| lefferson Lab                                                   | Control System Documentation-Specifications                        |              |
|-----------------------------------------------------------------|--------------------------------------------------------------------|--------------|
| Jefferson Lab<br>Thomas Jefferson National Accelerator Facility | Inter Facility Title: LCLS-II Cryoplant General Control Software S |              |
|                                                                 | Document Number: 79120-C6003                                       |              |
|                                                                 | Author(s): Swapnil Shrishrimal, Chris<br>Scanlon                   | Page 1 of 32 |

# TECHNICAL SPECIFICATION FOR LCLS-II Cryoplant General Control Software Specification Document Number: 79120-C6003

**Revision History:** 

| Revision | Description of Change | Date    |
|----------|-----------------------|---------|
| -        | Original release      | 1/31/19 |

Chris Scanlon JLab Cryogenics Department Electrical Engineer

Robert Norton JLab Cryogenics Department Electrical Engineering Manager

> John Hogan JLab LCLS-II Cryoplant CAM

Swapnil Shrishrimal JLab Cryogenics Department Electrical Engineer

Ritendra Bhattacharya JLab Cryogenics Department LCLS-II Commissioning Lead

Dana Arenius JLab Cryogenics Department Principal Cryogenic Engineer

| laffarran Lab                                                   | Control System Documentation-Specifications                     |              |
|-----------------------------------------------------------------|-----------------------------------------------------------------|--------------|
| Jefferson Lab<br>Thomas Jefferson National Accelerator Facility | Title: LCLS-II Cryoplant General Control Software Specification |              |
|                                                                 | Document Number: 79120-C6003                                    |              |
|                                                                 | Author(s): Swapnil Shrishrimal, Chris<br>Scanlon                | Page 2 of 32 |

# **Table of Contents**

| Definitions                           |                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Purpose of this Document              |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Reference Documents                   |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Overview of the PLC Program Structure |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Α.                                    | Main Task                                                                                                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| В.                                    | Main Routine                                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C.                                    | Analog_Input_Conditioning                                                                                              | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| D.                                    | Flow_Calculation                                                                                                       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| E.                                    | Solenoid_Valves                                                                                                        | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| F.                                    | Buffer_IO                                                                                                              | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| G.                                    | EPICS_Watchdog                                                                                                         | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Н.                                    | Obtain_CVAL_Index                                                                                                      | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ι.                                    | CVAL_Matrix_Management                                                                                                 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| J.                                    | cPID_Overhead                                                                                                          | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| К.                                    | cPID                                                                                                                   | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| L.                                    | PLC_Status                                                                                                             | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| М.                                    | Alarms                                                                                                                 | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| N.                                    | Alarm_Evaluation                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.                                    | <br>copyBools and copyBools_Temp                                                                                       | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       | Purpos<br>Referen<br>Overvie<br>A.<br>B.<br>C.<br>D.<br>E.<br>F.<br>G.<br>H.<br>I.<br>J.<br>K.<br>L.<br>K.<br>L.<br>M. | Reference Documents         Overview of the PLC Program Structure         A.       Main Task.         B.       Main Routine.         C.       Analog_Input_Conditioning         D.       Flow_Calculation         E.       Solenoid_Valves         F.       Buffer_IO.         G.       EPICS_Watchdog         H.       Obtain_CVAL_Index         I.       CVAL_Matrix_Management         J.       cPID_Overhead         K.       cPID         L.       PLC_Status         M.       Alarms         N.       Alarm_Evaluation |

| laffarran Lah                                                                                                       | Control System Documentation-Specifications      |                   |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------|
| Jefferson Lab<br>Thomas Jefferson National Accelerator Facility Title: LCLS-II Cryoplant General Control Software S |                                                  | are Specification |
|                                                                                                                     | Document Number: 79120-C6003                     |                   |
|                                                                                                                     | Author(s): Swapnil Shrishrimal, Chris<br>Scanlon | Page 3 of 32      |

|      | Ρ.               | Trip_Evaluation             |  |
|------|------------------|-----------------------------|--|
| V.   | Gene             | ralSuffixes                 |  |
| VI.  | Digita           | al Indicators               |  |
|      | Α.               | General points              |  |
| VII. | General Comments |                             |  |
|      | Α.               | Analog Outputs:             |  |
|      | В.               | Prevention of Trip:         |  |
|      | C.               | Digital Commands from EPICS |  |

| laffar an Lab                                                   | Control System Documentation-Specifications                     |              |
|-----------------------------------------------------------------|-----------------------------------------------------------------|--------------|
| Jefferson Lab<br>Thomas Jefferson National Accelerator Facility | Title: LCLS-II Cryoplant General Control Software Specification |              |
|                                                                 | Document Number: 79120-C6003                                    |              |
|                                                                 | Author(s): Swapnil Shrishrimal, Chris<br>Scanlon                | Page 4 of 32 |

# I. Definitions

| LCLS-II | Linac Coherent Light Source – II                                                                         |
|---------|----------------------------------------------------------------------------------------------------------|
| SLAC    | SLAC National Accelerator Laboratory, the purchaser of the equipment mentioned herein                    |
| JLAB    | Thomas Jefferson National Accelerator Facility                                                           |
| EPICS   | Experimental Physics and Industrial Control System                                                       |
| PLC     | Programmable Logic Controller, an electronic device used to control the equipment mentioned herein       |
| VFD     | Variable Frequency Drive, an electric motor drive used to control the speed of electric motors           |
| MCC     | Motor Control Center, an electronic device that provides supervisory control over electric motors        |
|         | which are not controlled by a VFD                                                                        |
| DP      | Differential pressure                                                                                    |
| PID     | Proportional Integral Differential, a control loop which includes changes to the control signal based on |
|         | proportional, integrated and differential error terms.                                                   |
| Tag     | A variable in the PLC code, which references a piece of equipment, input or output signal and whose      |
|         | name is based on ANSI/ISA 5.1 standard                                                                   |
|         |                                                                                                          |

### II. Purpose of this Document

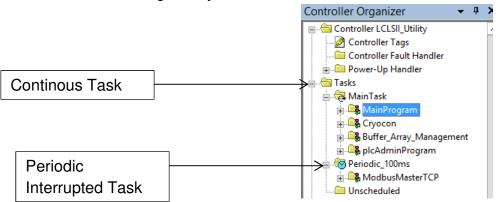
The purpose of this document is to define the structure and functional requirements for the LCLS-II cryoplant PLC control software. The software shall perform real-time monitoring and engineering unit conversion of all digital and analog signals connected to the PLCs. The PLCs shall provide all alarms and shutdowns for each system's equipment protection. The alarm set points will be operator modifiable. The shutdown set points will not be operator modifiable. The system will provide information to the operator via a locally mounted touch panel display and through a remote communications connection to the main control system. The system will handle all operational functions including startup sequences and normal/emergency shutdown sequences.

| lofforfon Lab                                                   | Control System Documentation-Specifications                     |              |
|-----------------------------------------------------------------|-----------------------------------------------------------------|--------------|
| Jefferson Lab<br>Thomas Jefferson National Accelerator Facility | Title: LCLS-II Cryoplant General Control Software Specification |              |
|                                                                 | Document Number: 79120-C6003                                    |              |
|                                                                 | Author(s): Swapnil Shrishrimal, Chris<br>Scanlon                | Page 5 of 32 |

# III. Reference Documents

The cryogenic plants' control systems are based on the P&IDs and reference documents listed in each system's software specification in addition to the following general reference documents:

