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The Nucleon-Nucleon Interaction 
•  Known Features: 

–  Approximately central 
–  Repulsive core 
–  Tensor components 
–  Spin-dependence 

•  “Realistic” potential models 
–  Phenomenological 
–  Pion exchange 
–  Free parameters 

•  Examples include AV18 and 
CD-Bonn 

•  ChPT offers the possibility of  
systematically deriving 
potentials   
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Example of  fit to data:  AV18 

1S0 

Elab (MeV) 

Curves: 
Theory
Points: Exp. 
PSA

http://www.phy.anl.gov/theory/research/av18/1s0.ps 



The Ay Puzzle 
•  Accurate calculations for scattering 

up to 4N system 

•  Need 3-nucleon force (3NF) to 
reproduce 3He, triton, and alpha 
binding energies. 

•  3NF: Interaction between 2 nucleons 
affected by presence of  third. 

–  Ex: Urbana-IX 

•  Most N+d scattering observables ok. 

•  3N and 4N nucleon analyzing power 
underpredicted. 

•  Sensitive to P-waves 

p + 3He at 
2.25 MeV 

B. M. Fisher et al., Phys. Rev. C 74, 034001 (2006). 
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4N System:  “Theoretical Laboratory” 

•  Important testing ground for modern nuclear potential models 

•  4N system more interesting than 3N 

–  Stronger binding   

–  More complicated 

–   Discrete levels 

–  T=3/2 contribution  
   to 3N interaction 

4N System 
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Motivation for New Measurements  

•  Experimental phase-shifts needed 
to compare with theory 

•  Wisconsin analysis led to two 
solutions 

•  Difference between solutions 
largest for spin-correlation 
coefficients below 4 MeV 

•  Underrepresented in dataset 

•  Project: Measure Ayy and Axx and 
extract unique phase-shifts 

Aoy 

Ayy  
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Previous results at 3 MeV 

E. A. George and L. D. Knutson, Phys. Rev. C 67, 027001 (2003).  
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TUNL Laboratory 
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Polarized ion source 
•  2μA 
• 60% pol.  

Tandem accelerator 

Polarized target 

Experiment used several 
laboratory components: 

Helium source 



Polarized 3He Target “Overview” 

Polarizer Target cell 

Katabuchi, et al., Rev. Sci. Instrum.  76, 033503 (2005) 
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Fill tube 

Beam 



Sine-Theta Coil 

•  Polarized gas requires 
magnetic holding field 

•  Need field uniformity of  1 in 
103/cm 

•  Current proportional to sinθ�

•  “Spin-flip” by reversing field 

•  LabVIEW controls 
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μ-metal shield 

Windows for 
emerging particles 

Copper 
rods 



Target Cell 
•  Polarized container needs 

friendly materials: 
–  Pyrex glass cell 
–  Kapton windows  
–  Non-magnetic materials! 

•  NMR coil attached to cell 

•   Spin relaxation time 
       1~3 hours 

•   Cell pressure ~1 atm 
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Polarizer 

LASER 

Pumping Cell 
(180°C, 8atm) 

To Vacuum  
& Gas Supply 

To Target Cell 

Diaphragm Pump 
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Target NMR Calibration 

•  Pulsed NMR must be calibrated by absolute measurement 
•  We used 3He(α,α)3He at Eα=15.3 MeV  and θlab = 45˚ 
•  Fit of  polarization  

vs NMR yields the  
calibration factor 
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Scattering Experiment 

•  Spin-Correlation Coefficients between 2 and 6 MeV 

•  Polarized beam and target 

•  Left/Right pairs of  Si detectors 

•  Beam current integration by Faraday cup 

•  Beam spin flipped at 1 or 10 HZ. 

•  Spectra generally free of  background 

•  Electronic data sorting by beam and target spin-state 
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Steering Effect 
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•  Non-zero asymmetries for A0y 
with unpolarized target 

•  No effect for Ayy or Axx 

•  Associated with sin-theta coil 
B field 

•  Small (0.1°) angle magnetic 
steering of  proton 
–  Cross-section angle-dependent 

•  Measured effect subtracted 
from data 
-  Unpolarized target 
-  Extrapolation of  polarized data 

to zero 

Beam 

Scattered 
protons 

Target 

Detector 

2.28 MeV 



Global phase-shift analysis 
•  Observables expressed as 

functions of  phase-shifts 
according to the Blatt-
Biedenharn convention 

•  Phase-shift energy dependence 
parameterized by modified 
effective range expansion 

•  Parameters used:  1S0, 3S1, 1P1, 
3P0, 3P1, 3P2, 1D2, 3Dj, 3Fj, ε(1+), 
ε(1-), ε(2-) 

