CLAS12 High Threshold Cherenkov Counter R&D

Plan

Cosmic PMT stand
Optical PMT stand
Magnetic shielding

HTCC optical design

Photonis XP4508B

■ UV sensitive, 10 stage , 5" diameter PMT Window: fused sillica Bialkali photocathode High QE (24% at 420 nm) Uniform electron collection over photocathode Rise time 2.1 ns Duration at half height 3.0 ns Transit time 49 ns

Magnetic Shielding

Gain halved for a magnetic field of:
0.4 gauss perpendicular to axis
1.3 gauss parallel with tube axis

The strength of the field at the Earth's surface ranges from less than 0.6 gauss around the magnetic poles in northern Canada.

PMT Operating Characteristics

- Quantum Efficiency (QE) vs wave length
- QE vs. Photocathode spot position
- Dark Current
- Gain
- Pulse height resolution
- Gain vs. High Voltage
- Linearity and pulse-rate dependence
- Rise-time

PMT Input Window

UV-transmitting Glass

 UV cut-off wavelength is 185 nm

 Synthetic Silica

 UV cut-off wavelength is 160 nm

Main Goal

Compare UV-transmitting Glass Input Window

and

Quartz Input window

Cosmic Stand

Scintillator part

Cosmic Stand

DAQ

Raw ADC Spectra

Trigger Counters

Scintillator Counters

Cerenkov Counters

One Photoelectron Peak

UV Glass S/N=K02471

LED spectra UV Window PMT

ADC vs Fitted number of photoelectrons (UV)

LED spectra Quartz Window PMT

ADC vs Fitted number of photoelectrons (Quartz)

Number of Photoelecrons

Optic Stand

Deuterium Source (ORTEC 66080)

Spectral output 160-500 nm
 Output is 33 mm diameter
 We can focus it to a tight spot for fiber or monochromator illumination

Monochromator (ORTEC 77200)

Spectral range 180nm – 24 um
0.1 nm resolution

The PMT rate vs HV

Rate vs Wave Lenth

CLAS PMT Magnetic Shielding

The shield consists of three layers of magnetic Material. The inner and middle Layers are composed of high permeability (saturation 8500 G), the outer layer material consists of moderate permeability (saturation 21500 G)

Magnetic Shielding TOSCA calculation

Magnetic Shielding (co-netic)

Conclusion

Setup LED stand with DAQ running. Setup Cherenkov stand Setup Optic Stand with D2 lamp Software for all stands is ready Magnetic shielding calculations are in progress Stand for magnetic measurements is ready

Burle 8854 PMT

- 5" diameter
- 14 stage Quantacon (high gain)
- Bialkali photocathode
- High QE (22.5% at 385 nm)
- Uniform electron collection over photocathode
- Fast time response (rise time 2.9 ns)
- Low noise and dark current
- Discrimination of up to 5 photoelectrons

Test Setup 1 (pulse mode)

PULSE mode linearity setup

Deviation from linearity :

ΔG _	$G(L) - G(L_0)$
G	$G(L_0)$

Normalization (1st order) :

$$\frac{\beta}{\alpha}L \approx \frac{1}{(1 - \frac{L_A}{L_F})} \frac{\Delta G}{G}$$

Test Setup 2 (continuous mode)

Linearity in continuous mode setup

Method :

Use of additivity

$$\frac{\Delta G}{G} = \frac{S(L_1 + L_2)}{S(L_1) + S(L_2)} - 1$$

HF PMT Test Station

