Micromegas detectors for the CLAS12 central tracker **Sébastien Procureur** CEA Saclay, DAPNIA-SPhN

Principle of Micromegas

Principle of the bulk

The bulk concept has been developed using PCB techniques :

- Two Photoresist films to permanently hold the mesh between two arrays of spacers. The whole detector (pad or strip array and mesh) is in one piece, a bulk after lamination, insulation and chemical treatment.
- > The same process can be applied to embed the drift plane too, thus providing a full bulk detector.

Principle of the bulk

The bulk concept has been developed using PCB techniques :

- Two Photoresist films to permanently hold the mesh between two arrays of spacers. The whole detector (pad or strip array and mesh) is in one piece, a bulk after lamination, insulation and chemical treatment.
- > The same process can be applied to embed the drift plane too, thus providing a full bulk detector.

Advantages for CLAS12:

- \rightarrow Smaller dead zones
- \rightarrow Light material (rad. length ~3 times less than SI)
- \rightarrow Cheaper

Simulation

- 1) Estimation of MM performances (GARFIELD)
 - \rightarrow Optimization of detector characteristics (conversion gap, HV drift) \rightarrow Parameterization of resolution

- 2) Estimation of experimental setups performances (reconstruction program)
 - \rightarrow Resolution on momentum, angles, etc...

Effect of the magnetic field

Standard electric field configuration:

Layout of the cell

Influence of HV on drift

Preamplification starts!

What about transparency?

Standard electric field configuration:

Higher HV on drift:

What about transparency?

Standard electric field configuration:

Higher HV on drift:

+ B field

 \cap

Estimation of resolution

Resolution σ and average shift Δx of electrons (due to Lor. angle) depend on:

We studied essentially $\alpha = 0$ and 90°

Ex: φ dependence at $\alpha = 0^{\circ}$

Ar90%-Iso10% - Vdrift = 2000V - Vmesh = 450V - pitch = 600 μ m - gaps = (2mm;100 μ m) - π @ 1 GeV

Space resolution

Shift of reconstructed position

Number of primary ionisations

Estimation of resolution - 2

These studies allowed us to parameterize σ and Δx :

 $σ(φ, θ, α = 0, 90°) = f_{0,90}(φ) * g_{0,90}(θ)$ Δx(φ, θ, α = 0, 90°) = u_{0,90}(φ) * v_{0,90}(θ)

See CLAS note 2007-004

These parameterizations were used to generate hits on a reconstruction program $(\rightarrow Gaus(\sigma, \Delta x))$, starting from a given track and a given experimental setup

This program uses these hits to reconstruct the <u>whole track helix</u>, using MINUIT \rightarrow gives access to resolution on p, φ , θ , z See CLAS note 2007-004

Limitations:

- no multiple scattering simulated (affects p < 0.4-0.5 GeV/c)
- no background hits (easy to add, but need realistic estimate)

Results of reconstruction

We studied 3 different experimental setups:

- 4x2 MM at 6, 12, 18 and 24 cm (at $\alpha = 0$ and 90°)
- 4x2 SI at ~ 4.4, 7.8, 11.2 and 14.6 cm (at $\alpha = \pm 1.5^{\circ}$, and $\sigma = 43 \ \mu m$)

- 2x2 SI at ~ 4.4 and 7.8 cm + 3x2 MM at 10, 17 and 24 cm

ΜM

σ

 $\sigma_{pT}/p_T \rightarrow SI(+MM)$

Results of reconstruction - 2

 $\sigma_z \rightarrow MM$

 $\sigma_{\phi} \rightarrow SI(+MM)$

Comparison of exp. setups

(for $\pi @ 1 \text{ GeV/c}$, $\theta = 60^{\circ}$)

	4 x 2MM	4 x 2SI	2 x 2SI + 3 x 2MM	Specs.
σ_{pT}/p_{T} (%)	4.2	1.7	1.4	5
σ_{θ} (mrad)	1.3	11.5	1.5	a few
σ_{φ} (mrad)	9.4	2.5	2.3	a few
σ _z (μm)	270	1550	380	tbd.

 \rightarrow Mixed solution combines advantages of both SI and MM!

 \rightarrow « SI only » is never the optimum

 \rightarrow Need anyway clarifications concerning specifications...

Hardware tests and results

 \rightarrow 13 test detectors were built up to now, 11 tested

→ Process is almost finalized (*the best detectors are the last!*)

Gain ~ 1 to 4 $.10^4$ regularly obtained

Hardware plans

- validate simulations with test in 1.5 T (within 2 months)
- integrated drift, with spacers similar as for the mesh
- build plane (x,y) proto for FVT
- work on integration (elec+mechanics)

- build a cylindrical (x,y) proto with 2k channels for mid-2008

Additional slides for discussion

Effect of Mult. Scat. (Michel)

Other results with bulk

Other results with bulk

bulk souple (gap 150 microns) dans Ar+ 5% C4H10

Configurations

Mixed solution: Silicium + Micromegas bulk

- Central detector
 - 2 planes of Silicium (X,Y)
 - 3 cylindrical bulks (XY): 3m², pitch 0,6 mm ,10k channels.
- Forward detector
 - 4 plane bulks (XY): 1 m^2 , 3k channels.

