Heavy quark physics on the lattice

BARYONS2002

Christine Davies

UNIVERSITY of GLASGOW
Lattice QCD

Euclidean space-time lattice

+ QCD Lagrangian (discretised)

\[
\mathcal{L}_{QCD} = \mathcal{L}_g + \mathcal{L}_q \\
= \frac{1}{2g^2} Tr F_{\mu\nu}^2 + \bar{\psi} (\gamma \cdot D + m) \psi
\]

Parameters are those of QCD:
Bare gauge coupling $\beta = 6/g^2$
Quark masses, $m_i a$.
Lattice spacing (a) is implicit u.v. cutoff
Determine a and fix m_i from $1 + n_f$ hadron masses.
Difficulties

Systematic errors:

- Discretisation errors - physical results are dependent on a. Reduce the dependence and/or extrapolate to $a = 0$.

- Matching errors - must renormalise lattice matrix elements to obtain continuum results. Requires pert. or nonpert. matching calculation.

- Quenching errors - v. expensive to include light dynamical (sea) quarks. Error from using quenched approx. = 10-20% (??).
A short history of lattice QCD

- Invented 1974
 slow progress

- Renaissance in 1990s
 - Much improved understanding of systematic errors
 - 10-20% errors possible on spectrum, form factors etc

- Second lattice revolution - early 2000s
 - Teraflop computing power will enable simulations with ‘real’ dynamical quarks
 - carry improvement of systematic errors further
 - 2-3% errors will be possible
Why do you care?
Improved theoretical precision will add huge value to experiment, e.g. from B factories.

(CLEO-c - new expts will check lattice errors.)
Heavy Quark Physics

Heavy (b and c) quarks ($m > \Lambda_{QCD}$) present special challenges to lattice QCD because $m_Q a \geq 1$. $m_b a \sim 2 - 3$, $m_c a \sim 0.5 - 1$.

$p^\parallel \approx m_Q$ very distorted and naive use of relativistic quark formulations (Wilson, clover) give large errors ($\propto m_Q a, (m_Q a)^2$).

BUT, b and c are non-relativistic in their bound states.

m_Q and $p^\parallel \approx m_Q$ are irrelevant dynamical scales. Can treat b and c quarks accurately on the lattice with non-relativistic techniques.

Several ways to proceed:
1. **Static Quarks**: $m_Q = \infty$ limit. Spinless and flavourless. Quark prop $= \text{string of gluon fields in time dirn.}$ Useful limit for understanding HQET.

2. **NRQCD**: Non-relativistic effective theory.

$$L_Q = \bar{\psi}(D_t - \frac{\vec{D}^2}{2m_Qa} - c_B \frac{\vec{\sigma} \cdot \vec{B}}{2m_Qa} + \ldots) \psi$$

ψ a 2-component spinor.

m_Qa fixed by requiring one heavy hadron mass correct. $E_h(p) = E_h(0) + p^2 / 2m_h$.

c_i fixed by pert. or nonpert. matching to QCD. $m_Q \to \infty$ is static.

Cannot take a to 0 but improve until a-dependence small enough.
3. **Heavy Wilson quarks (FNAL method).**

\[\mathcal{L}_Q = \bar{\psi}(\mathcal{D} + m_Q a - \frac{i a c_{sw}}{4} \sigma_{\mu\nu} F^{\mu\nu}) \psi \]

but interpret non-relativistically to fix \(m_Q a \). Match to QCD with \(m_Q a \)-dependent coefficients.
Small \(m_Q a \) limit is light quarks.
Large \(m_Q a \) limit is NRQCD.

4. **Wilson/clover quarks** : Same action as above but work only at small \(ma \) (OK for \(m_c \) ?).
Extrapolate to large \(m \) ⇒ large errors *and* expensive. Anisotropic lattices may be better.
(fine \(a_t \) ⇒ small \(ma_t \) even with large \(a_s \)). See X. Liao parallel talk.
Results on the spectrum

1. $b\bar{b}$ (Υ) spectrum (UKQCD collaboration - Marcantonio et al)

Radial and Orbital Splittings in the $b\bar{b}$ system

--- : Experiment
○ : NRQCD for the b, glue: $n_f = 0, \beta = 6.0$.
● : NRQCD for the b, glue: $n_f = 2$, $clove, \kappa = 0.135, \beta = 5.2$, UKQCD ensemble.
Fine Structure in the $b\bar{b}$ system

--- : Experiment

○ : NRQCD for the b, glue: $n_f = 0, \beta = 6.0$.

● : NRQCD for the b, glue: $n_f = 2, \text{clover}, \kappa = 0.135, \beta = 5.2$, UKQCD ensemble.

■ : extrapolate to light dynamical mass and to $n_f = 3$.

