TT-22486	TT-22486 > 375 K	Turbine 4 Trip	Turbine 4 brake temperature too high	Operator Reset and TT-22486 < 365 K
\#12	TT-22485LoLo	Alarm		TT-22485	TT-22485 < 275 K		Turbine 4 bearings temperature low	TT-22485 > 280 K
\#12	TT-22485TripLo	Trip		TT-22485	TT-22485 < 270 K	Turbine 4 Trip	Turbine 4 bearings temperature too low	Operator Reset and TT-22485 > 280 K
\#12	ST-22483TripLo	Trip	Turbine 4 sequence not in step X540	ST-22483	$\begin{gathered} \text { ST- } 22483<30 \mathrm{~Hz} \\ \text { during } 5 \mathrm{sec} \text { ANDPV- } 22482>10 \% \end{gathered}$	Turbine 4 Trip	Turbine 4 no speed	Operator Reset and PV-22482 closed
\#12	ST-22483HiHi	Alarm		ST-22483	ST-22483 > 1232 Hz		Turbine 4 speed high	ST-22483<1210 Hz -
\#12	ST-22483TripHi	Trip		ST-22483	ST-22483 > 1268 Hz	Turbine 4 Trip	Turbine 4 speed too high	Operator Reset and ST-22483 < 1210 Hz
\#13	ST-22483CSCS	Alarm		ST-22483	$\begin{gathered} \hline \text { ST- } 22483>600 \mathrm{~Hz} \& \\ \text { ST-22483 }<750 \mathrm{~Hz} \\ \text { During } 240 \mathrm{sec} \\ \hline \end{gathered}$		Turbine 4 in Critical speed Zone 1	$\begin{gathered} \text { ST- } 22483<600 \mathrm{~Hz} \text { or } \\ \text { ST- } 22483>750 \mathrm{~Hz} \end{gathered}$
\#13	ST-22483TripCS	Trip		ST-22483	$\begin{gathered} \text { ST-22483>600 Hz \& } \\ \text { ST-22483 }<750 \mathrm{~Hz} \\ \text { During } 360 \mathrm{sec} \\ \hline \end{gathered}$	Turbine 4 Trip	Turbine 4 in Critical speed Zone 1	Operator Reset and ST-22483 < 600 Hz or ST-22483>750 Hz
\#13	PT-22382TripVH	Trip		d(PT-22382) / dt	$\frac{\mathrm{d}(\mathrm{PT}-22382 / \mathrm{dt})}{\mathrm{PT}-22382}>11 \% / \mathrm{s}$	Turbine 4 Trip	T4 discharge pressure Variation High	Operator Reset
\#12	ST22483 TripVH	Trip		$\mathrm{d}(\mathrm{ST}-22483) / \mathrm{dt}$	$\mathrm{d}(\mathrm{ST}-22483 / \mathrm{dt})>200 \mathrm{~Hz} / \mathrm{s}$	Turbine 4 Trip	T4 speed Variation too High	Operator Reset
\#12	PV-22482Tripto	Trip	$\frac{\text { Turbine } 4 \text { sequence }}{\text { not in step } \times 540}$	PV-22482	$\begin{aligned} & \text { PV-22482 closed during } 180 \mathrm{~s} \\ & \text { (Valve Position feedback <3\%) } \end{aligned}$	Turbine 4 Trip	T4 inlet valve closed	Operator Reset
\#12	PV-22388TripLo	Trip		ZSH-22388	Not ZSH-22388 during $-180 s$ in Steps $X 541$ and $X 546$ $-5 s$ in any other step	Turbine 4 Trip	T4 Outlet valve opening issue	Operator Reset

OAir Liquide $\begin{array}{r}\text { DOCUMENT No: C1303-NT-40 (0) }\end{array}$

Alarm / Trip Name	Type	Phase (if specified)	Sensor	Interlocked equipment (if any)	Condition	Action	Message	Reset Conditions
UCB VACUUM SKID								
DPT-23610TripVH	Trip		PT-23610	PV-23611	$\Delta \mathrm{PT}-23610>100 \mathrm{mTorr} / \mathrm{min}$ ($-0.133 \mathrm{mbar} / \mathrm{min}$)	Vacuum sequence Trip	System Vacuum failure on UCB	Operator Reset
RT-23610TripVH	Trip		PT-23610	PV-23611	$\begin{aligned} & \text { DP-23610 running and } \\ & \text { PT-23610 }>250 \text { mTorr (} \sim 0.33 \text { mbar) } \end{aligned}$	Vacuum sequence Trip	System Vacuum failure on UCB	Operator Reset
PV-23611ErEr	Alarm		$\begin{gathered} \text { ZSL-23611 } \\ \text { \& ZSH-23611 } \end{gathered}$	PV-23611	ZSL-23611 \& ZSH-23611 off off simultaneously during 1 min		Vacuum Gate Valve not fully open/closed on UCB	ZSL-23611 or ZSH-23611 Operator Reset
-PV-23611TripEr	Trip		$\begin{gathered} \text { ZSL-23611 } \\ \text { \& ZSH-23611 } \end{gathered}$	PV-23611	ZSL-23611 \& ZSH-23611 simultaneously	Vacuum sequence Trip	Vacuum Gate Valve end switched failure on UCB	Operator Reset
PV-23611TripLo	Trip		ZSH-23611	PV-23611	PV-23611 open order and not ZSH-23611 after 4 sec	Vacuum sequence Trip	Vacuum Gate Valve opening failure on UCB	Operator Reset
PV-23611TripHi	Trip		ZSL-23611	PV-23611	PV-23611 close order and not ZSL-23611 after 4 sec	Vacuum sequence Trip	Vacuum Gate Valve closing failure on UCB	Operator Reset
TSH-23610TripHi	Trip		TSH-23610	EH-23610	TSH-23610 (Temperature over $46^{\circ} \mathrm{C}+1-3^{\circ} \mathrm{C}$)	Vacuum sequence Trip	Diffusion Pump over heating on UCB	Operator Reset
FSL-23418TripLo	Trip		FSL-23418	EH-23610	FSL-23418	Vacuum sequence Trip	Cooling water flow on Vacuum skid too low on UCB	Operator Reset
VP-23610TripLo	Trp	.	VP-23610 breaker	VP-23610	VP-23610 breaker stops the pump	Vacuum sequence Trip	Primary Pump breaker failure on UCB	Operator Reset
DP-23610TripLo	Trp		DP-23610 breaker	DP-23610	DP-23610 breaker stops the pump	$\underset{\text { Trip }}{\text { Vacuum sequence }}$	Diffusion Pump breaker failure on UCB	Operator Reset

