BARYONS 2002:
OUTLOOK

Wolfram Weise

(EC T* Trento and TU Munich)

• Status and Perspectives
• Open Questions and Burning Issues
the Vision:

- Zeroth order **STRONG QCD**: Relativistic **CONSTITUENT QUARKS** with **FLUX TUBE GLUON DYNAMICS**
- Then add **$g\bar{g}$ SEA** and other $1/N_c$ effects as perturbations.

"... possible connection between **CURRENT QUARKS and GLUONS** through **$g\bar{g}$ VACUUM CONDENSATE**..."
First observations of DVCS

- Missing mass spectrum and \(A_{LU}^{\sin \phi} = \frac{2}{N} \sum_{i=1}^{N} \sin \phi_i \):

- Azimuthal (\(\phi \)) distributions from HERMES & JLab:

HERMES, PRL 87(‘01)182001 CLAS Collab., PRL 87(‘01)182002
• Off-shell photon*-quark scattering:
 - Detect e' and γ, and require: $E_{\text{miss}} = 0$

\[
\int x dx [H(x, \Delta^2, \xi) + E(x, \Delta^2, \xi)] = A_q(\Delta^2) + B_q(\Delta^2)
\]

with $\Delta^2 = -t$ and

\[
\lim_{\Delta^2 \to 0} [A_q(\Delta^2) + B_q(\Delta^2)] = 2J_{\text{quark}} = \Sigma_q + 2\Lambda_q
\]

⇒ DVCS: total quark angular momentum

• Experimental considerations:
 - Interference with Bethe-Heitler process:
 DVCS \otimes BH makes DVCS measurable
 - Detect scattered photon, but suppress π^0's
 - Observe azim. asymmetry: $A_{\text{BetheHeitler}}^{LU} = 0$
Resonances in Virtual Compton Scattering

Hall A - E93-50

\[ep \rightarrow e p \gamma \]

- First measurement through entire resonance region
- Advantage over mesons, the lack of final state interaction
- Strong resonance excitations

\[Q^2 = 1.0 \text{ GeV}^2 \]
\[\theta^* = 167.2^\circ \]
\[\phi = 45^\circ \]

Diagram shows 5-fold Differential Cross Sections (pb GeV^{-1} sr^{-2})

- $N^*(1520)$
- $\Delta(1232)$
- $N^*(1650)$
DISPERSION RELATION ANALYSIS OF VCS

\[\varepsilon = 0.62 \quad q = 0.6 \text{ GeV} \quad \theta = 0^\circ \quad \phi = 0^\circ \]

\[d^5\sigma \text{ (nb/GeV sr)} \]

\[J. \text{ Roche et al., Phys. Rev. Lett. 85 (2000)} \]

\[BH+Born+Pol \]

\[BH+Born \]

\[q' \text{ (GeV)} \]

Pasquini, Gorchtein, Drechsel, Metz, Vanderhaeghen;

\[\times \text{ Sensitivity to} \]

ELECTROMAGNETIC POLARIZABILITIES

OF THE NUCLEON
7. Virtual and Deeply-Virtual Compton Scattering

- Mainz
- JLab
- Hermes

(D)VCS
Bethe-Heitler
CHIRAL SU(3)
MESON-BARYON DYNAMICS

- Coupled Channels
- Baryon Octet and Decuplet
- Large N_c book-keeping

example: K^-p reactions; do Legendre coeff.
Energy-dependence of the Magnetic Dipole Polarisability $\beta_{M1}(\omega)$

H. W. Grießhammer/T. R. Hemmert: nucl-th/0110006;

Strong ω dependence from Δ: para-magnetic $M1 \rightarrow M1$.

Chiral dynamics part ($N\pi$ physics) small.

$\beta_{M1}(\Delta) \approx -\delta \beta_{M1}(\text{C.T.}) \approx 12 \times 10^{-4} \text{ fm}^3$: anomalously large.

