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Few-nucleon sector of BChPT first considered in

S. Weinberg, Phys. Lett. B 251, 288 (1990).

Weinberg’s program for few-nucleon systems encounters a

non-trivial problem:

The NN potential of chiral EFT is non-renormalizable in the

traditional sense already at LO.

Renormalization of the solution to the LS equation requires

an infinite number of counter-terms.

This problem has been addressed as the inconsistency of Wein-

berg’s approach.



An alternative power counting scheme (KSW):

D. B. Kaplan, M. J. Savage, and M. B. Wise, Phys. Lett. B

424, 390 (1998)

In KSW: OPE potential is of NLO ⇒ LO equation is renor-

malizable perturbatively as well as non-perturbatively.

Corrections are treated perturbatively. As a consequence, no

”consistency problem.”

However, perturbative series do not converge in the KSW ap-

proach.



Expansion of nuclear forces about the chiral limit:

S. R. Beane, P. F. Bedaque, M. J. Savage, and U. van Kolck,

Nucl. Phys. A700, 377 (2002).

This expansion is formally consistent and is equivalent to the

KSW/Weinberg power counting in the 1S0 channel/the 3S1 −3D1

coupled channels.



Higher partial waves:

A. Nogga, R. G. E. Timmermans, and U. van Kolck, Phys.

Rev. C 72, 054006 (2005).

Perturbative treatment of the OPE potential is not sufficient

for a finite number of partial waves.

Iterated OPE potential produces cutoff dependence in all waves

where the tensor force is attractive.

Include counter-terms in each of these partial waves.



A modified KSW approach:

S. R. Beane, D. B. Kaplan and A. Vuorinen, Phys. Rev. C 80,

011001 (2009).

It uses a more adequate renormalization scheme to improve

the convergence of the perturbative series.

We have implemented the new KSW approach.

Problems with convergence seem to persist.



There exists an alternative point of view that the ”consistency

problem” of Weinberg’s approach is irrelevant if the cutoff Λ

is kept finite.

Taking large values of Λ without including all relevant counter-

terms is not a legitimate procedure. Instead one has to choose

Λ ∼ 1GeV.



Here we present a modified version of Weinberg’s approach:

free of the ”consistency problem”.

Similar to the ”semi-relativistic” scheme of

D. Djukanovic, J. Gegelia, S. Scherer and M. R. Schindler,

Few Body Syst. 41, 141 (2007).

Difference: Time-ordered perturbation theory; Different treat-

ment of the two-nucleon propagator.



• We start with manifestly Lorentz invariant effective La-

grangian applying time-ordered PT.

• LO amplitude is obtained by solving an integral equation;

corrections are calculated perturbatively.

• All divergences are absorbed in the redefinition of param-

eters of the potential at given order.

• OPE potential is treated non-perturbatively.

• In 3P0 channels the LO integral equation does not have a

unique solution.

We solve this problem by including a counter-term at LO.



Effective Lagrangian of pions and nucleons:

Leff = Lπ + LπN + LNN + · · · .

Use the time-ordered perturbation theory:

S. Weinberg, Phys. Rev. 150, 1313 (1966).

Decompose the nominator of fermion propagator as

p/ +m = 2mP+ + (p/ −mv/) ,

where P+ = 1+v/
2 with v = (1,0,0,0), and identify the second

term as of higher order.



For NN scattering, define the two-nucleon-irreducible diagrams

as the effective potential V .

NN vertex function T satisfies an integral equation

T = V + V G T .

Here G is the two-nucleon propagator.

Substituting the expansions of V , G and T in a small parameter

we solve T order by order.

At leading order:

T0 = V0 + V0G0 T0 .

Corrections are calculated perturbatively.



The physical amplitude using LSZ formalism

T̃ = Z2
ψ ū3ū4 T u1u2,

where Zψ is the residue of the propagator and

u(p) =

(
1+

/p− p · v
m+ p · v

)
1+ /v

2
u(p) =u0 + u1 ,

ū(p) = ū(p)
1 + /v

2

(
1+

/p− p · v
m+ p · v

)
=ū0 + ū1 ,

are Dirac spinors;

u0(p) = P+ u(p) ,

ū0(p) = ū(p)P+ ,

LO equation for the physical amplitude

T̃0 = Ṽ0 + Ṽ0G T̃0 ,

with Ṽ0 = P+P+ V0 P+P+, the projected potential.