(Q) Air Liquide	DOCUMENT N ${ }^{\circ}$: C1303-NT-400(0) PROJECT: LCLS-II 4.5K COLD BOX SYSTEM	Page : 124/137

HAZOP node	Type	Phase (if specified)	Sensor	Interlocked equipment	Condition	Action	Reset Conditions	Fallback position	Comments	
DEWAR										
\#13	Temporary Interlock		TT-22393-TT-22193	PV-22393	IF (TT-22393-TT-22193) > 45K	Force PV-22393 Maximum Opening at 5\%	(TT-22393-TT-22193) < 30K Ramp Max Opening at $100 \%(1 \% / \mathrm{sec})$	$\begin{gathered} \text { Maximum opening of } \\ \text { PV-22393 back at its value } \\ \underline{\text { before Interlock }} \end{gathered}$	Limit HP flow in HX-12 if Cold DT High to avoid Cold Box Trip	
**13	Temporary Interlock		TT-22393-TT-22194	PV-22393	IF \mid TT-22393-TT-22194\|>45K	Force PV-22393 Maximum Opening at 5\%	\|TT-22393-TT-22194	< 30K Ramp Max Opening at 100\%(1\%/sec)	Maximum opening of PV-22393-back at its value before Interlock	Limit HP flow to the Dewar if the Dewar is much colder or warmer than Cold Box (Dewar. Connection)
\#14	Temporary - interlock		TT-22194	PV-22194	TT-22194 > 7K And TT-22193 < 7K	Force PV-22194 Maximum Opening at 10\%	TT-22194 < 6K Ramp Max Opening at 100\%(1\%/sec)	Maximum opening of PV-22194 back at its value before Interlock	Limit warm Flow from Dewar into the Cold Subcooler	
\#14	Temporary Interlock		PV-22193, TT-22193. TT-22194	PV-22194	PV-22193 > 10\%, And TT-22193>80K, And TT-22194 < 10K	Force PV-22194 Maximum Opening at 10\%	TT-22193 < 80K Or TT-22194>10K Ramp Max Opening at $100 \%(1 \% / \mathrm{sec})$	$\begin{aligned} & \text { Maximum opening of } \\ & \frac{\text { PV-22194 back at its value }}{\text { before Interlock }} \end{aligned}$	Prevent cold flow from Dewar to Warm HX12 (Subcooler being also warm)	
\#14	Temporary Interlock		PV-22193, TT-22193, TT-22195	PV-22195	PV-22193>10\% And TT-22193 $>80 \mathrm{~K}$ And TT-22195 < 10K	Force PV-22195 Maximum Opening at 5\%	TT-22193 < 80K Or TT-22195>10K Ramp Max Opening at $100 \%(1 \% / \mathrm{sec})$	Maximum opening of PV-22195 back at its value before Interlock	Prevent cold flow from Dewar to Warm HX12 (Subcooler being also warm)	
\#14	Temporary Interlock	Cold Box Cool Down Sequence in Nominal Step X610	-T-22195	RV-22195	$\begin{gathered} \mathrm{TT}-22195>7 \mathrm{~K} \\ \text { and } \mathrm{PV}-22195>10 \% \end{gathered}$	Force PV-22195 Maximum Opening at 10%	TT-22195 < 6K Ramp Max Opening at $100 \%(1 \% / \mathrm{sec})$	- Maximum opening of PV-22195 back at its value before Interlock	Limit warm Flow back in Cold Subcooler	
\#13	Temporary Interlock		$\begin{aligned} & \text { LT-22195A } \\ & \text { \& LT-22195B } \end{aligned}$	PV-22195	LT-22195A > 90\% \& LT-22195B > 50\% during more than 1 min	Force PV-22195 Maximum Opening at 5\%	LT-22195A $<85 \%$ for more than 1 min Ramp Max Opening at 100% ($1 \% / \mathrm{sec}$)	Maximum opening of PV-22195 back at its value before Interlock	Limit LHe transfer in Subcooler if Level gets high	

\Rightarrow
JLAB:
GENERAL: Some of the interlock action requires valves maximum opening go to an intermediate values (Example 10% or 5% etc.). If the valve is at 0%, we wouldn't want
an Interlock to open it to 10% in that case. Ex: PV22400/402, PV22520, PV22390, PV22193 and Dewar interlocks.
If valve \% opening tries to go beyond the interlocked value X\% (Example 10\%) in above cases, interlock will override and prevent exceeding the interlocked value.
ALATUS:
"If valve \% opening tries to go beyond the interlocked value X\% (Example 10\%) in above cases, interlock will override and prevent exceeding the interlocked value." is
indeed the expected way the interlock shall be coded.