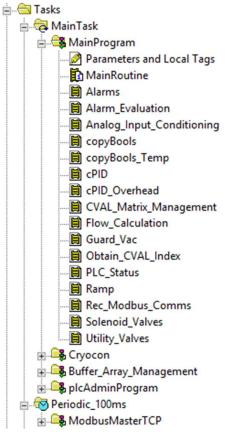
| Document Number    | Document Name                                                       | Revision |
|--------------------|---------------------------------------------------------------------|----------|
| LCLSII-4.8-FR-0244 | Cryogenics Plant Functional Requirements Specification              | 0        |
| LCLSII-2.7-FR-0492 | Cryogenic Controls Functional Requirements Specification            | 1        |
| LCLSII-4.1-FR-0327 | Cryogenic Systems Integration Functional Requirements Specification | 2        |
| LCLSII-4.9-FR-0057 | Cryogenic Distribution System Functional Requirements Specification | 2        |
| LCLSII-2.5-IC-0056 | Accelerator Systems to Cryogenic Systems Interface Control Document | 4        |
| LCLSII-4.9-IC-0058 | Cryogenic Distribution System                                       | 3        |
| LCLSII-2.7-IC-0277 | Low Level Radio Frequency Interface Control Document                | 0        |
| LCLSII-4.5-ES-0415 | CM Instrumentation Specification                                    | 0        |
| LCLSII-4.9-ES-0404 | Cryogenic Distribution System Distribution Box Specification        | 2        |
| LCLSII-2.7-ES-0964 | Cryogenic Control Engineering Specification                         | 0        |
| LCLSII-4.5-ES-0974 | Cryomodule Operational Conditions and Control                       | 0        |
| LCLSII-4.9.EN-0289 | CDS Control Loop Functions                                          | 2        |


| laffarran Lah                                                   | Control System Documentation-Specifications      |                   |
|-----------------------------------------------------------------|--------------------------------------------------|-------------------|
| Jefferson Lab<br>Thomas Jefferson National Accelerator Facility | Title: LCLS-II Cryoplant General Control Softwa  | are Specification |
|                                                                 | Document Number: 79120-C6003                     |                   |
|                                                                 | Author(s): Swapnil Shrishrimal, Chris<br>Scanlon | Page 6 of 32      |

# IV. Overview of the PLC Program Structure

Studio 5000 software is used for programming the ControlLogix L81E PLCs for the LCLS-II cryogenic plant. All the programming is done in ladder logic with exception of Turbine Efficiency calculation which is done in structured text format. A ControlLogix 5000 controller supports multiple tasks to schedule and prioritize the running of programs based on specific criteria. This balances the processing time of the controller. The controller runs only one task at one time. A different task can interrupt a task that is running and take control. In any given task, only one program runs at one time. Most systems will only have single task running, but the utility system PLC has an additional task for Modbus communication which will interrupt the main task periodically every 100ms.

# A. Main Task


The PLC task is structured into a multiple programs. The MainProgram, Buffer\_Array\_Management, plcAdminProgram and Cryocon programs, which have their own set of routines. MainProgram serves as the program that contains the functional logic such as PID loops, sequencers, trips, and interlocks, while the other programs perform data management roles. This is the program excutes tasks sequentially and perform control actions on a given system.



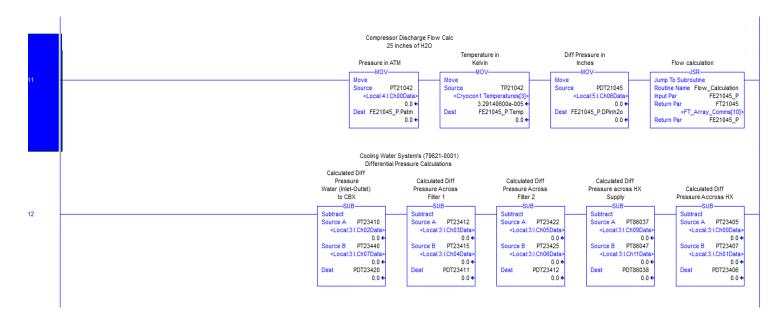
| lofforcon Lab                                                   | Control System Documentation-Specifications                     |              |
|-----------------------------------------------------------------|-----------------------------------------------------------------|--------------|
| Jefferson Lab<br>Thomas Jefferson National Accelerator Facility | Title: LCLS-II Cryoplant General Control Software Specification |              |
|                                                                 | Document Number: 79120-C6003                                    |              |
|                                                                 | Author(s): Swapnil Shrishrimal, Chris<br>Scanlon                | Page 7 of 32 |

#### B. Main Routine

The MainProgram is structured into multiple sub-routines. The MainRoutine is executed continuously and jumps to other sub-routines. All the sub-routines in the program should be called out in the MainRoutine for execution. In other words, sub-routine will be executed only if it is directly or indirectly called from the MainRoutine. Refer to the functional narrative for basic subsystem operation.



| Jefferson Lab<br>Thomas Jefferson National Accelerator Facility | Control System Documentation-Sp                  | ecifications      |
|-----------------------------------------------------------------|--------------------------------------------------|-------------------|
|                                                                 | Title: LCLS-II Cryoplant General Control Softwa  | are Specification |
|                                                                 | Document Number: 79120-C6003                     |                   |
|                                                                 | Author(s): Swapnil Shrishrimal, Chris<br>Scanlon | Page 8 of 32      |




**Example:** FlowCalculation sub-routine is not requested from the MainRoutine but when Main Routine executes Analog\_Input\_Conditioning it request FlowCalculation sub-routine indirectly and executes it.

| Jefferson Lab<br>Thomas Jefferson National Accelerator Facility | Control System Documentation-Sp                  | ecifications      |
|-----------------------------------------------------------------|--------------------------------------------------|-------------------|
|                                                                 | Title: LCLS-II Cryoplant General Control Softwa  | are Specification |
|                                                                 | Document Number: 79120-C6003                     |                   |
|                                                                 | Author(s): Swapnil Shrishrimal, Chris<br>Scanlon | Page 9 of 32      |

# C. Analog\_Input\_Conditioning

This function is used to do various calculations on the analog inputs, including rescaling or converting units which are not scaled by the analog input card interface. Some differential pressures are calculated using the appropriate pressure transmitters and any signal/tag which is supposed to be calculated in software is performed in this routine. It also moves all of the input conditions into the appropriate arrays and calls the Flow\_Calculation routine with those arrays as inputs for calculating the flow through a venturi flow meter in g/s.



| Jefferson Lab<br>Thomas Jefferson National Accelerator Facility | Control System Documentation-Specifications      |                   |
|-----------------------------------------------------------------|--------------------------------------------------|-------------------|
|                                                                 | Title: LCLS-II Cryoplant General Control Softwa  | are Specification |
|                                                                 | Document Number: 79120-C6003                     |                   |
|                                                                 | Author(s): Swapnil Shrishrimal, Chris<br>Scanlon | Page 10 of 32     |

# D. Flow\_Calculation

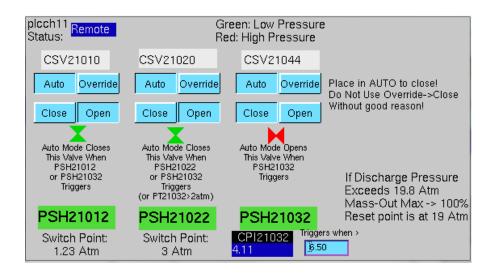
This function calculates the flow through a venturi flow element using the inlet pressure, temperature and differential pressure between the inlet pressure and venturi pressure. The controls engineer has to enter all the constants (Beta\_4, C, Ks, MW, Z) from the venturi data sheet.

| Tag Structure | Description              | Tag type            |
|---------------|--------------------------|---------------------|
| Beta_4        | β <sup>4</sup> Esitmated | Constant            |
| С             | Coefficient of Discharge | Constant            |
| Density       | Density upstream         | Calculated Variable |
| DPinh2o       | Diff Pressure in inches  | Analog Input        |
| Ks            | Isentropic Exponent      | Constant            |
| MW            | Molecular Weight         | Constant            |
| Patm          | Pressure in ATM          | Analog Input        |
| Temp          | Temperature in Kelvin    | Analog Input        |
| Y             | Expansion Factor         | Calculated Variable |
| Z             | Compressibility upstream | Constant            |

Density = <u>Pressure \* Molecular Weight</u> <u>Compressibility upstream \* 8314.4621 \* Temperature</u>

$$Expansion \ Factor = \frac{Ks * (1 - \beta^4) * \{(DP * Ks) - (Pressure * Ks) + (Pressure)\}}{DP * (Ks - 1) * \{(DP * Ks) - (2 * \beta^4 * Pressure)\}}$$

$$Flow = \sqrt{\frac{DP}{Density}} * 1414.214 * Coefficient of Discharge * Expansion Factor$$


\*\*\*Note: Pressure and DP are converted to Pascal during calculation

| Jefferson Lab<br>Thomas Jefferson National Accelerator Facility | Control System Documentation-Specifications      |                   |
|-----------------------------------------------------------------|--------------------------------------------------|-------------------|
|                                                                 | Title: LCLS-II Cryoplant General Control Softwa  | are Specification |
|                                                                 | Document Number: 79120-C6003                     |                   |
|                                                                 | Author(s): Swapnil Shrishrimal, Chris<br>Scanlon | Page 11 of 32     |

### E. Solenoid\_Valves

This routine solely controls the operation of the solenoid valves. It copies override commands based on PLC local or remote status and sets or unsets solenoid valve commands based on the override command from one of the HMIs. It also opens and closes solenoid valves based on their process value setpoint.

| HMI Suffix   | EPICS Suffix |
|--------------|--------------|
| _Command_PX  | _Command_X   |
| _Override_PX | _Override_X  |



# F. Buffer\_IO

This subroutine takes in all of the input and output modules and creates buffer arrays. This is done so that a routine cannot directly write to outputs. An example of such a routine is a cold box protection routine that checks to make sure the output to a particular valve is at 100% before proceeding. These buffer arrays are used in various subroutines, i.e. CVAL\_Matrix\_Management.