Hyperfine splitting sees dynamical quarks. Predict $m(\Upsilon) - m(\eta_b) = 60 \pm 15$ MeV. Aim for 1 - 2 % error for CLEO-c.
2. $c\bar{c}$ (ψ) spectrum

Columbia results (Chen et al) on anisotropic lattices in the QA, including $c\bar{c}g$ hybrids.
3. b-light (B) spectrum

NRQCD results in the QA (Hein et al).
4. \textit{b}-light-light baryon spectrum

NRQCD results in the QA (Ali Khan et al) for \textit{udb, usb, ssb} states.
Quark masses

m_b fixed s.t. B or Υ mass correct. Best determination is from B in static limit in QA.

$$\overline{m}_b(\overline{m}_b) = Z_{\text{cont}}(m_B - E_B(\vec{p}^2 = 0) + E_0)$$

Z_{cont} and E_0 known in pert. th. through α_s^3. 'World average' is 4.30(10) GeV. (Ryan, LAT01)

$m_b \approx 50$ MeV smaller unquenched (?)

New non-pert methods in progress (Sommer et al).

m_c from ψ and α_s^2 lattice mass renorm for non-rel. case (LAT01: Juge et al)

$m_c(M_c) = 1.28(4)$ GeV, QA

m_c from D_s and non-pert renorm. for rel. case (Becirevic et al)

$m_c(m_c) = 1.26(13)$ GeV, QA.
Determining B matrix elements

1. f_B
 Simplest 2pt m.e. for B leptonic decay.

\[\langle 0 | A_\mu | B \rangle = p_\mu f_B \]

Has improved a lot with time (QA).
Match A_μ on lattice to continuum. Done to $O(\alpha_s, 1/m_Q, a)$ for NRQCD and heavy Wilson. Typical error ‘budget’:

<table>
<thead>
<tr>
<th>Source</th>
<th>percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>statistical + interp.</td>
<td>3</td>
</tr>
<tr>
<td>disc. $O((a\Lambda)^2)$</td>
<td>4</td>
</tr>
<tr>
<td>pert. $O(\alpha_s^2, \alpha_s^2/(aM))$</td>
<td>7</td>
</tr>
<tr>
<td>NRQCD $O((\Lambda/M)^2, \alpha_s\Lambda/M)$</td>
<td>2</td>
</tr>
<tr>
<td>light quark mass</td>
<td>±4</td>
</tr>
<tr>
<td>$a^{-1}(m_\rho)$</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
</tr>
</tbody>
</table>

World averages (Ryan, LAT01)

$f_B^{(QA)} = 173 \pm 23$ MeV, 20% larger unq. ?

$f_{D_s}^{(QA)} = 203 \pm 14$ MeV

$f_{B_s}/f_B = 1.15(5)$; $f_{D_s}/f_D = 1.16(4)$

Need to reduce pert. errors by $O(\alpha_s^2)$ calcs/non-pert. techniques.
2. B_B
Matrix element for 'box' diagram for $B^0 - \overline{B}^0$ mixing – becomes m.e. of 4-q operator from H_W. Convenient to take ratio to f_B^2, call result B_B.
$\Delta m_B \propto |V_{tb}^* V_{tq}|^2 f_B^2 B_B$.

\[
\begin{align*}
B^0 & \quad \overline{B}^0 = \\
H_W &
\end{align*}
\]
World averages (Ryan, LAT01, Bernard, LAT00):

\[\hat{B}_{B_d} = 1.30(12)(13); \ f_{B_d}\sqrt{\hat{B}_{B_d}} = 230(40) \text{ MeV}. \]

\[\hat{B}_{B_s}/\hat{B}_{B_d} = 1.01(3); \]

\[\xi \equiv \frac{f_{B_s}\sqrt{\hat{B}_{B_s}}}{f_{B_d}\sqrt{\hat{B}_{B_d}}} = 1.16(5) \]
3. \(B \) SL decay.

Matrix elements needed for determination of \(V_{ub}, V_{cb} \).

\(B \rightarrow D(*) \) decay.

Heavy quark symmetry very useful here \(\rightarrow \) study matrix element as function of \(\omega = v_B \cdot v_D \).
Form factor then has universal shape to a good approx. = Isgur-Wise function.
exptl rate($v_B \cdot v_D = 1$) = $|V_{cb}|^2 \mathcal{F}(1)$.

FNAL LAT01 (Hashimoto et al):

$\mathcal{F}_{B \to D^*}(1) = 0.913(30)$. (QA)

gives $V_{cb} \times 10^3 = 38.7 \pm 1.8 \pm 1.5$ (LEP).
$B \to \pi, \rho$ decay.

Lattice calculations (all QA) work at small \vec{p}_π, far from physical region. Require extrapolation, interpolation, etc. Smooths out very rough raw data. More work is needed.

Soft pion theorem $f_0(q^2_{max}) = f_B/f_\pi$ doesn’t work well. Chiral extrapolations to light quark masses very important.
Future

- MILC collab. using improved staggered quarks \rightarrow can simulate light dyn. quarks with Tflop computers in next few years.

- CLEO-c will determine Υ, ψ, D physics to high precision.

Lattice calcs must improve systematic errors to 2-3%.

- Improve heavy quark actions, higher rel. corrns and better match to continuum.

- Improve matching of matrix elements using automated pert. th. (Trottier, Horgan)

- Simulate with light dynamical quarks and match to chiral pert. theory.