This document is property of Air Liquide Advanced Technologies US LLC-9807 Katy Freeway, Suit 100. HOUSTON TX 77024. United States of America

Air Liquide cratro orygen	DOCUMENT N ${ }^{\circ}$: C1303-NT-400(0)	
	PROJECT: LCLS-II 4.5K COLD BOX SYSTEM	Page : 126/137

Input Signal
$0-100 \%$
$0-100 \%$
$0-100 \%$
$0-100 \%$
$0-100 \%$
$0-100 \%$
$0-100 \%$
$0-100 \%$
$0-100 \%$
$0-100 \%$
$0-100 \%$
$0-100 \%$
$0-100 \%$
$0-100 \%$
$0-100 \%$
$0-100 \%$
$0-100 \%$
$0-100 \%$
$0-100 \%$
$0-100 \%$
$0-100 \%$
$0-100 \%$

Signal Range	Range Supplier
4-20 mA	0-500 PSIA
4-20 mA	$0-500$ PSIA
4-20 mA	$0-500$ PSIA
$4-20 \mathrm{~mA}$	0-500 PSIA
4-20 mA	0-500 PSIA
4-20 mA	0-500 PSIA
$4-20 \mathrm{~mA}$	0-500 PSIA
4-20 mA	0-500 PSIA
4-20 mA	0-500 PSIA
$4-20 \mathrm{~mA}$	0-500 PSIA
$4-20 \mathrm{~mA}$	$0-500$ PSIA
$4-20 \mathrm{~mA}$	$0-500$ PSIA
4-20 mA	$0-500$ PSIA
$4-20 \mathrm{~mA}$	$0-500$ PSIA
$4-20 \mathrm{~mA}$	$0-500$ PSIA
$4-20 \mathrm{~mA}$	0-500 PSIA
$4-20 \mathrm{~mA}$	0-500 PSIA
4-20 mA	0-500 PSIA
4-20 mA	0-500 PSIA
$4-20 \mathrm{~mA}$	$0-250$ PSIA
$4-20 \mathrm{~mA}$	$0-250$ PSIA
4-20 mA	0-250 PSIA

- Differential Pressure Transmitters

Differential Pressure Transmitters				入				-
Tag	Process Range	Manufacturer	Model	Signal Range	Range Supplier	Input Signal	$\begin{gathered} \text { Program } \\ \text { conversion } \end{gathered}$	Display
RIS9.10 PDT-22461	0-2 Atm	GE UNIK	5000 PTX50G2-TB-A1-CA-HO-PE Pressure Range: 0-2 atm, Wet/wet differential	4-20 mA	$\begin{gathered} 0-2 \text { Atm (0-2026 } \\ \text { mbar) } \end{gathered}$	0-100\%	0-100\%	0-2026 mbar
RIS8.2 O FT-22245	0-45 mbar	Endress+Hauser	PMD55-AA21BD67DGBHAJA2A+N3PB	4-20 mA	0-100 mbar	0-45\%	0-100\%	$0-45 \mathrm{mbar}$
RIS10. 13 FT-22391	0-30 mbar	Endress+Hauser	PMD55-AA21BD67DGBHAJA2A+N3PB	4-20 mA	$0-100 \mathrm{mbar} \backslash$	0-30\%	0-100\%	$0-30 \mathrm{mbar}$
RIS10.14 FT-22392	$0-30 \mathrm{mbar}$	Endress+Hauser	PMD55-AA21BD67DGBHAJA2A+N3PB	4-20 mA	0-100 mbar	0-30\%	0-100\%	0-30 mbar
RIS8.3 OFT-22432	0-30 mbar	Endress+Hauser	PMD55-AA21BD67DGBHAJA2A+N3PB	4-20 mA	0-100 mbar	0-30\%	0-100\%	$0-30 \mathrm{mbar}$
RIS8 $/ \geqslant 0 \mathrm{FT}-22452$	0-20 mbar	Endress+Hauser	PMD55-AA21BD67DGBHAJA2A+N3PB	4-20 mA	0-100 mbar	0-30\%	0-100\%	$0-20 \mathrm{mbar}$
R1510.45 \rightarrow FT-22472	0-30 mbar	Endress+Hauser	PMD55-AA21BD67DGBHAJA2A+N3PB	4-20 mA	0-100 mbar 0	0-30\%	0-100\%	0-30 mbar
R158.5 OFT-22482	0-30 mbar	Endress+Hauser	PMD55-AA21BD67DGBHAJA2A+N3PB	4-20 mA	0-100 mbar	0-30\%	0-100\%	$0-30 \mathrm{mbar}$
R1s9.14 PDT-22195C B	0-30 mbar	Endress+Hauser	PMD55-AA21BD67DGBHAJA2A+N3PB	4-20 mA	0-100 mbar	0-30\%	0-100\%	0-30 mbar
2156.4 PP IT-22510	0-0.2 Atm.	GE UNIK	5000 PTX50G2-TB-A1-CA-HO-PE Pressure Range: 0 to 5 psi Wet/wet differential	4-20 mA	$\begin{gathered} 0-5 \text { psi }(0-340 \\ \text { mbar } 344 \cdot 74 \\ \hline \end{gathered}$	0-56\%	0-100\%	0-190 mbar
21S6. 5 ¢ PDT-22414	0-2000 mbar	GE UNIK	5000 PTX50G2-TB-A1-CA-HO-PE Pressure Range: 0 to 2000 mbar Wet/wet differential	4-20 mA	0-2000 mbar	0-100\%	0-100\%	0-2000 mbar

- Superconductive Probes Transmitters

Tag	Process Range	Manufacturer	Model
LT-22195A	$4.5-450 \mathrm{~K}$	American Magnetics	Model 1700 He Only
LT-22195B	$4.5-450 \mathrm{~K}$	American Magnetics	Model 1700 He Only

R1S6.8 VT 31000
RIS 6.9 PDT 31005
RIS6.10 VPT31005
R1S6.11 TCG 31091
R159.13 \because PT 22487