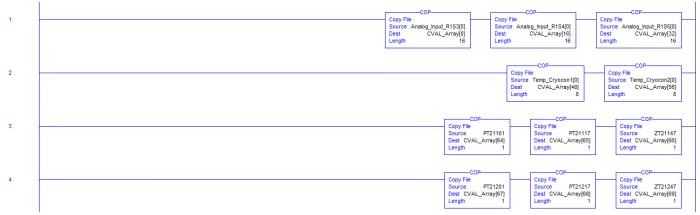
| Jefferson Lab<br>Thomas Jefferson National Accelerator Facility | Control System Documentation-Specifications      |                   |
|-----------------------------------------------------------------|--------------------------------------------------|-------------------|
|                                                                 | Title: LCLS-II Cryoplant General Control Softwa  | are Specification |
|                                                                 | Document Number: 79120-C6003                     |                   |
|                                                                 | Author(s): Swapnil Shrishrimal, Chris<br>Scanlon | Page 12 of 32     |

# G. EPICS\_Watchdog

This routine handles a heartbeat between EPICS and the PLC and is called once per second. The two manipulate the same variable between 0 (PLC) and some positive number (EPICS). When the PLC does not get a response from EPICS (bit remains 0), it triggers a flag to indicate that the communications have failed and increments a counter, but this doesn't affect the normal control of the PLC. This only means that the operator can no longer make changes from EPICS to the PLC as the communication is lost. EPICSTMOUT is the only tag which should be tied into the main alarm tree.

EPICSHNDSHKVAL must be output from EPICS to the PLC which will be set in softIOC.

# H. Obtain\_CVAL\_Index


This subroutine takes a user entered string (a PV tag number) from EPICS and utilizes an indexing method where this subroutine returns the index value of a channel corresponding to that string. This index value is then be utilized to grab the PV until a change in the PV source is detected and this subroutine is called again to get a new PV index. This method reduces the computing overhead required by the PLC by reducing the number of string equate checks needed.

| 1 | Equi<br>Equi<br>Surce A <u>EV_Strips</u><br>PI21042 +<br>Surce B <u>PV_List(0)</u><br>-PI21042 + | RET-<br>Return from Subroutine<br>Return Par 0<br>Return Par 400 |
|---|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| 2 | EQU<br>Squal A PV_String<br>P721042 +<br>P721042 +<br>P721040 +                                  | RET<br>Return from Subroutine<br>Return Par 1<br>Return Par 400  |
| 3 | -EQU<br>-EQU<br>-EQU<br>Surce A PV_String<br>PT21042 4<br>Surce B PV_List[2]<br>-PT21032 4       | RET<br>Return from Subroutine<br>Return Par 2<br>Return Par 400  |

# I. CVAL\_Matrix\_Management

| Jefferson Lab<br>Thomas Jefferson National Accelerator Facility | Control System Documentation-Sp                  | ecifications      |
|-----------------------------------------------------------------|--------------------------------------------------|-------------------|
|                                                                 | Title: LCLS-II Cryoplant General Control Softwa  | are Specification |
|                                                                 | Document Number: 79120-C6003                     |                   |
|                                                                 | Author(s): Swapnil Shrishrimal, Chris<br>Scanlon | Page 13 of 32     |

This subroutine puts all of the controllable signals into a matrix so they can be used by individual PID loops for later use via pointing to the appropriate index point in the array (See Obtain\_CVAL\_Index). Buffer arrays are used to create a matrix for analog input modules and temperature Cryocons, while individual signals are entered into the matrix for outputs, calculated values, produced or consumed signals.



#### J. cPID\_Overhead

This subroutine handles the movement of PID settings between EPICS, the HMI/touchpanel, and the PID loop in the PLC. It accepts the setpoints for the PID in local (from the HMI) or remote (from EPICS) and moves them to the appropriate registers. Any changes made either on the HMI or EPICS will be reflected on the other. The changes made by the operator won't go into effect if the PID loop is in the breakdown condition (Breakdown\_Condition). This breakdown condition will override all the settings and drive the PID loop output via a predefined program. It can be enabled in any routine. This routine accepts the string and looks for the index value in the Obtain\_CVAL\_index matrix routine and sets an error bit if the PID loop control variable is not in the matrix.

| Jefferson Lab<br>Thomas Jefferson National Accelerator Facility | Control System Documentation-Specifications      |                   |
|-----------------------------------------------------------------|--------------------------------------------------|-------------------|
|                                                                 | Title: LCLS-II Cryoplant General Control Softwa  | are Specification |
|                                                                 | Document Number: 79120-C6003                     |                   |
|                                                                 | Author(s): Swapnil Shrishrimal, Chris<br>Scanlon | Page 14 of 32     |

# K. cPID

This routine handles the PID loop calculations and sets the PID loop output. They are velocity type PID loops and don't have an issue with integral wind-up (accumulation of integral term when at the outputs maximum or minimum). The integral term is simply a 'sum' that is added or subtracted from the output based on

**Change = Error \* Sample Time \* Integral\_Gain**. At a maximum or minimum position this change request is ignored, there is no 'windup' that happens.

This routine accepts data from the PID\_Overhead sub-routine and calculates the PID loop output based on whether the PID loop is position type or change type. "Position" refers to the PID loop output as a flat value that goes up or down (a simple 4-20mA output, for example). "Change" refers to a PID loop that simply outputs a positive or negative change request with a magnitude. Such a 'change' type is commonly used to control pneumatic slide valves or electric valves that rely on a digital output to drive it open or closed. The PID loop can be set into 4 different modes: manual, auto, sequencer and protector. Changes from manual or sequencer mode to auto mode are seamless and auto mode picks up from wherever manual mode was commanded to by setting the initial output value of the PID loop to the previous output value from sequencer or manual mode.

The modes are described below.:

# a) Manual Mode

The PID loop sets the output to user desired value. This mode can only be overridden in a breakdown condition.

# b) Auto Mode

The PID loop normally operates in this mode and it is the lowest priority mode.

# c) Sequencer Mode

This mode is activated if the sequencer mode (.smod) bit is set in the program because certain conditions are met. Valves or any analog output will be operating in this mode during

| Jefferson Lab<br>Thomas Jefferson National Accelerator Facility | Control System Documentation-Sp                  | ecifications      |
|-----------------------------------------------------------------|--------------------------------------------------|-------------------|
|                                                                 | Title: LCLS-II Cryoplant General Control Softwa  | are Specification |
|                                                                 | Document Number: 79120-C6003                     |                   |
|                                                                 | Author(s): Swapnil Shrishrimal, Chris<br>Scanlon | Page 15 of 32     |

sequential fuctions (cooldown of the coldbox, shields, etc). This will take sequencer mode values to calculate the PID loop output. This mode can be overridden by manual mode.

# d) Protector Mode

This mode is activated if the PID loop Process Variable () is out of range or if the error bit () was set from Obtain\_CVAL\_Index subroutine. In this case, if the fail safe bit (FSB) is active the PID loop will go to predefined position, otherwise it will lock the output to the current position. This mode can be overridden if sequencer or manual mode is activated, or if a valid tag name is entered as the Process Variable in the PID loop.

### e) PID Loop Structure

- (1) There are two user-defined data types. One is the PID loop itself that contains the relevant gains, minimums, maximums, and so on. The other is the 'Overhead" that handles interface requests from the EPICS/HMI system.
- (2) The elements of the PID/Overhead structure are below. These are accessed by "PID.\*\*\*\* and PID\_Overhead.\*\*\*\* Where \*\*\*\* is the Name.