\rightarrow Promote $\Delta(1232)$ to leading order in combined chiral & large N_c expansion.
Test of Chiral Perturbation Theory

$\gamma^* + p \rightarrow p + \pi^0$ Total Cross Section vs. Q^2

\[\Delta W = 0.5 \text{ MeV} \]

\[\Delta W = 1.5 \text{ MeV} \]

\[\Delta W = 2.5 \text{ MeV} \]

\[\Delta W = 3.5 \text{ MeV} \]

\[Q^2 = 0 \quad \text{A. Schmidt et al., Phys. Rev. Lett. 87, 232501 (2001).} \]
\[Q^2 = 0.05 \text{ GeV}^2/c^2 \quad \text{H. Merkel et al., Phys. Rev. Lett. 88, 012301 (2002).} \]
\[Q^2 = 0.1 \text{ GeV}^2/c^2 \quad \text{M. O. Distler et al., Phys. Rev. Lett. 80 2294 (1998).} \]
Low Energy Region

- Low energy expansion breaks down, once resonances are produced!
6. **Chiral Symmetry** and **Chiral Dynamics**

("QCD LITE")

- **Chiral Perturbation Theory** and beyond
5. STRANGENESS

in the NUCLEON

VECTOR CURRENT \langle p(1S)_{\gamma}p \rangle

from parity-violating e-scattering

(F. Maas)

\[G_E^S + 0.4G_M^S = 0.025 \pm 0.034 \quad (Q^2=0.5 \text{ GeV}^2) \]

HAPPLEX \& JLAB:

\[\text{Progress from MAXINE:} \]

limits on strange vector current in the proton were set by part
Key observables and experiments which will measure them

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Experiment</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δg</td>
<td>COMPASS</td>
<td>2003</td>
</tr>
<tr>
<td></td>
<td>HERMES</td>
<td>2002+</td>
</tr>
<tr>
<td></td>
<td>RHIC</td>
<td>2002-05</td>
</tr>
<tr>
<td></td>
<td>SLAC E-161</td>
<td>2005</td>
</tr>
<tr>
<td>Flavour separation</td>
<td>HERMES</td>
<td>2002</td>
</tr>
<tr>
<td></td>
<td>RHIC</td>
<td>2002-04</td>
</tr>
<tr>
<td>A_{pol}</td>
<td>RHIC</td>
<td>2002+</td>
</tr>
<tr>
<td>Transversity, h_1</td>
<td>COMPASS</td>
<td>2004+</td>
</tr>
<tr>
<td></td>
<td>HERMES</td>
<td>2002-03</td>
</tr>
<tr>
<td></td>
<td>RHIC</td>
<td>2002+</td>
</tr>
<tr>
<td>Transversity from e^+e^-</td>
<td>BELLE</td>
<td>2002</td>
</tr>
<tr>
<td>DVCS plus meson production</td>
<td>COMPASS</td>
<td>2004+</td>
</tr>
<tr>
<td></td>
<td>HERMES</td>
<td>2004-05</td>
</tr>
<tr>
<td></td>
<td>SLAC E-159</td>
<td>2006</td>
</tr>
</tbody>
</table>

(from: S. Bass, A. de Roeck, Trento proceedings 2001)

ΔG: high p_T pairs

and

[Diagram of Feynman diagram involving π^- and π^+]
Transverse polarization

- Three leading order distribution functions:

\[f_1 = \quad \text{momentum carried by quarks} \]
\[g_1 = \quad \text{longitudinal quark spin, } \Delta \Sigma \]
\[h_1 = \quad \text{transverse quark spin, } \delta \Sigma \]

- Importance of \(h_1(x) \) measurements:
 - HERMES data: \(\Delta \Sigma = 0.30 \pm 0.04 \pm 0.09 \)
 - \(\Delta \Sigma \) is so small because of axial anomaly:
 * Redistribution of angular momentum in nucleon:
 \[
 \frac{1}{2} \Delta \Sigma \approx +0.15, \quad \Delta G \approx +1.0, \quad L_z \approx -0.65
 \]
 * Redistribution is less in transverse case:
 \[
 \Delta \Sigma < \delta \Sigma < 1 \quad \text{(Quark Parton Model)}
 \]
 \[
 \Delta \Sigma = 0.18(10) \quad \text{and} \quad \delta \Sigma = 0.56(9)
 \]
- Expected data quality with '00 data included:

HERMES Δq extraction — MC projection

- MC: 96/97 $\bar{H} + 98-00 \bar{D}$
- HERMES publ. PLB 464 (1999) 123

- CTEQ4LQ / (1+R)
- GRSV 2000 / (1+R)
First moment of g_1 for the proton

JLab/CLAS

PRELIMINARY

$Q^2(\text{GeV}^2)$
$g_1(x)$ for the proton

JLab/CLAS

g_1^p

$W=2$

- $Q^2=0.91 \text{ GeV}^2$
- $A_1+\eta A_2$
 parameterization
- Simula et al.