•  3 effective range parameters for 
each → 36 total parameters 
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Modified effective range expansion for 
phase shifts and mixing parameters 

•  Wisconsin group’s chisq search 
routine used to find best-fit 
solution to 1000-point global 
database 

M. T. Alley and L. D. Knutson, Phys. Rev. C 48, 1901 (1993).  
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Results: Observables  

Example at 3.13 MeV 
•  Distributions at 2.25, 2.7, 3.13, 
4.00, and 5.54 MeV 

•  Lowest-energy spin-correlation 
   data for p + 3He 

•  Observables fit well by phase- 
  shift analysis 

•  Agreement with available previous 
data  
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A0y 
Ayy 

Axx 

Distributions vs. θcm 

T. V. Daniels et al., Phys. Rev. C 82, 034002 (2010)  



Results: Phase-shifts 
Parameter χ2 “scan” 

Wisconsin 
result: 2 minima 

Our result: single 
minimum! 

The addition of  new data removes 
ambiguity and establishes unique solution! 

1S0 vs energy 
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Comparison to Theory (NN): 

•  “Benchmark” calculations 
using 3 different methods (HH, 
AGS, FY)  

•  Potentials considered include 
AV18 and I-N3LO (ChPT) 

•  Cross-sections well-described 

•  Analyzing powers 
underpredicted (Ay Puzzle) 

•  Spin correlation coefficients 
somewhat underpredicted at 
forward angle, less sensitive to 
choice of  potential. 21 

Ay0 A0y 

Ayy Axx 

M. Viviani et al., Phys. Rev. C 84, 054010 (2011)  

Cross-section and analyzing powers 



Comparison to Theory (NN): 
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Ay0 A0y 

Ayy Axx 

M. Viviani et al., Phys. Rev. C 84, 054010 (2011)  

Spin-correlation coefficients •  “Benchmark” calculations 
using 3 different methods (HH, 
AGS, FY)  

•  Potentials considered include 
AV18 and I-N3LO (ChPT) 

•  Cross-sections well-described 

•  Analyzing powers 
underpredicted (Ay Puzzle) 

•  Spin correlation coefficients 
somewhat underpredicted at 
forward angle, less sensitive to 
choice of  potential. 



Comparison to Theory (NN+3NF) 

Example at 3.13 MeV 
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Ay0 A0y 

Ayy Axx 

Distributions vs. θcm 

•  AV18+URIX and I-N3LO+I-
N2LO (ChPT) potentials solved 
with HH method 

•  AV18+URIX still substantially 
underpredicts Ay0.  Also 
underpredicts σ, Ayy, and Axx at 
forward angles. 

• I-N3LO+I-N2LO improves 
agreement for all observables, 
especially Ay0! 

Cross-section and Ay0 

M. Viviani et al., EPJ Web of  Conferences 3, 05011 (2010)  
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M. Viviani et al., EPJ Web of  Conferences 3, 05011 (2010)  



Comparison to Theory (NN+3NF): 
Phase-shifts 
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•  S-Waves: Slightly overpredicted by 
NN models, well-reproduced with 
3NF  

•  P-Waves: AV18+URIX 
underpredicts 3P2 and 3P1, well 
reproduced by I-N3LO+N-N2LO 

•  Mixing parameters: large 
experimental uncertainties, but I-
N3LO+N-N2LO preferred 

•  I-N3LO+N-N2LO generally in 
good agreement with experimental 
phase-shifts     

S-waves (L=0) 

M. Viviani et al., EPJ Web of  Conferences 3, 05011 (2010)  
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P-waves (L=1) 



Comparison to Theory (NN+3NF): 
Phase-shifts 
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•  S-Waves: Slightly overpredicted by 
NN models, well-reproduced with 
3NF  

•  P-Waves: AV18+URIX 
underpredicts 3P2 and 3P1, well 
reproduced by I-N3LO+N-N2LO 

•  Mixing parameters: large 
experimental uncertainties, but I-
N3LO+N-N2LO preferred 

•  I-N3LO+N-N2LO generally in 
good agreement with experimental 
phase-shifts     

Mixing Parameters 

M. Viviani et al., EPJ Web of  Conferences 3, 05011 (2010)  



Conclusions 

•  A new SEOP polarized 3He target was used to measure spin-
correlation coefficients between 2 and 6 MeV  

•  These new measurements have been used to resolve the 
ambiguity in the global phase-shift analysis 

•  Precise 4N theoretical calculations using a variety of  potential 
models available for comparison 

•  Best agreement with ChPT-derived I-N3LO+I-N2LO (NN
+3NF) potential 

•  This model, which is closer to the experimental Ay0, better-
reproduces the experimental partial waves, especially 3P2, 3P1, and 
ε(1-)    
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