### Black Text – EPICS Signals;

#### **Blue Text** – HMI Signal;

#### **Red Text** – PLC Signals just for information

| Element Name | Туре | Description                                 |
|--------------|------|---------------------------------------------|
|              | •    | PID LOOP STRUCTURE                          |
| MODE         | INT  | 0: Manual,1:Auto 2: Sequencer, 3: Protector |
| TYPE         | INT  | 0: Change type, 1: Position type            |
| CVAL         | REAL | Process Variable                            |
| ORBV         | REAL | Output readback Value                       |

| Jefferson Lab<br>Thomas Jefferson National Accelerator Facility | Control System Documentation-Specifications      |                   |
|-----------------------------------------------------------------|--------------------------------------------------|-------------------|
|                                                                 | Title: LCLS-II Cryoplant General Control Softwa  | are Specification |
|                                                                 | Document Number: 79120-C6003                     |                   |
|                                                                 | Author(s): Swapnil Shrishrimal, Chris<br>Scanlon | Page 16 of 32     |

| Element Name | Туре | Description                              |
|--------------|------|------------------------------------------|
| OVAL         | REAL | Output Value                             |
| MIN          | REAL | Minimum Output Value                     |
| MAX          | REAL | Maximum Output Value                     |
| DMIN         | REAL | Minimum Output Change                    |
| DMAX         | REAL | Maximum Output Change                    |
| VAL          | REAL | Setpoint of PID loop                     |
| SVAL         | REAL | Sequencer Output Request                 |
| MVAL         | REAL | Manual Output Request                    |
| KP           | REAL | Proportional Gain                        |
| KI           | REAL | Integral Gain                            |
| KD           | REAL | Deriviative Gain                         |
| err          | REAL | Previous error                           |
| derr         | REAL | Previous Difference In Error             |
| MDt          | REAL | Sample Time                              |
| dt           | REAL | Previous Time Interval                   |
| smod         | BOOL | Command for cPID to be in Sequencer      |
| mmod         | BOOL | Command for cPID to be in Manual         |
| dm           | REAL | Change in Output                         |
| odm          | REAL | Output Change for dm Not Calculated      |
| ct           | DINT | Clockticks when PID Scan Occurs          |
| OneShot      | BOOL |                                          |
| OneShotOff   | BOOL |                                          |
| pmod         | BOOL | Command for cPID to be in Protector Mode |
| PVAL         | REAL | Protector Output Request                 |

| Jefferson Lab | Control System Documentation-Sp                  | ecifications      |
|---------------|--------------------------------------------------|-------------------|
|               | Title: LCLS-II Cryoplant General Control Softwa  | are Specification |
|               | Document Number: 79120-C6003                     |                   |
|               | Author(s): Swapnil Shrishrimal, Chris<br>Scanlon | Page 17 of 32     |

| Element Name  | Туре                                                                                     | Description                                                                                                               |  |  |
|---------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|
| PEVAL         | REAL                                                                                     | Protector Mode Fail Safe Valve Condition                                                                                  |  |  |
| FSB           | BOOL                                                                                     | High priority Fail Safe Bit                                                                                               |  |  |
|               | OVERHEAD STRUCTURE<br>(Accessed by "PID_Overhead.****<br>Where **** is the Element name) |                                                                                                                           |  |  |
| Mode_Rqst     | DINT                                                                                     | Mode Request from EPICS (0: MANUAL,1:AUTO)                                                                                |  |  |
| Mode_Rqst_P   | BOOL                                                                                     | Mode Request from HMI (0: MANUAL,1:AUTO)                                                                                  |  |  |
| Mode_Status   | DINT                                                                                     | Auto/Manual Indicator to EPICS (0: MANUAL,1:AUTO 2:<br>Sequencer, 3: Protector)                                           |  |  |
| Mode          | SINT                                                                                     | Mode                                                                                                                      |  |  |
| ManPos        | REAL                                                                                     | Manual Position                                                                                                           |  |  |
| ManPos_Rqst   | REAL                                                                                     | Manual Position Requested From EPICS                                                                                      |  |  |
| ManPos_Rqst_P | REAL                                                                                     | Manual Position Requested From Panel View                                                                                 |  |  |
| TieBk         | REAL                                                                                     | Loop Tieback Value                                                                                                        |  |  |
| SP            | REAL                                                                                     | Loop Setpoint to EPICS                                                                                                    |  |  |
| SP_Rqst       | REAL                                                                                     | PID SP request from EPICS                                                                                                 |  |  |
| SP_Rqst_P     | REAL                                                                                     | PID SP request from Panel View                                                                                            |  |  |
| PV            | REAL                                                                                     | Loop Process Variable to EPICS                                                                                            |  |  |
| PV_lconics    | REAL                                                                                     | Alternate Process Variable selected by Engineer through EPICS                                                             |  |  |
| PV_Iconics_EN | BOOL                                                                                     | User Request, buffered, from Iconics to switch PV Source. Normally this bit should be OFF before enabling PV_SourceSel_EN |  |  |
| PV_pid        | REAL                                                                                     | Process Variable for PID loop                                                                                             |  |  |
| PV_Sel_Rqst   | BOOL                                                                                     | User Request from Iconics to switch loop PV source (0: Default, 1:<br>Engineer PV from Iconics)                           |  |  |
| PV_Source     | BOOL                                                                                     | Flag to let Iconics know which PV the PLC is actually using (0:PLC                                                        |  |  |

| Jefferson Lab<br>Thomas Jefferson National Accelerator Facility | Control System Documentation-Specifications      |                   |
|-----------------------------------------------------------------|--------------------------------------------------|-------------------|
|                                                                 | Title: LCLS-II Cryoplant General Control Softwa  | are Specification |
|                                                                 | Document Number: 79120-C6003                     |                   |
|                                                                 | Author(s): Swapnil Shrishrimal, Chris<br>Scanlon | Page 18 of 32     |

| Element Name    | Туре | Description                                                                      |
|-----------------|------|----------------------------------------------------------------------------------|
|                 |      | default, 1: Engineer PV from Iconics)                                            |
| Override_Status | DINT | 0:None,1:Auto, 2:Manual, 3:ValPos, 4:SP, 5:Auto&SP,<br>6:Manual&ValPos, 7:SP Lim |
| Override_Code   | DINT | 0:None,1:Auto, 2:Manual, 3:ValPos, 4:SP, 5:Auto&SP,<br>6:Manual&ValPos, 7:SP Lim |
| CV              | REAL | Loop Control Variable to Iconics/PanelView                                       |
| CV_pid          | REAL | Control Variable for PID loop                                                    |
| WRITE           | DINT | Move Iconics Loop Staged Values to PLC when this is set to 1                     |
| WRITE_P         | REAL | Move Panel View Loop Staged Values to PLC when this is set to 1                  |
| MAX_X           | REAL | Staged Value from Iconics for PID Max Limit                                      |
| MAX_PX          | REAL | Staged Value from Panel View for PID Max Limit                                   |
| MAX             | REAL | Value for PID Max Limit                                                          |
| MIN_X           | REAL | Staged Value from Iconics for PID Min Limit                                      |
| MIN_PX          | REAL | Staged Value from Panel View for PID Min Limit                                   |
| MIN             | REAL | Value for PID Min Limit                                                          |
| DMAX_X          | REAL | Request for maximum change of valve position from EPICS                          |
| DMAX_PX         | REAL | Reqest for maximum change of valve position from touch panel                     |
| DMAX            | REAL | Actual maximum change of valve                                                   |
| DMIN_X          | REAL | Request for minimum change of valve position from EPICS                          |
| DMIN_PX         | REAL | Request for minimum change of valve position from touch panel                    |
| DMIN            | REAL | Actual minimum change of valve                                                   |
| ST_X            | REAL | Staged Value from Iconics for PID update time (s)                                |
| ST_PX           | REAL | Staged Value from Panel View for PID update time (s)                             |
| UPD             | REAL | Value for PID update time (s)                                                    |
| GAINP_X         | REAL | Staged PID Proportional Gain from Iconics                                        |

| Jefferson Lab<br>Thomas Jefferson National Accelerator Facility | Control System Documentation-Specifications                     |               |
|-----------------------------------------------------------------|-----------------------------------------------------------------|---------------|
|                                                                 | Title: LCLS-II Cryoplant General Control Software Specification |               |
|                                                                 | Document Number: 79120-C6003                                    |               |
|                                                                 | Author(s): Swapnil Shrishrimal, Chris<br>Scanlon                | Page 19 of 32 |

