Jefferson Lab Alignment Group
 Data Transmittal

TO: J. Gomez, S. Malace, E. Becker, J. Butler
DATE: 06/11/2019

FROM: Chris Gould
Checked:
\# : A1925

DETAILS:

data: M:lalign\DATA\Step2B\HALLA\MOLLER_DETECTOR\190605A M: \align\DATA\Step2B\HALLA\190523A

The Hall A Moeller experimental components were surveyed between May 23rd and June $5^{\text {th }}$, 2019. The ideal (designed) coordinates and angles are shown in the first table in meters and degrees relative to the JLab's CEBAF coordinate system.

The as-found table shows the current location in CEBAF system (meters) and the beam following system (BFS) in millimeters. The BFS data shows the as-found position as it follows the beam relative to the ideal position. In the BFS, a positive dx value is to the beam left looking downstream along beam from the ideal; a positive dy is along beam vertically from ideal (note the pitched data bfs xyz coordinates are along the pitched beamline - dy not truly vertical); A positive dz is downstream from ideal. The delta angle are shown in degrees and are the differences (found - ideal) from ideal. The distance from the standard Hall A target is shown [not PREX target].

Positive Yaw angles are counterclockwise about the Y axis viewed from above, positive Pitch angles are clockwise about the X axis viewed from the left and positive Roll angles are clockwise about the Z axis looking downstream.

CEBAF IDEAL DATA							
	Accelerator coords METERS			ideal angles degrees			
	$x[\mathrm{~m}]$	$y[\mathrm{~m}]$	$\mathrm{z}[\mathrm{m}]$	yaw	pitch	roll	
MOLSOL	-43.57183	100.02200	-379.19945	142.5000	0.0000	0.0000	
MOLTAR	-43.57183	100.02200	-379.19945	142.5000	0.0000	0.0000	
MMA1H01	-41.03793	100.02200	-382.50167	142.5000	0.0000	0.0000	
MOLBOX	-39.25683	100.02200	-384.82285	142.5000	0.0000	0.0000	
MOLDET	-39.02864	99.50960	-385.12024	142.5000	-7.3000	0.0000	
Hall A Target	-32.95843	100.02200	-393.03108	142.5000	0.0000	0.0000	

FOUND DATA										
	found accelerator coords METERS				BFS [mm]			delta angles degrees		
	x[m]	y [m]	z[m]	to target[m]	dx	dy	dz	dYaw	dPitch	dRoll
MOLSOL	-43.57165	100.02200	-379.19931	-17.4344	-0.23	0.00	0.00	-0.0042	-0.0049	-0.0077
MOLTAR	-43.57295	100.02180	-379.19816	-17.4361	0.10	-0.20	-1.70	-0.0037	-0.1942	0.2286
MMA1H01	-41.03806	100.02205	-382.50139	-13.2723	-0.07	0.05	-0.30	-0.0062	0.0249	-0.0026
MOLDET	-39.01932	99.55340	-385.13525	-9.9595	1.74	45.66	11.88	0.1551	-0.1569	0.2757

The PMT Detector was re-fiducialized on May $23^{\text {rd }}$. The Z axis was defined by constructing a line through the upstream and downstream centers of the box. The upstream slot of the box was used to control roll (Y axis). The origin was created by intersecting the Z axis and the plane constructed through the eight downstream aluminum tube faces. This was done in order to keep continuity between previous surveys. The table below shows the as-set locations of each of the paddle corner points as well as the upstream and downstream box centers.

The coordinates in the table below are reported in a beam following system (along the pitched line) relative to the MOLDET ideal. See picture below for naming convention.

	BFS (mm)		
	\mathbf{X}	Y	Z
USBOX	0.07	43.91	-610.42
DSBOX	1.39	45.31	-119.23
PMTORIGIN	1.74	45.68	11.87
L1BOTBR	27.63	-108.16	-625.19
L2BOTBL	63.06	95.73	-629.00
L3BOTBL	63.32	-5.11	-640.74
L4BOTBL	63.19	-109.46	-655.25
L4BOTBR	44.31	-109.31	-656.15
L3BOTBR	44.50	-5.16	-640.99
R1BOTBL	-22.89	-111.40	-624.71
R2BOTBR	-62.83	89.49	-626.80
R3BOTBL	-45.91	-5.42	-642.44
R3BOTBR	-63.76	-5.46	-642.94
R4BOTBL	-44.08	-111.29	-654.81
R4BOTBR	-62.45	-111.43	-655.30