Equation for LO scattering amplitude in COM frame

T̃0
(
p⃗ ′, p⃗

)
= Ṽ0

(
p⃗ ′, p⃗

)
−
m2

2

∫
d3k⃗

(2π)3
Ṽ0
(
p⃗ ′, k⃗

)
×

1(
k⃗2 +m2

) (
p0 −

√
k⃗2 +m2 + i ϵ

) T̃0 (k⃗, p⃗) ,
where the LO effective potential Ṽ0 = Ṽ0,C + Ṽ0,π with

Ṽ0,C=−CS − CT σ⃗1 · σ⃗2
and

Ṽ0π
(
p⃗ ′, p⃗

)
=−

g2A
4F2

3∑
a=1

σ⃗1 ·
(
p⃗− p⃗ ′) σ⃗2 ·

(
p⃗− p⃗ ′)

(p⃗− p⃗ ′)2 +M2
.



LO partial wave equations:

T
sj
l′l

(
p′, p

)
= V

sj
l′l

(
p′, p

)
+

m2

2

∑
l′′

∫ ∞

0

dk k2

(2π)3
V
sj
l′l′′

(
p′, k

)
T
sj
l′′l (k, p)(

k2 +m2
) (

p0 −
√
k2 +m2 + i ϵ

),
where V sj

l′l
(
p′, p

)
is the partial wave projected NN potential and

p = |p⃗|, p′ = |p⃗ ′|.



• LO equation has a milder UV behavior than the corre-

sponding LS equation.

• Iterations of LO equation generate diagrams which only

contain overall logarithmic divergences.

• These divergences are absorbed in the redefinition of the

parameters of the LO potential ⇒ LO equation is pertur-

batively renormalizable.



In non-perturbative regime: approximate the two-nucleon prop-

agator for k → ∞ by

p0 +
√
k2 +m2(

k2 +m2
) (

p2 − k2 + i ϵ
) →

1

k
(
p2 − k2 + i ϵ

) ,
and obtain

T
sj
l′l

(
p′, p

)
= V

sj
l′l

(
p′, p

)
+
m2

2

∑
l′′

∫ ∞

0

dk k

(2π)3
V
sj
l′l′′

(
p′, k

)
T
sj
l′′l (k, p)

p2 − k2 + i ϵ
.

It has the form of the partial wave LS equation in three space-

time dimensions.

Corresponding OPE potential behaves as ∼ 1
r2

for r → 0.



More singular ∼ 1
r3

UV behavior of the potential in non-relativistic

(HBChPT) is an artifact of that formulation.

Guaranteed correct non-relativistic expansion of physical quan-

tities is obtained by performing Lorentz invariant calculation

and after performing the expansion.

In HB approach one expands on the level of the Lagrangian,

however includes additional compensating terms.

Any mismatch between the two expansions has to be at-

tributed to the shortcomings of the HB approach.



Modified UV behavior in heavy baryon expansion is easily seen

in the following integral, contributing in the scattering ampli-

tude of two scalar ”baryons” with P = (2
√
m2 + p2, 0⃗ )

I =
4 i

(2π)4

∫
d4k θ(Λ− |⃗k|)[

k2 −m2 + i0+
] [
(P − k)2 −m2 + i0+

]
=

1

(2π)3

∫
d3k⃗ θ(Λ− |⃗k|)[

k⃗2 +m2
] [
p0 −

√
k⃗2 +m2 + i0+

]
−

1

(2π)3

∫
d3k⃗ θ(Λ− |⃗k|)[

k⃗2 +m2
] [
p0 +

√
k⃗2 +m2

].
= I1 + I2 .

I1 and I2 correspond to diagrams of the old-fashioned time-

ordered perturbation theory.



The results of integrals for Λ > p:

I1 =
p ln Λ

√
m2+p2+p

√
Λ2+m2

Λ
√

Λ2+m2−p
√
m2+p2

4π2
√
m2 + p2

−
ln Λ+

√
Λ2+m2

m

2π2

+
p tanh−1 p

Λ −m tan−1 Λ
m

2π2
√
m2 + p2

−
ip

2π
√
m2 + p2

,

I2 =
p ln Λ

√
m2+p2+p

√
Λ2+m2

m
√

Λ2−p2

2π2
√
m2 + p2

−
ln Λ+

√
Λ2+m2

m

2π2

+
m tan−1 Λ

m − p tanh−1 p
Λ

2π2
√
m2 + p2

,

I =
p ln Λ

√
m2+p2+p

√
Λ2+m2

m
√

Λ2−p2

π2
√
m2 + p2

−
ln Λ+

√
Λ2+m2

m

π2
−

ip

2π
√
m2 + p2

.