| Element Name        | Туре   | Description                                  |
|---------------------|--------|----------------------------------------------|
| GAINP_PX            | REAL   | Staged PID Proportional Gain from Panel View |
| GAINP               | REAL   | PID Proportional Gain                        |
| GAINI_X             | REAL   | Staged PID Integral Gain from Iconics        |
| GAINI_PX            | REAL   | Staged PID Integral Gain from Panel View     |
| GAINI               | REAL   | PID Integral Gain                            |
| GAIND_X             | REAL   | Staged PID Derivative Gain from Iconics      |
| GAIND_PX            | REAL   | Staged PID Derivative Gain from Panel View   |
| GAIND               | REAL   | PID Derivative Gain                          |
| Mode_LR             | BOOL   | Control Mode (0:Local, 1Remote)              |
| PV_String_PX        | STRING | Process Variable channel (Local)             |
| PV_String_X         | STRING | Process Variable Channel (Remote)            |
| PV_String           | STRING |                                              |
| CVAL_Index          | DINT   |                                              |
| Breakdown_Condition | BOOL   |                                              |
| Breakdown_Value     | REAL   |                                              |
| Mode_String         | STRING |                                              |
| NoMatch             | BOOL   | PID Input Variable didn't match              |
| CFdisable           | INT    | Channel Fault Disable                        |
| CHFault             | BOOL   |                                              |
| ControlFail         | BOOL   | Channel fail                                 |

# f) PID Calculation

A discrete form of the PID algorithm is as follows:

 $M(n) = KP^*E(n) + KI^*SUMi(E(i)^*dT(i)) + KD^*(E(n) - E(n-1))/dT(n) + Mr$ 

| Jefferson Lab<br>Thomas Jefferson National Accelerator Facility | Control System Documentation-Specifications      |                   |
|-----------------------------------------------------------------|--------------------------------------------------|-------------------|
|                                                                 | Title: LCLS-II Cryoplant General Control Softwa  | are Specification |
|                                                                 | Document Number: 79120-C6003                     |                   |
|                                                                 | Author(s): Swapnil Shrishrimal, Chris<br>Scanlon | Page 20 of 32     |

where,

*M*(*n*) Value of manipulated variable at nth sampling instant

KP,KI,KD Proportional, Integral, and Differential Gains (Also called GP/GI/GD)

Positive gains are for a Reverse-acting PID loop, Negative gains are for a Direct-acting one.

NOTE: KI is inverse of normal definition of KI

*E*(*n*) *Error at nth sampling instant* 

SUMi Sum from i=0 to i=n

dT(n) Time difference between n-1 and n

Mr midrange adjustment

Taking first differential yields

 $delM(n) = KP^{*}(E(n)-E(n-1)) + KI^{*} E(n)^{*}dT(n) + KD^{*}((E(n)-E(n-1))/dT(n) - (E(n-1)-E(n-2))/dT(n-1))$ or using variables defined in following  $dm = kp^{*}de + ki^{*}e^{*}dt + kd^{*}(de/dt - dep/dtp)$ . If dm > Maxchange, then dm = Max Change. If dm < Min Change, then dm = 0

- (1) Calculate the elapsed time since the last time the loop was called
- (2) If the elapsed time is longer than the sample time
  - (a) Then calculate the error and new valve position
    - (i) If dt is greater than 0 and dtp is greater than 0

(a) Then  $d = KD^*(de/dt-dep/dtp)$ 

(ii) If dt or dtp is less than 0, d = 0.

| Function               | Description                                        | Tag  |
|------------------------|----------------------------------------------------|------|
| Delta time             |                                                    | dt   |
| Previous delta time    |                                                    | dtp  |
|                        |                                                    | derr |
|                        | Previous delta error                               | dep  |
| Current error          | Previous process value minus current process value | е    |
| Previous process value |                                                    | VAL  |

| Jefferson Lab<br>Thomas Jefferson National Accelerator Facility | Control System Documentation-Specifications                     |               |
|-----------------------------------------------------------------|-----------------------------------------------------------------|---------------|
|                                                                 | Title: LCLS-II Cryoplant General Control Software Specification |               |
|                                                                 | Document Number: 79120-C6003                                    |               |
|                                                                 | Author(s): Swapnil Shrishrimal, Chris<br>Scanlon                | Page 21 of 32 |

| Delta error            | Current error minus previous error                      | de  |
|------------------------|---------------------------------------------------------|-----|
| Previous error         | Previous error                                          | err |
| Proportional component | KP times delta error                                    | р   |
| Integral component     | KI times current error times delta time                 | i   |
| Derivative component   |                                                         | d   |
|                        | Sum of proportional, integral and derivative components | Dm  |
| Sample Time            | Time between executions of the pid loop. Shown as 'ST"  | Mdt |

# Sample screens:

| ID Name: CP | V10DRA   | M       | lode: Auto | 03Oct18 08: | 44:24 CH  | R28620B | USER OP         | ERABLE          |
|-------------|----------|---------|------------|-------------|-----------|---------|-----------------|-----------------|
|             |          |         |            | PID Name:   | CHR28620B |         | Mode: <b>Pr</b> | otector         |
| Cur Pos     | 100.00   | Input   | CPI10XC    |             | Cur Pos   | 10.00   | Invalid C       | Control Signal  |
| Cur Out     | 100.00   | Cur Inp | 7.33       |             | Cur Pus   | 10.00   | Input           | abd             |
| Max Pos     | 100.00   | Set Vel |            |             | Max Pos   | -5.00   |                 | 0.000           |
| Min Pos     | -10.00   | Set Val | 1.80       |             | Min Pos   | -5.00   |                 | t Signal Failed |
| Max Chg     | 2.00     | ST      | 1.00       |             | Max Chg   | 1.00    | Set Val         | 0.00            |
| Min Chg     | 0.01     | Gp      | -15.00     |             | Min Chg   | 0.01    | ST              | 2.00            |
| -           |          | Gi      | -3.00      |             |           |         | Gp              | 1.000           |
| Man Mode    | AUTO MAN | Gd      | 0.00       |             | Man Mode  | NO YES  | Gi              | 0.200           |
| Man Out     | -2.00    |         |            |             | Man Out   | -5.00   | Gd              | 0.000           |

Note: Positive gains are for a Reverse-acting PID loop, Negative gains are for a Direct-acting one.

| Naming  | convention: |
|---------|-------------|
| Example | :           |

| loffer on Lab                                                   | Control System Documentation-Specifications                     |               |  |
|-----------------------------------------------------------------|-----------------------------------------------------------------|---------------|--|
| Jefferson Lab<br>Thomas Jefferson National Accelerator Facility | Title: LCLS-II Cryoplant General Control Software Specification |               |  |
|                                                                 | Document Number: 79120-C6003                                    |               |  |
|                                                                 | Author(s): Swapnil Shrishrimal, Chris<br>Scanlon                | Page 22 of 32 |  |

| PID Loop Name | Description                | Equipment Tag | Process<br>Variable<br>Tag | Process<br>Variable<br>Set Point |
|---------------|----------------------------|---------------|----------------------------|----------------------------------|
| CPV71010      | HGD to Recovery Compressor | CPV71010      | CPT71010                   | 1.07                             |
| CPV71010A     | HGD to Recovery Compressor | CPV71010      | CTP71010                   | 300                              |

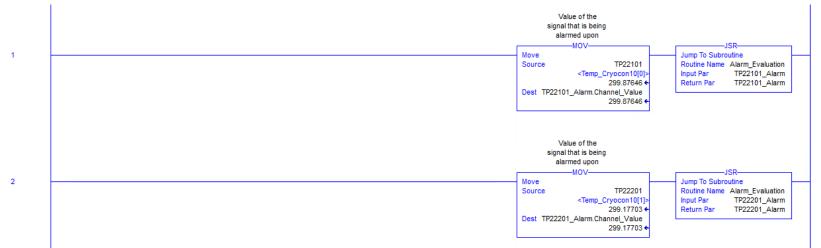
Here, the recovery compressor value is being controlled of two diferent process variables. So while naming the PID loop, ValueName (CPV71010) will be the PID loop name for primary loop while ValueName A (CPV71010A) will be PID loop name for secondary loop.