-- Gehrmann and Stirling ($Q^2=1.0$)
-- Edelmann et al. ($Q^2=1.0$) (’99) PRELIMINARY

Raffaella De Vita – INFN
BARYONS 2002, Jefferson Lab, March 3-8 2002
Overview of existing $x g_1(x)$ data:

- Proton
- Deuteron
- Neutron (3He)
4. Spin Structure

* HERMES (G. van der Steenhoven)

\[\Delta \Sigma_q = \Delta u + \Delta d + \Delta s = 0.3 \pm 0.1 \]
\[= 1 - 2 (\Delta G + L_z) \]

- flavour decomposition
- Gluon contribution \(\Delta G \)
- transverse spin \(\delta \Sigma_q \)

* JLab (R. DeVita)

- Spin structure and resonances
THEORY

- VARIETY of MODELS (Review: T. Sato)

- STATUS:
 - Physics of Δ RESONANCE: o.k.
 - 2nd RESONANCE region: important to get $\pi\pi\pi$ CHANNELS under control?
 - 3rd and "higher" RESONANCE region: MUCH to do: detailed resonance vs. background analysis etc.

- Hints & Comments:
 - Reminder of FANO THEORY (W. Lichterick)
 (see: Atomic physics & quantum optics)
 - Quest for PARITY DOUBLETS
 (Cohen & Glozman)
GERASIMOV-DRELL-HEARN Sum Rule

\[\int_{\omega_{th}}^{\infty} \frac{d\omega}{\omega} \left[\sigma_{-\frac{1}{2}}(\omega) - \sigma_{\frac{1}{2}}(\omega) \right] = \frac{2\pi^2 \alpha}{M^2} \kappa \]

\[\text{high energy part of GDH integral needs to be tested!} \]

(SLAC E-159)
Double polarization measurements

Polarized beams and targets: first results

- MAINZ
- LEGS
- BONN

- Predictions based on multipole analysis do not include $N\pi\pi$ and η channels
- Unitary Isobar Model is missing strength in the second resonance region
- Contributions to GDH sum-rule and γ_0 spin polarizability are measured for the first time.

PRL 87(2001)022003
Braghieri, Michel
\[\gamma + p \rightarrow \omega + p \quad \text{Beam asymmetry } \Sigma \]

\[E_{\gamma} = 1.27 \text{ GeV} \]

\[\theta_{\omega} \text{ cm (deg)} \]

- - - - t-exchange terms only (Q. Zhao)
- - - full calculation including s-u N* contributions

The beam asymmetry \(\Sigma \) is very sensitive to the inclusion of the N* resonances.

The inclusion of the diffractive t-exchange terms alone produces no asymmetry.

First preliminary results from GRAAL.
Sizable contribution from N* resonances.

Model from Zhao includes
\[P_{11}(1440), \quad S_{11}(1535), \]
\[D_{13}(1520), \quad P_{13}(1720), \]
\[F_{15}(1680), \quad P_{13}(1900), \]
\[F_{15}(2000) \]

Jlab 5 march 2002
Baryons 2002
Annalisa D'Angelo
$\gamma + p \rightarrow \eta + p$

Graal and Mainz data

Graal data cover the full resonance.

They show a "structure" at 1050 MeV, confirmed by new CLAS data

Pasyuk

Red curve: SAID BO12
Blue curve: eta MAID
Green curve: B. Saghai and Z. Li

Jlab 5 March 2002
Baryons 2002
Annalisa D’Angelo
K^+ Photoproduction

SPRING-8 (T. Nakano)

$\Lambda(1405)$

$\Lambda(1520)$

$\Lambda(1405)$ as $K\Lambda$ quasibound state? (Kaiser et al., '95)