() Air Liquide	DOCUMENT N ${ }^{\circ}$: C1303-NT-400(0) PROJECT: LCLS-II 4.5K COLD BOX SYSTEM	Page : 130/137

*Equations for calculating Pressure Versus Analog Output Voltage for the Granville-Phillips 275912-EU vacuum gauge:

on where $y=$ Pressure and $x=$ Voltage	Coefficients	
	a	${ }^{-0.02585}$
	b	0.03767
bx+cx ${ }^{2}+\mathrm{dx}^{3}+\mathrm{ex}^{4}+5 \mathrm{x}^{3} \times 1133.3$	c	${ }^{0.04563}$
$\left.a+b x+c x^{2}+d x^{3}+e x^{4}+f x^{5}\right) \times 1333$	d	0.1151
	e	-0.04158
	1	0.008737
$y_{\text {tor }}=\frac{a+c x+e x^{2}}{1+b x+d x^{2}+t x^{1}}$	a	0.1031
	b	-0.3986
$m_{m}=\left(\frac{a+c x+e x^{2}}{1+b x+d x^{2}+[x}\right) \times 133.3$	c	${ }^{-0.02322}$
	d	${ }^{0.07438}$
	-	0.07229
$=\left(\frac{a+c x+e e^{2}}{1+b x+d x^{2}+f x^{\prime}}\right) \times 1.333$	f	-0.006866
$y_{t x n}=\frac{a+c x}{1+b x+d x^{2}}$	a	100.624
	b	-0.37679
	c	-20.5623
$y_{m s}=\left(\frac{a+c x}{1+b x+d x^{2}}\right) \times 133.3$	d	0.0348656

21. APPENDIXE 3 - VENTURI FLOW CALCULATION

21.1 VENTURI FLOW CALCULATION - INTRODUCTION

 All flow are obtained by means of venturi tubes (pressure differential devices) and calculated according to ISO 5167.The Venturi elements are defined in the Data Sheet document C1303 DS 460 (2). The following equation is used to calculate the mass flow going through the flow element.

$$
Q_{m}=\frac{C}{\sqrt{1-\beta^{4}}} \cdot \varepsilon \cdot \frac{\pi \cdot d^{2}}{4} \cdot \sqrt{200 \cdot \Delta P \cdot \rho}
$$

The correction factor $k=\frac{C}{\sqrt{1-\beta^{4}}} \cdot \varepsilon \cdot \frac{\pi \cdot d^{2}}{4} \cdot \sqrt{200}$ is calculated for the design case and is considered constant. The formula is simplified:

$$
Q_{m}=k \sqrt{\Delta P \cdot \rho}
$$ density will be calculated using two different ways:

For flowmeters operating in cold temperatures (Turbine 4 inlet - FT-22482 / Cold Intercepts supply - FT-22392 / 4.5K supply - FT-22391), helium In higher temperature conditions ($T>7 \mathrm{~K}$), when the Helium behaves like a perfect gas, we use the following equation:
The density is calculated from tabulated values from Hepack thermodynamic library to be implemented in the program. The density value shall then be calculated from Pressure and Temperature:

$$
\text { With: } \quad Q_{m}[\mathrm{~kg} / \mathrm{s}], d[\mathrm{~m}], \Delta P[\mathrm{mbar}], \rho[\mathrm{kg} / \mathrm{m} 3]
$$ With: $\quad P[k P a], T[K], \quad R=8.314 / 4.003=2.077 \mathrm{~J} / \mathrm{kg} . \mathrm{K}$

In lower temperature conditions ($\mathrm{T}<7 \mathrm{~K}$), density tables are provided for each flowmeter. The density shall be taken from this table based on
-. Pi, Pj, Ti, Tj and the associated density: pii, pij, pji, pjj can all be found in the input chart. - P and T are measured parameter: $\mathrm{Pi}<\mathrm{P}<\mathrm{Pj}$ and $\mathrm{Ti}<\mathrm{T}<\mathrm{Tj}$

Q Air Liquide	DOCUMENT No : C1303-NT-400(0) PROJECT: LCLS-II 4.5K COLD BOX SYSTEM	Page : 132/137

21.2 VENTURI FLOW CALCULATION - PARAMETERS
The following Table provides the coefficients to be used for each Flowmeter, as well as examples of calculation which gives an indication of the inaccuracy that can be expected from the calculation only (the inaccuracy coming from the measurement loop is indicated in Flowmeters Data Sheet document C1303 DS 460 (2)).