### L. PLC\_Status

This subroutine is for determining relevant alarms on the PLC system. It records all the PLC faults, as well as determines individual channel faults. This routine is redundant with plcAdminProgram with some additional features. SLAC will make a decision whether to use or not those features. This routine provides information to operator about PLC health and modules in detail.

| lofforcon Lab                                                   | Control System Documentation-Specifications                     |               |  |
|-----------------------------------------------------------------|-----------------------------------------------------------------|---------------|--|
| Jefferson Lab<br>Thomas Jefferson National Accelerator Facility | Title: LCLS-II Cryoplant General Control Software Specification |               |  |
|                                                                 | Document Number: 79120-C6003                                    |               |  |
|                                                                 | Author(s): Swapnil Shrishrimal, Chris<br>Scanlon                | Page 23 of 32 |  |

| Cs/opshome/edm/chl2/Gas_Management/CHL2_O_GMGT_PLCStatus.edl                                                                                                                                                                                                 | /cs/opshome/edm/chl2/Gas_Management/PlcChannelFaults.edl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CHL2 Gas Management PLC Digital Status and Faults                                                                                                                                                                                                            | CHL2 Gas Management PLC Individual Channel Faults                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| plcch11                                                                                                                                                                                                                                                      | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Status:<br>Remote PLC OK                                                                                                                                                                                                                                     | PLC Rack 1 Slot 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Mask PLC CARD FAULTS<br>Fault PLC Forces Installed<br>PLC Forces Disabled<br>PLC Run Mode<br>PLC Run Mode<br>PLC Run Mode                                                                                                                                    | 1         2         3         4         5         6         7         8           Digital<br>Inputs         9         10         11         12         13         14         15         16           17         18         19         20         12         22         23         24           25         26         7         28         29         30         3         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ACT Rack 1 Slot 3 Card OK Channel Faults Keyswitch in Remote                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ACT Rack 1 Slot 5 Card OK ACT Rack 1 Slot 6 Card OK                                                                                                                                                                                                          | PLC Rack 1 Slot 4 Digital 1 2 3 4 5 6 7 8 Outputs 9 10 11 12 13 14 15 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ACT     Rack 1 Slot 7 Card OK     6178.00     PLC Scan Time (In Microseconds)       ACT     Rack 1 Slot 8 Card OK     18610.00     PLC Scan Time Max (In Microseconds)       BVP     PLC Major Faults     0     EPICS/PLC Handshake Misses                   | PLC Rack 1 Slot 5 PLC Rack 1 Slot 6 PLC Rack 1 Slot 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PLC Minor Faults EPICS/PLC Comm Good                                                                                                                                                                                                                         | Analog 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 1 5 16 1 1 1 2 1 3 1 4 1 5 16 9 10 11 1 2 13 1 4 1 5 16 9 10 11 1 2 13 1 4 1 5 16 9 10 11 1 2 13 1 4 1 5 16 9 10 11 1 2 13 1 4 1 5 16 9 10 11 1 2 1 3 1 4 1 5 16 9 10 1 1 1 2 1 3 1 4 1 5 16 9 10 1 1 1 2 1 3 1 4 1 5 16 9 10 1 1 1 2 1 3 1 4 1 5 16 9 10 1 1 1 2 1 3 1 4 1 5 16 9 10 1 1 1 2 1 3 1 4 1 5 16 9 10 1 1 1 2 1 3 1 4 1 5 16 9 10 1 1 1 2 1 3 1 4 1 5 16 9 10 1 1 1 2 1 3 1 4 1 5 16 9 10 1 1 1 2 1 3 1 4 1 5 16 9 10 1 1 1 2 1 3 1 4 1 5 16 9 10 1 1 1 2 1 3 1 4 1 5 16 9 10 1 1 1 2 1 3 1 4 1 5 16 9 10 1 1 1 2 1 3 1 4 1 5 16 9 10 1 1 1 2 1 3 1 4 1 5 16 9 10 1 1 1 2 1 3 1 4 1 5 16 9 10 1 1 1 2 1 3 1 4 1 5 16 9 10 1 1 1 2 1 3 1 4 1 5 16 9 10 1 1 1 2 1 3 1 4 1 5 16 9 10 1 1 1 2 1 3 1 4 1 5 16 9 10 1 1 1 2 1 3 1 4 1 5 16 9 10 1 1 1 2 1 3 1 4 1 5 16 9 10 1 1 1 2 1 3 1 4 1 5 16 9 10 1 1 1 2 1 3 1 4 1 5 16 9 10 1 1 1 2 1 3 1 4 1 5 16 9 10 1 1 1 2 1 3 1 4 1 5 16 9 10 1 1 1 2 1 3 1 4 1 5 16 9 10 1 1 1 2 1 3 1 4 1 5 16 9 10 1 1 1 2 1 3 1 4 1 5 16 9 10 1 1 1 1 2 1 3 1 4 1 5 16 9 10 1 1 1 1 2 1 3 1 4 1 5 16 9 10 1 1 1 1 2 1 3 1 4 1 5 16 9 10 1 1 1 1 2 1 3 1 4 1 5 16 9 10 1 1 1 1 2 1 3 1 4 1 5 16 9 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| ACT PLC Total Alarm RESET ACT PLC Power Supply 1<br>ACT PLC Power Supply 2<br>ACT 24V Power Supply 1<br>ACT 24V Power Supply 2                                                                                                                               | PLC Rack 1 Slot 8<br>Analog<br>Outputs 1 2 3 4 5 6 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CPSPL2100         20.00         22.00         26.00         27.00         1.00           24.53         .00         .00         .00         .00         1.00         1.00           CPSPL2100         .00         .010         6.00         8.00         1.00 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |


\*\*\*Note: The EPICS developer has to look at the PLC\_Status Routine and use appropriate tags when developing this screen.

| Тад                | Туре | Description                            |
|--------------------|------|----------------------------------------|
| ChannelFaults[x].y | DINT | Faults Array for Digital Input Module  |
| ChannelFaults[x].y | INT  | Faults Array for Digital Output Module |
| ChannelFaults[x].y | INT  | Faults Array for Analog Input Module   |
| ChannelFaults[x].y | INT  | Faults Array for Analog Output Module  |
| ChannelFaults[x].y | INT  | Faults Array for Digital Input Module  |
| PLC_Alarm[x].y     | DINT | Faults Array for PLC Faults            |

| lefferren Lab                                                   | Control System Documentation-Specifications                     |               |  |
|-----------------------------------------------------------------|-----------------------------------------------------------------|---------------|--|
| Jefferson Lab<br>Thomas Jefferson National Accelerator Facility | Title: LCLS-II Cryoplant General Control Software Specification |               |  |
|                                                                 | Document Number: 79120-C6003                                    |               |  |
|                                                                 | Author(s): Swapnil Shrishrimal, Chris<br>Scanlon                | Page 24 of 32 |  |

#### M. Alarms

The alarms routine loads the current channel value into the \_Alarm structure and calls the Alarm\_Evaluation routine.



Example: If system alarms on pressure PT71010 then the tag associated with high alarm setpoint will be PT71010HiHi and for low pressure alarm set point it will be PT71010LoLo. While PT71010\_Alarm.Status will be an actual interger which will represent which level (Hi,HiHi,Lo,LoLo) of alarm is active.

# N. Alarm\_Evaluation

All of the following analog signals will have two high alarms and two low alarms, the first set of alarms is a warning 'yellow alarm' and the second set is a serious alarm 'red alarm' and operator should take actions. All alarm set points are to be modifiable by operators. Process values greater than the Hi alarm or lower than the Lo alarm are in a state of 'yellow alarm'. Process values greater than the HiHi alarm or lower than the LoLo alarm are in a state of 'red alarm'. Process values greater than the MaxRange alarm or lower than the MinRange alarm are in a state of

| lefferren Lab                                                   | Control System Documentation-Specifications                     |               |  |
|-----------------------------------------------------------------|-----------------------------------------------------------------|---------------|--|
| Jefferson Lab<br>Thomas Jefferson National Accelerator Facility | Title: LCLS-II Cryoplant General Control Software Specification |               |  |
|                                                                 | Document Number: 79120-C6003                                    |               |  |
|                                                                 | Author(s): Swapnil Shrishrimal, Chris<br>Scanlon                | Page 25 of 32 |  |

'SLAC defined alarm color'. A red alarm supersedes a yellow alarm. These alarms' settings will exist in the software even if there is no intention to use a specific alarm setting and operator can disable particular alarm using a enable.disable button. The setpoint tags use the same engineering units as the process variable.