Expand first in Λ and subsequently in 1/m:

I11 = −
ip

2πm
+

m

2π2Λ
−

ln Λ
m

2π2
−
π+ ln4

4π2
+

p2

4π2Λm
+O

(
1

Λ2
,
1

m2

)
,

I12 = −
m

2π2Λ
−

p2

4π2Λm
−

ln Λ
m

2π2
+
π − ln 4

4π2
+O

(
1

Λ2
,
1

m2

)
,

I1 = −
ip

2πm
−

ln Λ
m

π2
−

ln 2

π2
+O

(
1

Λ2
,
1

m2

)
.

The one-loop integral I is logarithmically divergent.



Expand first in m and after in Λ about ∞:

I21 = −
ip

2πm
−

Λ

π2m
+

p2

π2Λm
+O

(
1

m2
,
1

Λ2

)
,

I22 = O
(

1

m2
,
1

Λ2

)
,

I2 = −
ip

2πm
−

Λ

π2m
+

p2

π2Λm
+O

(
1

m2
,
1

Λ2

)
.

Two expansions are not commutative:

HB approach corresponds to terms ∼ 1/m in I21.

HB expansion leads to qualitatively different UV behavior.



This is not a problem in perturbative calculations.

For non-perturbative equations, one needs to include contri-

butions of an infinite number of terms.

Otherwise, in HB approach one is not allowed to take Λ much

bigger than the nucleon mass m.

Integral I1 of time-ordered PT has the same UV behavior as

the integral I, guaranteeing correct qualitative UV behavior in

our new approach.

In time-ordered PT the nucleon mass DOES NOT play the

role of the cutoff!



Due to radial repulsion integral equations have unique solu-

tions for all partial waves except 3P0.

In 3P0 channel the LO equation does not have an unique so-

lution. This is the same behavior as in S-TM equation:

G. V. Skornyakov and Ter-Martirosyan, Sov. Phys. JETP 4,

648 (1957).

Analogously to

P. F. Bedaque, H. W. Hammer and U. van Kolck, Phys. Rev.

Lett. 82, 463 (1999)

we include a counter-term c(Λ) p p′

Λ2 at LO.

Due to its special dependence on Λ this counter-term does

not upset the self-consistency of EFT.
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Summary

• We presented a modified version of Weinberg’s approach

to NN scattering problem.

• We use the Lorentz-invariant Lagrangian applying time-

ordered perturbation theory.

• LO amplitude is obtained by solving an integral equation

with contact interaction plus OPE.

• Corrections are calculated perturbatively.



• LO equation is perturbatively renormalizable.

• Effective OPE behaves as 1
r2

for r → 0 in three space-time

dimensions.

• In attractive partial waves OPE is screened by radial re-

pulsion for non-vanishing orbital momenta.

• LO integral equation has unique solutions except for the
3P0 channel.

• In 3P0 channel we include a counter-term c(Λ) p p′

Λ2 at LO.



• Due to the non-commutativity of the HB expansion with

removed cutoff limit, it is not allowed to take the cutoff

much larger than the nucleon mass within the HB for-

malism unless one includes the contributions of (an infi-

nite number of) compensating terms of the effective La-

grangian.



Perturbative pions at next-to-leading order

Here we adopt the normalization of the amplitude by KSW.

Scattering amplitude in the KSW approach

A = A−1 +A0 +A1 + · · · ,

where the subscript indicates the power of the soft scale Q.

The LO contribution A−1 emerges from resummation of the

LO contact interactions.



(V)

Mπ
2p 2

0 0 0
(I) (II) (III) (IV)

A

A

A A A A A

−1

0

0

0



The LO amplitude:

A−1 =
−C0

1− C0 I(p)
.

The integral I(p) is given by

I(p) =
m2

2

µ3−n

(2π)n

∫
dnk[

k2 +m2
] [
p0 −

√
k2 +m2 + i0+

]
=

1

8π2
[− (λ̄+2− 2 ln

m

µ
)m2

−
m2√

m2 + p2
(πm+2iπp− 2p sinh−1

(
p

m

)
)] ,

with λ̄ ≡ −1/(n− 3)− γ − ln(4π) and µ is the scale parameter

of DR. C0 is the linear combination of CS,T . p ≡ |p⃗ |, k ≡ |⃗k |.