	C	β	d	ε	k	Pin	Tin	PProcess	Pcalcul	PTable	$\Delta \mathrm{P}$	Qmprocess	Qmcalcul	Errorcalcu	Qmtable	Errortable
FT-22245	1	0.414	34.3 mm	1	0.0133	3.7 bara	37.4 K	$4.7 \mathrm{~kg} / \mathrm{m} 3$	$4.8 \mathrm{~kg} / \mathrm{m} 3$	NA	45 mbar	$190.5 \mathrm{~g} / \mathrm{s}$	$194.3 \mathrm{~g} / \mathrm{s}$	2.0\%	NA	NA
FT-22432	1	0.402	33.3 mm	1	0.0125	18.1 bara	55.5 K	$15.0 \mathrm{~kg} / \mathrm{m} 3$	$15.7 \mathrm{~kg} / \mathrm{m} 3$	NA	30 mbar	$261.4 \mathrm{~g} / \mathrm{s}$	$270.4 \mathrm{~g} / \mathrm{s}$	3.4\%	NA	NA
FT-22452	1	0.422	34.9 mm	1	0.0138	18.0 bara	29.9 K	$27.6 \mathrm{~kg} / \mathrm{m} 3$	$28.9 \mathrm{~kg} / \mathrm{m} 3$	NA	20 mbar	$318.6 \mathrm{~g} / \mathrm{s}$	$331.3 \mathrm{~g} / \mathrm{s}$	4.0\%	NA	NA
FT-22472	1	0.348	28.8 mm	1	0.0093	17.9 bara	16.5 K	$53.1 \mathrm{~kg} / \mathrm{m} 3$	$52.2 \mathrm{~kg} / \mathrm{m} 3$	NA	30 mbar	$367.5 \mathrm{~g} / \mathrm{s}$	$367.0 \mathrm{~g} / \mathrm{s}$	0.1\%	NA	NA
ET-22482	1	0.400	21.9 mm	1	0.0054	17.9 bara	6.9 K	$139.3 \mathrm{~kg} / \mathrm{m} 3$	$124.7 \mathrm{~kg} / \mathrm{m} 3$	$139.4 \mathrm{~kg} / \mathrm{m} 3$	30 mbar	$344.3 \mathrm{~g} / \mathrm{s}$	$330.0 \mathrm{~g} / \mathrm{s}$	4.2\%	348.9.9/s	1.3\%
FT-22391	1	0.310	17.0 mm	1	0.0032	3.3. bara	4.6 K	$129.9 \mathrm{~kg} / \mathrm{m} 3$	$34.9 \mathrm{~kg} / \mathrm{m} 3$	$128.9 \mathrm{~kg} / \mathrm{m} 3$	30 mbar	$200.0 \mathrm{~g} / \mathrm{s}$	$104.2 \mathrm{~g} / \mathrm{s}$	47.9\%	$200.1 \mathrm{~g} / \mathrm{s}$	0.1\%
FT-22392	1	0.194	8.3 mm	1	0.0008	3.0 bara	5.4 K	$94.8 \mathrm{~kg} / \mathrm{m} 3$	26.6 kg/m 3	$94.7 \mathrm{~kg} / \mathrm{m} 3$	30 mbar	$40.6 \mathrm{~g} / \mathrm{s}$	$21.5 \mathrm{~g} / \mathrm{s}$	47.0\%	40.6 g/s	0.0\%

Based on the process tables provided in the next section, the program calculates the following densities:

21.3 VENTURI FLOW CALCULATION - PARAMETERS
21.3.1 FT-22482 - Density Tabulation
9

() AirLiquide	DOCUMENT N ${ }^{\circ}$: C1303-NT-400(0) PROJECT: LCLS-II 4.5K COLD BOX SYSTEM	Page : 133/137