- (1) This subroutine handles the alarm status of an alarm channel, and synchronizes setpoints between local (HMI) and remote (EPICS) mode as changes are made.
- (2) The channel that is being alarmed upon has to be moved into the alarm channel independently of this subroutine. i.e Alarm\_Evaluation subroutine should be called in main/alarm routine.
- (3) This subroutine compares the channel value with their corresponding setpoints and generates an integer. (Lo=0, LoLo=1, NoAlarm=2, Hi=3, HiHi=4, MaxRange=5 or MinRange=6).
- (4) This subroutine also latches the alarm if the HiHi, LoLo alarm is active for longer than the latch time.
- (5) Reset will be required to clear the latch but alarm integer gets cleared once the alarm is ok (i.e auto reset of alarm).
- (6) HiHi, LoLo, MaxRange, MinRange alarm setpoints should be displayed on the alarm screen

# Black Text – EPICS Signals

# **Blue Text** – HMI Signal

# **Red Text** – PLC Signals just for information (no action required)

| Tag Suffix | Туре | Description                                       |
|------------|------|---------------------------------------------------|
| MinRange   | REAL | Minmum Limit after which signal is of bad quality |
| Lo         | REAL | Value for Lo Limit                                |
| Lo_X       | REAL | SP from EPICS for Lo Limit                        |
| Lo_PX      | REAL | SP from Touchscreen HMI for Lo Limit              |
| Lo_R       | REAL |                                                   |
| Lo_Lo      | REAL | Value for LoLo Limit                              |

| loffor on Lab                                                   | Control System Documentation-Specifications                     |               |  |
|-----------------------------------------------------------------|-----------------------------------------------------------------|---------------|--|
| Jefferson Lab<br>Thomas Jefferson National Accelerator Facility | Title: LCLS-II Cryoplant General Control Software Specification |               |  |
|                                                                 | Document Number: 79120-C6003                                    |               |  |
|                                                                 | Author(s): Swapnil Shrishrimal, Chris<br>Scanlon                | Page 26 of 32 |  |

| Lo Lo X       | REAL  | SP from EPICS for LoLo Limit                                                       |
|---------------|-------|------------------------------------------------------------------------------------|
| Lo_Lo_PX      | REAL  | SP from Touchscreen HMI for LoLo Limit                                             |
| Lo Lo R       | REAL  |                                                                                    |
| Hi            | REAL  | Value for High Limit                                                               |
| Hi X          | REAL  | SP from EPICS for Hi Limit                                                         |
| Hi_PX         | REAL  | SP from Touchscreen HMI for High Limit                                             |
| Hi_R          | REAL  | -                                                                                  |
| Hi_Hi         | REAL  | Value for High High Limit                                                          |
| Hi_Hi_X       | REAL  | SP from EPICS for HiHi Limit                                                       |
| Hi_Hi_PX      | REAL  | SP from Touchscreen HMI for HighHigh Limit                                         |
| Hi_Hi_R       | REAL  |                                                                                    |
| Channel_Value | REAL  | Value of the signal that is being alarmed upon                                     |
| Latch_T       | REAL  | Latch Time (in ms)                                                                 |
| Latch_T_X     | REAL  | Latch Time Remote Rqst                                                             |
| Latch_T_PX    | REAL  | Latch Time Panel Rqst                                                              |
| Latch         | BOOL  | Latch Status                                                                       |
| Status        | DINT  | Alarm Status                                                                       |
| Write         | SINT  | EPICS Alarm SP Load Control 0: No action 1: Load<br>Alarm Setpoints into PLC       |
| Write_P       | SINT  | Touchscreen Alarm SP Load Control 0: No action 1: Load<br>Alarm Setpoints into PLC |
| Latch_TMR     | TIMER |                                                                                    |
| disable       | INT   | Disable the alarm                                                                  |
| MaxRange      | REAL  | Maximum Limit after which signal is of bad quality                                 |
| Min_PX        | REAL  | SP from Touchscreen HMI for Minimum Range                                          |
| Min_X         | REAL  | SP from EPICS for Minimum Range                                                    |
| Min_R         | REAL  |                                                                                    |

| lofferson Lab                                                   | Control System Documentation-Specifications                     |               |  |
|-----------------------------------------------------------------|-----------------------------------------------------------------|---------------|--|
| Jefferson Lab<br>Thomas Jefferson National Accelerator Facility | Title: LCLS-II Cryoplant General Control Software Specification |               |  |
|                                                                 | Document Number: 79120-C6003                                    |               |  |
|                                                                 | Author(s): Swapnil Shrishrimal, Chris<br>Scanlon                | Page 27 of 32 |  |

| Max_PX              |                  |                  | REAL                | SP f               | rom To        | uchscreen                  | HMI for          | r Maxim      | um Ran        | ge                 |               |
|---------------------|------------------|------------------|---------------------|--------------------|---------------|----------------------------|------------------|--------------|---------------|--------------------|---------------|
| Max_X               |                  |                  | REAL                | SP f               | rom EP        | ICS for Ma                 | aximum           | Range        |               |                    |               |
| Max_R               |                  |                  | REAL                |                    |               |                            |                  |              |               |                    |               |
|                     |                  | Latch            | 1                   |                    | 1             | <mark>⊿ Alarm</mark>       | Integ            | er           | 1             | Reset              |               |
| I/cs/opshome/edn    | n/chl2/Comples   | sors/CHL2_O_Comp | - In an instance of |                    |               |                            |                  | 104 5157     | The ac all    |                    | MENU D        |
| pic                 |                  | _                | _                   | CHL 2 MA           |               | RESSOR ALA                 | RMS              | 2040         | AVANDA.       |                    | MENU Q        |
| Status:<br>Remote   | Low Low<br>Alarm | Low<br>Alarm     |                     | ligh High<br>Alarm | Latch<br>Time |                            | Low Low<br>Alarm | Low<br>Alarm | High<br>Alarm | High High<br>Alarm | Latch<br>Time |
| CPI21501<br>7.78    | 0.99             | 1.10             | 6.00                | 6.30               | 30.00         | CDP21541                   | 0.00             | 0.00         | 0.50          | 1.00               | 30.00         |
| CTP21501<br>299.84  | 270.00           | 273.00           | 315.00              | 320.00             | 30.00         | CDP21539<br>0.01           | -999.00          | 0.00         | 0.50          | 1.00               | 30,00         |
| CPI21512<br>8.00    | 6.00             | 6.50             | 18.50               | 19.50              | 30.00         | CJTMOT21<br>0,50           | 35.00            | 50.00        | 310.00        | 300.00             | 30.00         |
| CTP21512            | 340.00           | 345.00           | 372.00              | 377.00             | 30.00         | CTP215A<br>301.29          | 275.00           | 280.00       | 370.00        | 375.00             | 30.00         |
| CTC215355<br>282,00 | 285.00           | 290.00           | 325.00              | 328.00             | 30.00         | CTP2158<br>301.70          | 275.00           | 260.00       | 370.00        | 375.00             | 30.00         |
| CPDI21546           | 3.00             | 3.50             | 5.00                | 5.50               | 30.00         | CTP215C<br>301.56          | 275.00           | 280.00       | 370.00        | 375.00             | 30.00         |
| CDP21542            | 2.50             | 3.00             | 18.50               | 19.00              | 30.00         | CTP215D<br>295.94          | 275.00           | 280.00       | 360.00        | 375.00             | 30.00         |
| CPi21542<br>7.99    | 2.50             | 3.00             | 18.50               | 19.50              | 30.00         | CTP215E<br>297.30          | 275.00           | 260.00       | 360.00        | 375.00             | 30.00         |
| CTP21560<br>299.63  | 285.00           | 290.00           | 306.00              | 309.00             | 30.00         | CTP21517<br>298.78         | 260.00           | 285.00       | 315.00        | 320.00             | 30.00         |
| CDT21561            | -1.00            | 0.00             | 5.00                | 6.00               | 30.00         | CTP21535<br>286.13         | 260.00           | 285.00       | 325.00        | 326.00             | 30.00         |
| 0.11                | 0.00             | 0.00             | 10.00               | 12.00              | 30.00         | CTP21535C                  | 292.00           | 295.00       | 325.00        | 328.00             | 30.00         |
| CPI21561<br>3.13    | 2.00             | 2.50             | 8.00                | 9.00               | 30.00         | COPVEDP2                   | 0.00             | 1.00         | 4.50          | 5.00               | 30.00         |
| CTP21516<br>293.70  | 290.00           | 285.00           | 372.00              | 377.00             | 30.00         | CLL21513<br>218.75         | -100.00          | -10,00       | 1000.00       | 10000.0            | 10.00         |
|                     |                  |                  |                     |                    |               | Compressor MCC /<br>Status | Alarm            | A Late       | ch Reset RES  | ET                 |               |

