

Jefferson Lab Alignment Group

Data Transmittal

TO: A. Kenyon, D. Gaskell, G. Smith DATE: 25 Feb 2010

FROM: Kelly Tremblay Checked: #: C1264

DETAILS:

data: inspection\hallc\qweak\100224A

Based on a survey of the rotator assembly rings (survey 24 Feb. 2010), values to move the feet locations have been calculated. The following data refers to the 4 tooling blocks that were located at each corner pad. Based on this information the pads should be moved as follows to roughly place the rings into beamline.

Pad	Z (mm)	X (mm)	Y (mm)	Z (inch)	X (inch)	Y (inch)
Downstream beam right (A)	-11	-10	38	- 7/16	- 7/16	1 1/2
Downstream beam left (B)	2	-10	38	1/16	- 3/8	1 1/2
Upstream beam left (C)	-7	-1	-5	- 5/16	- 1/16	- 3/16
Upstream beam right (D)	-19	-2	1	- 3/4	- 1/16	0

Z is along beam. A positive value indicates the pad must move downstream; X is perpendicular to beam (beam right or left). A negative value indicates the pad must move beam right; Y is in the vertical direction; A positive number means the pad must be raised.

Note: The beamline that the rotator calculation was based on is 2 millimeters lower than design (99.993 M calculated vs. 99.995 M design) to account for the as-found location of the QTOR magnet.