N	$\left\lvert\, \begin{gathered} 0 \\ \underset{\sim}{\infty} \\ \infty \end{gathered}\right.$					$\begin{gathered} \infty \\ \underset{\sim}{\sim} \\ \underset{\sim}{2} \\ \hline \end{gathered}$	$\begin{aligned} & \sim \\ & \vdots \\ & \vdots \\ & \sim \end{aligned}$	$\begin{array}{c\|c} \underset{\sim}{\sim} \\ \underset{\sim}{c} \\ \underset{\sim}{2} \end{array}$	$\underset{\sim}{\underset{\sim}{N}} \underset{\sim}{\underset{\sim}{2}} \underset{\sim}{\dot{N}}$	$$				$\stackrel{\substack{c \\ \underset{\sim}{2} \\ \hline} \underset{\sim}{\infty}}{\substack{2}}$		$\stackrel{N}{\sim}$	$\stackrel{\infty}{\infty}$	∞			$\begin{gathered} 3 \\ \hdashline \\ \hline \end{gathered}$				flo		$\underset{f}{f}$	$\underset{\sim}{c}$	\mathfrak{c}	$\left\lvert\, \begin{aligned} & \text { g} \\ & \dot{f} \end{aligned}\right.$	$\begin{gathered} \mathrm{N} \\ 0 \\ 0 \\ \mathrm{n} \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \sim \end{aligned}$
or	$\begin{gathered} \infty \\ \infty \\ \infty \end{gathered}$			$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\rightharpoonup}{6}$		$\begin{aligned} & 0 \\ & \infty \\ & \frac{\infty}{\sim} \\ & \\ & \hline \end{aligned}$	$\begin{array}{\|c\|c\|} \hline \underset{\sim}{\sim} & \underset{\sim}{\sim} \\ \hline \end{array}$	$\stackrel{\sim}{\sim} \underset{\sim}{\sim}$	$\begin{array}{c\|c} \infty \\ \stackrel{\sim}{c} \\ \underset{\sim}{n} \\ \end{array}$																		$\underset{y}{x}$	$\begin{array}{\|c} n \\ \dot{y} \\ \vdots \end{array}$	$\begin{array}{\|c} m \\ 0 \\ 0 \end{array}$	$\stackrel{\square}{2}$	-
$\stackrel{\infty}{\infty}$	$\left\|\begin{array}{c} 9 \\ \dot{\varrho} \\ \hline \end{array}\right\|$	\mathfrak{c}	ֵֻ	$\begin{aligned} & \text { No } \\ & \boldsymbol{\sim} \\ & \hline \end{aligned}$			N	$\begin{array}{l\|l} N \\ \underset{\sim}{N} \\ \sim \end{array}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{N}$											$\begin{array}{c\|c} \underset{\sim}{j} & \underset{\sim}{j} \\ \underset{\sim}{2} \\ \hline \end{array}$		+	0			∞		$\begin{aligned} & m \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline-\bar{n} \\ \hline \stackrel{y}{2} \\ \hline \end{array}$	$\begin{aligned} & \infty \\ & \vdots \\ & \vdots \end{aligned}$	-
ก	$\begin{aligned} & 0 \\ & \hline-\underset{\sim}{0} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	no	$\begin{aligned} & \mathrm{m} \\ & \stackrel{y}{c} \\ & \hline \end{aligned}$			N	$\begin{array}{\|c\|c\|} \hline \underset{\sim}{\sim} \\ \underset{\sim}{\sim} \\ \sim \end{array}$											$\underset{\sim}{\underset{\sim}{\underset{\sim}{*}} \underset{\sim}{\underset{\sim}{*}} \underset{\sim}{2}}$										$\underset{\substack{\mathrm{N} \\ \hline \\ \hline}}{ }$	$\begin{aligned} & 9 \\ & \frac{9}{2} \end{aligned}$	N	$\left.\begin{array}{\|c} \underset{\sim}{2} \\ \stackrel{n}{2} \end{array} \right\rvert\,$
$\stackrel{\ominus}{\omega}$	$\left.\begin{array}{\|c\|} \hline+ \\ 0 \\ 0 \end{array} \right\rvert\,$	$\stackrel{\text { O}}{\underset{\mathrm{N}}{2}}$	$\underset{\underset{\sim}{\mathrm{N}}}{ }$				$\stackrel{N}{\mathrm{~N}}$	$\begin{gathered} \infty \\ \stackrel{\sim}{\circ} \\ \stackrel{\sim}{\infty} \\ \underset{\sim}{\infty} \\ \sim \end{gathered}$																$y \underset{z}{y}$	$\underset{\ddagger}{\mathscr{F}}$		0	$\stackrel{i}{i}$		$\begin{aligned} & \infty \\ & \underset{\sim}{n} \\ & \sim \end{aligned}$	$\begin{array}{\|c} n \\ \\ \end{array}$	$$
®ٌ	$\begin{aligned} & \dot{r} \\ & \dot{i} \\ & \stackrel{i}{7} \end{aligned}$	$\underset{\stackrel{\rightharpoonup}{\circ}}{\stackrel{\rightharpoonup}{n}}$	$\underset{\sim}{f}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \end{aligned}$		$\stackrel{3}{\sim}$	0 0 0			$$						$\stackrel{m}{c}$								0			-	$$			$$	$\begin{array}{\|c\|} \hline 0 \\ \dot{C} \\ \end{array}$
Hi	$\begin{aligned} & \underset{\sim}{9} \\ & \hline \end{aligned}$	$\stackrel{9}{\mathrm{~N}}$		$\begin{aligned} & \mathrm{N} \\ & \stackrel{y}{\mathrm{~N}} \end{aligned}$			$\stackrel{\rightharpoonup}{\circ}$			$\begin{array}{l\|l\|} \substack{c \\ \underset{\sim}{c} \\ \hline} & \stackrel{\sim}{\sim} \\ \hline \end{array}$				$\underset{\sim}{c} \underset{\sim}{c}$							$\stackrel{\sim}{+}$					$\stackrel{i}{i n}$	Niv	$\begin{gathered} 9 \\ \dot{N} \end{gathered}$		$\begin{gathered} \text { m } \\ \underset{\sim}{2} \end{gathered}$	$\begin{array}{\|c\|} \hline 0 \\ 2 \\ \end{array}$	$$
ఱో	$\stackrel{O}{\mathrm{C}}$	$$		$\underset{\sim}{\top}$			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \infty & \sim \\ \stackrel{\sim}{c} \\ \stackrel{\sim}{c} & \stackrel{\sim}{r} \\ \hline \end{array}$																$\ddot{0}$	$\underset{\sim}{2}$	$\stackrel{?}{\Omega} \underset{\sim}{\sim}$	$\begin{gathered} 0 \\ \\ \end{gathered}$	$\left\lvert\,\right.$	$\begin{aligned} & \dot{\sim} \\ & \dot{\sim} \end{aligned}$	$\underset{\sim}{i}$	$\begin{aligned} & \infty \\ & \cdots \\ & \sim \\ & \end{aligned}$	-
N్	$\left\lvert\, \begin{gathered} \hat{N} \\ \underset{\sim}{2} \end{gathered}\right.$	$\underset{\sim}{\sim}$			$\begin{gathered} \infty \\ \stackrel{\infty}{\infty} \\ \underset{\sim}{2} \\ \hline \end{gathered}$	$\begin{gathered} \infty \\ \underset{\sim}{\mathrm{N}} \end{gathered}$	$\stackrel{c}{9}$			$\underset{\sim}{\underset{\sim}{e}} \underset{\sim}{\underset{\sim}{n}} \underset{\sim}{n}$				$\underset{\sim}{\dot{\sigma}} \underset{\sim}{\sim}$		$\begin{aligned} & \stackrel{\bullet}{\dot{j}} \\ & \stackrel{y}{\tau} \end{aligned}$			$\stackrel{\sim}{\underset{\sim}{e}} \underset{\sim}{d}$			$\begin{array}{ll} y \\ \underset{y}{c} \\ \hline \end{array}$		듣	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{n}$	$\begin{gathered} \infty \\ \\ \end{gathered}$	$\begin{array}{\|c} \omega \\ \stackrel{n}{n} \\ \underset{\sim}{2} \end{array}$	$\begin{aligned} & \text { N} \\ & \\ & \end{aligned}$		$\begin{array}{\|c} n \\ \dot{n} \\ \end{array}$	N
\bar{i}	$\left\lvert\, \begin{gathered} \underset{\sim}{\sim} \\ \underset{\sim}{N} \end{gathered}\right.$	$\underset{\sim}{\text { Nin }}$		הָ	$\begin{aligned} & \sim \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{2} \\ & \hline \end{aligned}$									$\stackrel{\sim}{\sim}$										-		$\stackrel{\Gamma}{2}$	$\begin{aligned} & 6 \\ & \stackrel{y}{6} \end{aligned}$	$\left\lvert\, \begin{gathered} \substack{n \\ \stackrel{\mu}{n} \\ \underline{n}} \end{gathered}\right.$	$\left\{\begin{array}{l} 0 \\ \substack{n \\ \\ \hline \\ \hline} \end{array}\right.$		$\underset{\sim}{n}$	$\stackrel{3}{1}$
\sim	$\left\|\begin{array}{c} \sim \\ \underset{\sim}{\sim} \\ \hline \end{array}\right\|$	$\underset{\sim}{\mathrm{N}}$		$\begin{gathered} \underset{\sim}{\sim} \\ \underset{\sim}{2} \end{gathered}$			$\stackrel{\substack{0 \\ \underset{\sim}{2} \\ \underset{\sim}{2} \\ \hline \\ \hline}}{2}$			$\begin{array}{c\|c} \infty \\ \infty \\ \underset{\sim}{c} & \underset{\sim}{c} \\ \underset{\sim}{c} \\ \hline \end{array}$														$\left\lvert\, \begin{gathered} \underset{\sim}{n} \\ \underset{\sim}{2} \end{gathered}\right.$	$\stackrel{\substack{9 \\ \\ \hline}}{ }$		بٌ	$\begin{gathered} 0 \\ 0 \\ \dot{R} \end{gathered}$	$\left\{\begin{array}{l} \mathrm{N} \\ 0 \\ 0 \\ \end{array}\right.$	$\begin{gathered} m \\ i n \\ i \end{gathered}$	$\left\lvert\, \begin{gathered} 0 \\ 0 \\ \\ \end{gathered}\right.$	-
E	\checkmark										10	$\stackrel{\sim}{\circ}$		$0 \stackrel{\sim}{\circ}-$?	$\stackrel{\sim}{\stackrel{\circ}{\sim}} \underset{\sim}{\sim}$				$\stackrel{\sim}{\circ} \stackrel{\rightharpoonup}{\circ}$		\bigcirc	$\stackrel{\infty}{\circ} \mid$		$\stackrel{\sim}{\circ}$	$?$	$\stackrel{\sim}{\sim}$	\cdots		\circ	$\stackrel{\sim}{\circ}$
$\begin{aligned} & \stackrel{4}{\omega} \\ & \stackrel{\rightharpoonup}{0} \\ & \hline 0 \end{aligned}$	-																															