$\Lambda(1520)$

Very Preliminary
Search for resonances in hyperon production

CLAS

$ep \rightarrow eK^+Y$

Forward hemisphere

$0 < \cos(\Theta_K) < 1$, $Q^2 = 0.7 \text{ (GeV/c)}^2$

$\sigma_T + \epsilon_L \sigma_L$

Backward hemisphere

$-1 < \cos(\Theta_K) < 0$, $Q^2 = 0.7 \text{ (GeV/c)}^2$

$\sigma_T + \epsilon_L \sigma_L$

Niculescu/Feuerbach

Prepimedary
Resonances in $\gamma^* p \rightarrow p\pi^+\pi^-$

CLAS

Genova-Moscow Isobar model fit

$\Gamma_{N\pi\pi}$ PDG

$\Gamma_{N\gamma}$ AO/SQTM

Total cross section

$Q^2 = 0.65$ GeV2

$Q^2 = 0.95$ GeV2

$Q^2 = 1.30$ GeV2

missing resonance strength
E_2/M_1 Ratio

$N \rightarrow \Delta$

$\frac{\text{Re}(E_{1+} M_{1+})}{|M_{1+}|^2}$

$Q^2(\text{GeV}^2)$

-0.02

... Looking forward!
Multipole Analysis for $\gamma^* p \rightarrow p \pi^0$

$Q^2 = 0.9 \text{ GeV}^2$

$|M_{1+}|^2$

$\text{Re}(E_{1+}M_{1+}^*)$

$|M_{1+}|^2$

$\text{Re}(S_{1+}M_{1+}^*)$

L.C. Smith

CLAS

Jefferson Lab
3. BARYON RESONANCES

significant progress:

* CLAS
* MAINZ
* BONN
* GRAAL
* LEGS
Reminder of **Quasiparticles** in Many-Body Systems

Example: **Quasi-Electrons** in electron gas

Coulomb interaction screened by cloud of electron-hole excitations

Quasiparticles interact weakly

But: **Constituent Quarks** experience

- **Confinement**
- Relatively strong residual interactions
 - Both gluon (color) exchange
 - Spin-flavour dependent interactions (e.g. Goldstone pion exchange)
Quark Propagator

\[S_E(p) = \frac{Z(p^2)}{i\gamma \cdot p + M(p^2)} \]

Euclidean

Landau gauge

Lattice

Adelaide group

*Lei*_weber et al.

Compare: Constituent Quark Mass from Instantons

(D. Diakonov)

\[M(p) \]

Instanton size \(\approx \frac{1}{3} \) fm

\[M(0) = \frac{\pi \frac{p}{N_c R^2}}{2} \approx 350 \text{ MeV} \]

... but:

No confinement!
2. Constituent Quarks

- How many Quarks in a Baryon?
 a) Spectroscopy: \(N = 3 \)
 (S. Capstick)
 b) Deep-Inelastic Scattering:
 (HERA; R. Yoshida) \(N_f \to \infty \)
 \[\int_0^1 \frac{dx}{x} F_2(x) = \int d\ln x F_2 \to \infty \]

- Interpolate between "3" and "\(\infty \)"
 "Constituent Quarks"
 (fuzzy concept?)

\[\text{(Y. Simonov)} \]

\[\text{Vacuum Structure} \]

\[\text{Ground State} \]

\[\text{Quark} \]

\[\text{Diquark} \]

\[\text{Excited States (Regge traj.)} \]
Comparison with Data

- Can use lowest 4 moments to reconstruct x-dependence of $u_n(x) - d_n(x)$

Detmold, Melnitchouk....

- Dark shading is world data
- Light shading **chiral extrapolation**
$g_A \quad N_f = 2$

Fit ansatz: $g_A = A + B(m_\pi r_0)^2 + C(a/r_0)^2$
g_A on the LATTICE: "Full" QCD

G. Schierholz

$g_A = 1.26$
Chiral Extrapolation of Lattice QCD Results (part II)

Proton, Neutron Magnetic Moment

\[\mu \text{[n.m.]} \]

\[m_\pi \text{[GeV]} \]

Pade fit
\[\mu_i = \frac{\hat{\mu}_i}{1 + \alpha_i m_\pi + \beta_i m_\pi^2} \]

(A.W. Thomas)

Calculated using Chiral Effective Field Theory
(incl. \(\Delta(1232) \) in NLO)

(T. Hemmert, W.W.)

\[\text{Lattice, near future: } m_\pi \sim 0.3 \text{ GeV} \]
Overview of Hadron Masses

- Behave like constituent quark model for m_π above 400–500 MeV:

Leinweber, Wright......
1. LATTICE QCD

FLUX TUBE

Gluonic Action Density around STATIC SOURCES \([SU(2)_c]\)

STATIC QQ POTENTIAL

[Graph showing the static QCD potential with annotations](graph)

(Reviews by R. Edwards, Ch. Davis)
OUTLOOK SUMMARY

★ BARYON: fascinating QCD - MANY-BODY PROBLEM

★ the FIELD is HEALTHY:

DATA driven

BRAIN driven

COMPUTER driven

high PRECISION

"Intelligent" theoretical approaches

Constrained by symmetries of QCD

LATTICE QCD steadily increasing power ... towards observables

future:

JLab upgrade

MAMIC

HERMES II

COMPASS

SPRING-8