Renormalization of A−1 is done by subtracting the loop inte-

gral at p2 = −ν2 with ν ∼ O(Q),

IR(p, ν) = I(p)− I(i ν) = −
m(ν + i p)

4π
+O(p2, ν2) ,

and replacing C0 by CR
0 (ν):

A−1 =
−CR

0 (ν)

1− CR
0 (ν) IR(p, ν)

.

The renormalized A−1 agrees with the KSW result modulo

higher-order terms emerging from the 1/m-expansion of IR(p
2, ν2).



The renormalized contributions of the dressed subleading con-

tact operators:

A(I)
0 = A2

−1

C
R
2 m

2
(
2m2 + p2 − 2m

√
m2 + p2

)
8π CR

0

−
2CR

2 p
2

(CR
0 )2

 ,
A(V )

0 = −
DR

2M
2
π

(CR
0 )2

A2
−1 ,

where CR
2 ≡ CR

2 (ν), DR
2 ≡ DR

2 (ν) are renormalized LECs.

A(V )
0 agrees with the HB result. HB result for A(I)

0 is entirely

given by the second term in the brackets. For CR
0 ∼ O(Q−1)

and CR
2 ∼ O(Q−2), the first term in the brackets is of order

∼ Q3 and the second one is of order ∼ Q2. Both approaches,

therefore, again lead to the same result modulo corrections of

a higher order.



Contributions involving pions:

Tree diagram yields the S-wave projected OPE potential,

A(II)
0 =

g2A
4F2

π

(
−1+

M2
π

4 p2
ln
M2
π +4p2

M2
π

)
.

The renormalized contribution of the diagram with a pion line

in one loop

A(III)
0 =

g2A
2F2

π
A−1

[
IR(p, ν)−M2

π I1l(p)
]
,

I1l(p) =
m2

2

∫
dnk

(2π)n
1[

k2 +m2
] [
p0 −

√
k2 +m2

] [
(k − p)2 +M2

π

]
= −

m

8πp

[
tan−1

(
2p

Mπ

)
+

i

2
ln
M2
π +4p2

M2
π

]
+O

(
p

m
,
Mπ

m

)
.

This agrees with the HB KSW result modulo higher order

terms.



Contribution of the diagram with a pion line in two loops

A(IV )
0 =

g2A
4F2

π
A2

−1

[
M2
π I2l − IR(p, ν)

2
]
,

where the scalar two-loop integral has the form

I2l =
m4

4

∫
dnk1d

nk2
(2π)2n

1[
k21 +m2

] [
p0 −

√
k21 +m2 + iϵ

] [
k22 +m2

]
×

1[
p0 −

√
k22 +m2 + iϵ

] [
(k1 − k2)2 +M2

π

]



A(IV )
0 =

g2Am
2

64π2F2
π
A2

−1

{
M2
π

[ln 8

4
−

2G

π
−

7ζ(3)

2π2
−

1

2
ln
M2
π +4p2

m2

+i tan−1
(
2p

Mπ

)]
− (ν + ip)2

}
+ · · · ,

G ≈ 0.916 is Catalan’s constant and the ellipses refer to higher-

order terms.

The corresponding HB result:

A(IV )
0, HB =

g2Am
2

64π2F2
π
A2

−1

{
M2
π

[
−
1

2
ln
M2
π +4p2

ν2
+ i tan−1

(
2p

Mπ

)
+1

]
−(ν + ip)2

}
.

The difference in the constant terms in the square brackets

can be compensated by a finite shift of the LEC DR
2 .



Non-polynomial terms in M2
π and p2 are equal in both cases.

HB result has logarithmic dependence on ν which reflects the

logarithmic divergence of I2loop when the integrand is approx-

imated by the leading term in the 1/m-expansion. It is, there-

fore, necessary to include D2M
2
π in the HB approach at the

same level as the diagrams, which appears at LO in the Wein-

berg approach.

In contrast, the original integral I2loop is finite and fulfills the

power counting without any additional subtractions. Conse-

quently there is no need to promote the D2M
2
π -term to LO

within the modified Weinberg approach.