						11		RO				$\begin{gathered} \mathrm{N}^{\circ}: \\ 14 \end{gathered}$			$\begin{aligned} & 0(0) \\ & \mathbf{B O} \end{aligned}$	SY	TEM		ge	34/1	
21.3.2 FT-22391-Density Tabulation																					
Density (kg/m3)		FT-22391																			
		TT-22391 (K)																			
		4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9	6	
$\begin{aligned} & \text { PT- } \\ & 22391 \\ & \text { (atm) } \end{aligned}$	2.5	132.9	131.2	129.3	127.3	125.1	122.6	119.8	116.6	112.8	107.9	100.9	86.5	54.8	44.7	39.8	36.5	34.1	32.1	30.5	29
	2.6	133.3	131.6	129.8	127.8	125.7	123.3	120.6	117.6	114.0	109.6	103.6	94.0	70.2	51.7	44.3	40.0	36.9	34.6	32.7	31
	2.7	133.7	132.0	130.2	128.3	126.2	123.9	121.3	118.4	115.1	111.0	105.8	98.2	83.7	61.3	50.0	44.0	40.1	37.3	35.0	33
	2.8	134.1	132.4	130.7	128.8	126.8	124.5	122.0	119.3	116.1	112.3	107.6	101.2	91.0	72.5	57.0	48.8	43.8	40.3	37.6	35
	2.9	134.4	132.8	131.1	129.3	127.3	125.1	122.7	120.0	117.0	113.4	109.1	103.6	95.5	81.9	65.2	54.4	47.9	43.6	40.4	37
	3	134.8	133.2	131.5	129.7	127.8	125.7	123.3	120.8	117.9	114.5	110.5	105.5	98.8	88.5	73.5	60.8	52.7	47.3	43.4	40
	3.1	135.1	133.6	131.9	130.2	128.3	126.2	123.9	121.5	118.7	115.5	111.8	107.2	101.4	93.0	80.8	67.6	57.9	51.4	46.7	43
	3.2	135.5	134.0	132.3	130.6	128.7	126.7	124.5	122.1	119.4	116.4	112.9	108.7	103.5	96.5	86.5	74.1	63.5	55.8	50.4	46
	3.3	135.8	134.3	132.7	131.0	129.2	127.2	125.1	122.8	120.2	117.3	114.0	110.1	105.3	99.2	90.9	80.0	69.1	60.5	54.2	49.
	3.4	136.1	134.7	133.1	131.4	129.6	127.7	125.6	123.4	120.9	118.1	115.0	111.3	106.9	101.5	94.3	85.0	74.5	65.4	58.3	53.
	3.5	136.5	135.0	133.5	131.8	130.1	128.2	126.2	124.0	121.6	118.9	115.9	112.4	108.4	103.4	97.2	89.0	79.4	70.1	62.5	56
	3.6	136.8	135.4	133.8	132.2	130.5	128.7	126.7	124.5	122.2	119.6	116.7	113.5	109.7	105.1	99.5	92.4	83.8	74.7	66.8	60
	3.7	137.1	135.7	134.2	132.6	130.9	129.1	127.2	125.1	122.8	120.3	117.5	114.4	110.8	106.6	101.6	95.2	87.5	79.0	70.9	64
	3.8	137.4	136.0	134.5	133.0	131.3	129.6	127.7	125.6	123.4	121.0	118.3	115.3	111.9	108.0	103.3	97.7	90.7	82.8	74.9	67
	3.9	137.7	136.3	134.9	133.4	131.7	130.0	128.1	126.1	124.0	121.6	119.0	116.2	113.0	109.3	104.9	99.7	93.5	86.2	78.6	71
	4	138.0	136.7	135.2	133.7	132.1	130.4	128.6	126.6	124.5	122.2	119.7	117.0	113.9	110.4	106.4	101.6	95.9	89.3	82.0	75