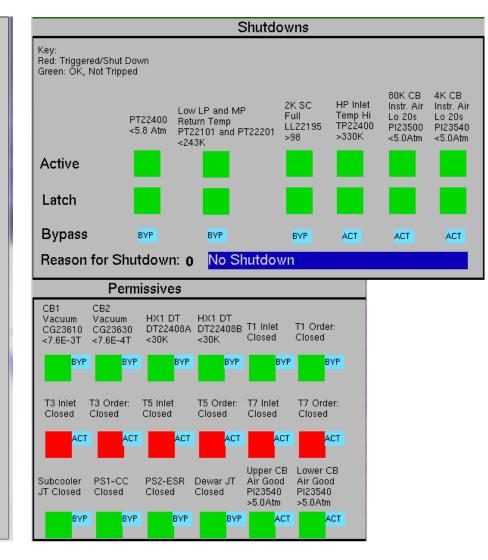
| lofferren Lab                                                   | Control System Documentation-Specifications                     |               |  |
|-----------------------------------------------------------------|-----------------------------------------------------------------|---------------|--|
| Jefferson Lab<br>Thomas Jefferson National Accelerator Facility | Title: LCLS-II Cryoplant General Control Software Specification |               |  |
|                                                                 | Document Number: 79120-C6003                                    |               |  |
|                                                                 | Author(s): Swapnil Shrishrimal, Chris<br>Scanlon                | Page 28 of 32 |  |

# O. copyBools and copyBools\_Temp

This routine detects if the analog input or Cryocon temperature has failed and periodically (once/second) creates an array "ControlChannelFaultsArray". Detection is done using a buffer fault array or compared with a preset values. This array also used in a PID loop where it can set the channel fault bit and lock the PID loop in protector mode.

## P. Trip\_Evaluation

Some select signals will have a high trip and/or a low trip. The machine or a part of the machine will shutdown to protect itself if the conditions for trip are satisfied. All trip set points can be read but can not be modified by operators. Unlike alarms, only selected signals will have a trip associated with them. The program will also output a text string and interger code for cause of the trip. The setpoint tags use the same engineering units as the process variable.


- (1) This subroutine handles the trip status of a channel.
- (2) This subroutine generates an integer and string for each individual trip type..
- (3) This subroutine will latch the trip once its triggered.
- (4) Reset will be required to clear the latch, trip, shutdown interger and shutdown string.
- (5) TripHi, TripLo setpoints should be displayed on the screen.

Example: If system trips on pressure PT71010 then the tag associated with high trip setpoint will be PT71010TripHi and for low pressure trip setpoint it will be PT71010TripLo

| lofferson Lab                                                   | Control System Documentation-Specifications                     |               |  |
|-----------------------------------------------------------------|-----------------------------------------------------------------|---------------|--|
| Jefferson Lab<br>Thomas Jefferson National Accelerator Facility | Title: LCLS-II Cryoplant General Control Software Specification |               |  |
|                                                                 | Document Number: 79120-C6003                                    |               |  |
|                                                                 | Author(s): Swapnil Shrishrimal, Chris<br>Scanlon                | Page 29 of 32 |  |

#### Reason For Last Shutdown: 0

1: Emergency Stop 2: Power Breaker (Fuse) 3: 24V Breaker Fuse 4: Instrument Air Missing 5: Compressors Not Running 6: Dewar Level High 7: Storage Tank Pressure Low 8: Adsorber Inlet Temp High 9: T1 Brake Temp High 10: T2 Brake Temp High 11: Turbine 1 Shutodwn 12: Turbine 2 Shutdown 13: T1 Hardwire Safety Trip 14: High or low Pressure Trip 15: HX1 LP Inlet Temp Low 16: T1 Inlet Pressure Low 17: T1 Outlet Pressure Low 18: T1 Inlet Temp Low 19: Turbine 1 Speed High 20: Turbine 1 Speed Low 21: T1 Pressure Ration Failure 22: T1 Bearing Gas Missing 23: T2 Inlet Pressure Low 24: T2 Inlet Pressure High 25: T2 Outlet Temp Low 26: Turbine 2 Speed High 27: Turbine 2 Speed low 28: T2 Pressure Ratio Failure 29: T2 Bearing Gas Missing 30: Fuse Blown 31: Vacuum Fuse Blown



| loffer on Lab                                                   | Control System Documentation-Specifications                     |               |  |
|-----------------------------------------------------------------|-----------------------------------------------------------------|---------------|--|
| Jefferson Lab<br>Thomas Jefferson National Accelerator Facility | Title: LCLS-II Cryoplant General Control Software Specification |               |  |
|                                                                 | Document Number: 79120-C6003                                    |               |  |
|                                                                 | Author(s): Swapnil Shrishrimal, Chris<br>Scanlon                | Page 30 of 32 |  |

### V. General Suffixes

- 1. All software switches will have the suffixes of RST and SP. These refer to reset and setpoint, respectively.
- 2. Heaters will have R, CMD, WM and O suffixes for digital input, digital output, analog input and analog output respectively.
- 3. Emergency stop will have suffix ES.
- 4. Start will be STR and stop will be STP.
- 5. Pressure transducers having suffixes L and H represent low range and high range transducer respectively.

#### VI. Digital Indicators

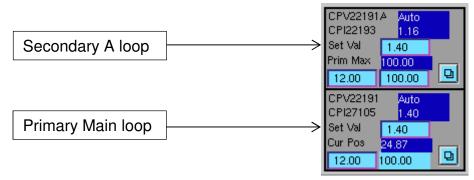
| Description          | Colors                                                                |
|----------------------|-----------------------------------------------------------------------|
| Main Motor On/Off    | Green (on) or red (off)                                               |
| Local/Remote Control | Green (remote) or yellow (local)                                      |
| Alarms, Various      | Red (alarm) or invisible on main page, red or green on alarms page    |
| Shutdowns, Various   | Red (shutdown) or invisible on main page, red or green on alarms page |

#### A. General points

- 1. Color scheme shall match existing cryogenics and SLAC schedule.
- 2. Alarms, shutdowns, valve status, etc, shall be identified by text as well as color.

| lofforcon Lab | Control System Documentation-Specifications                     |               |  |
|---------------|-----------------------------------------------------------------|---------------|--|
| Jefferson Lab | Title: LCLS-II Cryoplant General Control Software Specification |               |  |
|               | Document Number: 79120-C6003                                    |               |  |
|               | Author(s): Swapnil Shrishrimal, Chris<br>Scanlon                | Page 31 of 32 |  |

# VII. General Comments


# A. Analog Outputs:

Most analog outputs will have a PID loop attatched to it. Pneumatic valves acting in some other manner will be noted in the appropriate specific software specification.

# B. Prevention of Trip:

JLAB has two layers of techinques used to prevent trip. The first layer is the addition of secondary PID loops for process critical valves/heaters. This PID loop (A loop) sets the maximum (or minimum) position of the primary PID loop and will limit the opening of valve if the plant operates in any upset condition. Tertiary PID loops can be set up to add a third control point, adjusting the 'A' loop or primary loop minimum or maximum as need be.

Second layer is predefined sequences and interlocks which implements programmed steps to either open or close valves. For example, as interlock closes the gas management mass-in valve in the event of a compressor shutdown or high suction pressure. In this case actions are implemented immediately, unlike the first layer which slowly tries to protect the plant using PID settings. These sequence functions are detailed in the specific software specifications for each system.



| lofforcon Lab                                                   | Control System Documentation-Specifications                     |               |  |
|-----------------------------------------------------------------|-----------------------------------------------------------------|---------------|--|
| Jefferson Lab<br>Thomas Jefferson National Accelerator Facility | Title: LCLS-II Cryoplant General Control Software Specification |               |  |
|                                                                 | Document Number: 79120-C6003                                    |               |  |
|                                                                 | Author(s): Swapnil Shrishrimal, Chris<br>Scanlon                | Page 32 of 32 |  |

# C. Digital Commands from EPICS

1. If an on/off, reset, or toggle command from EPICS needs to be accommodated, the tag on the PLC side should be a bit of an integer rather than a BOOL tag. This is done to both distinguish the tag as an EPICS communicating tag and to resolve an issue in some versions of the EtherIP driver in EPICS that make writing to a BOOL tag difficult.