21.3.3 FT-22392 - Density Tabulation

FT-22392																														
Density (kg/m3)		TT-22392(K)																												
		4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9	6	6.1	6.2	6.3	6.4	6.5	6.6	6.7	6.8	6.9	7
$\begin{aligned} & \text { PT- } \\ & 22392 \\ & \text { (atm) } \end{aligned}$	2.5	132.9	131.2	129.3	127.3	125.1	122.6	119.8	116.6	112.8	107.9	100.9	86.5	54.8	44.7	39.8	36.5	34.1	32.1	30.5	29.2	28.0	26.9	26.0	25.1	24.3	23.6	23.0	22.4	21.8
	2.6	133.3	131.6	129.8	127.8	125.7	123.3	120.6	117.6	114.0	109.6	103.6	94.0	70.2	51.7	44.3	40.0	36.9	34.6	32.7	31.1	29.8	28.6	27.5	26.6	25.7	24.9	24.2	23.5	22.9
	2.7	133.7	132.0	130.2	128.3	126.2	123.9	121.3	118.4	115.1	111.0	105.8	98.2	83.7	61.3	50.0	44.0	40.1	37.3	35.0	33.2	31.7	30.3	29.1	28.1	27.1	26.3	25.5	24.8	24.1
	2.8	134.1	132.4	130.7	128.8	126.8	124.5	122.0	119.3	116.1	112.3	107.6	101.2	91.0	72.5	57.0	48.8	43.8	40.3	37.6	35.4	33.7	32.1	30.8	29.6	28.6	27.7	26.8	26.0	25.3
	2.9	134.4	132.8	131.1	129.3	127.3	125.1	122.7	120.0	117.0	113.4	109.1	103.6	95.5	81.9	65.2	54.4	47.9	43.6	40.4	37.9	35.8	34.1	32.6	31.3	30.1	29.1	28.1	27.3	26.5
	3	134.8	133.2	131.5	129.7	127.8	125.7	123.3	120.8	117.9	114.5	110.5	105.5	98.8	88.5	73.5	60.8	52.7	47.3	43.4	40.5	38.1	36.1	34.5	33.0	31.7	30.6	29.6	28.6	27.8
	3.1	135.1	133.6	131.9	130.2	128.3	126.2	123.9	121.5	118.7	115.5	111.8	107.2	101.4	93.0	80.8	67.6	57.9	51.4	46.7	43.3	40.5	38.3	36.4	34.8	33.4	32.1	31.0	30.0	29.1
	3.2	135.5	134.0	132.3	130.6	128.7	126.7	124.5	122.1	119.4	116.4	112.9	108.7	103.5	96.5	86.5	74.1	63.5	55.8	50.4	46.3	43.1	40.6	38.5	36.7	35.1	33.7	32.5	31.4	30.4
	3.3	135.8	134.3	132.7	131.0	129.2	127.2	125.1	122.8	120.2	117.3	114.0	110.1	105.3	99.2	90.9	80.0	69.1	60.5	54.2	49.6	45.9	43.0	40.7	38.6	36.9	35.4	34.0	32.8	31.8
	3.4	136.1	134.7	133.1	131.4	129.6	127.7	125.6	123.4	120.9	118.1	115.0	111.3	106.9	101.5	94.3	85.0	74.5	65.4	58.3	53.0	48.9	45.6	42.9	40.7	38.8	37.1	35.7	34.3	33.2
	3.5	136.5	135.0	133.5	131.8	130.1	128.2	126.2	124.0	121.6	118.9	115.9	112.4	108.4	103.4	97.2	89.0	79.4	70.1	62.5	56.6	52.0	48.3	45.3	42.8	40.7	38.9	37.3	35.9	34.6
	3.6	136.8	135.4	133.8	132.2	130.5	128.7	126.7	124.5	122.2	119.6	116.7	113.5	109.7	105.1	99.5	92.4	83.8	74.7	66.8	60.3	55.2	51.2	47.8	45.1	42.8	40.8	39.0	37.5	36.1
	3.7	137.1	135.7	134.2	132.6	130.9	129.1	127.2	125.1	122.8	120.3	117.5	114.4	110.8	106.6	101.6	95.2	87.5	79.0	70.9	64.1	58.6	54.1	50.4	47.4	44.9	42.7	40.8	39.1	37.6
	3.8	137.4	$136 . C$	134.5	133.0	131.3	129.6	127.7	125.6	123.4	121.0	118.3	115.3	111.9	108.0	103.3	97.7	90.7	82.8	74.9	67.8	61.9	57.1	53.1	49.8	47.1	44.7	42.6	40.8	39.2
	3.9	137.7	136.3	134.9	133.4	131.7	130.0	128.1	126.1	124.0	121.6	119.0	116.2	113.0	109.3	104.9	99.7	93.5	86.2	78.6	71.5	65.3	60.2	55.9	52.3	49.3	46.7	44.5	42.6	40.8
	4	138.0	136.7	135.2	133.7	132.1	130.4	128.6	126.6	124.5	122.2	119.7	117.0	113.9	110.4	106.4	101.6	95.9	89.3	82.0	75.0	68.6	63.2	58.7	54.8	51.6	48.8	46.4	44.3	42.5

22.4 CONTROL LOOPS PID - COLD END

22.5 CONTROL LOOPS PID - WARM AND COLD SHIELDS

[^0]: * Indicative Values: Accessible from HMI.

