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Deriving Nuclear Forces from QCD

The nuclear force is the fundamental problem in nuclear physics

• Many phenomenological descriptions available which are,
however, not grounded in QCD.

• The Goal: a QCD based description of the nuclear force
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Deriving Nuclear Forces from QCD

• Strategy 1: Lattice QCD (talks this morning) will eventually do it
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Ishii, Aoki, Hatsuda 06 (with mπ ≃ 0.53GeV, mN ≃ 1.34GeV).

• Strategy 2: Low energy EFT of nuclear forces incorporating
known low energy symmetries of QCD (if you can’t wait or you
don’t have a supercomputer)
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The Nucleon-Nucleon Chiral Potential (I)

Here we construct a nuclear effective field theory

• Chiral perturbation theory is the starting point: the πN interaction
constrained by broken chiral symmetry (the QCD remnant).

• Nucleons are heavy (MN ∼ Λχ): we can define a non-relativistic
potential (the Weinberg proposal) that admits an expansion

VNN =

+

+

+

+ +

+ . . .+

O(Q0)

O(Q2)

Weinberg (90); Ray, Ordoñez, van Kolck (93,94); etc.
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Power Counting (I)

It’s important, so I repeat, there are two essential ingredients:

• Chiral symmetry provides the connection with QCD.

• Power counting makes the EFT systematic: it orders the infinite
number of chiral symmetric diagrams.

• In EFT we have a separation of scales:

|~q| ∼ p ∼ mπ ∼
︸ ︷︷ ︸

the known physics

Q ≪ Λ0 ∼ mρ ∼ MN ∼ 4πfπ
︸ ︷︷ ︸

the unknown physics

• Then the idea is to expand amplitudes as powers of Q/Λ0:

T =

νmax∑

ν=νmin

T (ν) +O

(
Q

Λ0

)νmax+1

• Power counting refers to the set of rules from which we
construct this kind of low energy expansion.
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Power Counting (II)

What is power counting useful for? What are its consequences?

• If we express the NN potential as a low energy expansion:

VEFT = V (0)(~q) + V (2)(~q) + V (3)(~q) +O(
Q4

Λ4
0

) ,

we appreciate that the potential should convergence quickly at low
energies / large distances (and diverge at high energies).

• Apart, we can know in advance how the potential diverges:

V (ν)(~q) ∝
|~q | ν

Λν+2
0

f(
|~q|

mπ

) −→
︸︷︷︸

F

V (ν)(~r) ∝
1

Λν+2
0 rν+3

f(mπr) .

This means that regularization and renormalization are required:
we will have a cut-off Λ.
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The Nucleon-Nucleon Chiral Potential (II)

The NN chiral potential in coordinate space:
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At long distances power counting implies:
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The Nucleon-Nucleon Chiral Potential (III)

However, at short distances the situation is just the opposite:

... as can be checked in coordinate space:
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Scattering Observables (I)

What about scattering observables? The naive answer is as follows:

• We plug the potential into the Lippmann-Schwinger equation

T = V + V G0 T

• We check that we preserve power counting in T :

However, this is far from trivial.
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Scattering Observables (II)

What can fail in the power counting of the scattering amplitude?

We are iterating the full potential. Subleading interactions may
dominate the calculations if:

• We are using a too hard cut-off, Λ ≥ Λ.

• We are not including enough contact range operators to
guarantee the preservation of power counting in T .

In either case we can end up with something in the line of:

that is, an anti-counting. Lepage (98); Epelbaum and Gegelia (09). This could be

happening to the N3LO potentials!
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Scattering Observables (III)

Let’s start all over again, but now we will be careful.

There is a fool proof way of respecting power counting in T:

• We begin with T = V + V G0 T

• But now, we re-expand it according to counting, that is, we treat
the subleading pieces of V as a perturbation.

T (0) = V (0) + V (0) G0 T
(0) ,

T (2) = (1 + T (0) G0)V
(2) (G0 T

(2) + 1) , etc.

• Perturbations are small, so we expect power counting to hold.

And now we can give a general recipe for constructing a power
counting for nuclear EFT...
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Constructing a Power Counting

The Power Counting Algorithm (simplified version):

• Choose a minimal set of diagrams (the lowest order potential):
this is the only piece of the potential we iterate!

• Higher order diagrams enter as perturbations

• At each step check for cut-off independence

• If not, include new counterterms to properly the results.
• Once cut-off independence is achieved, we are finaly done!

(Well, actually not. There are additional subtleties I didn’t mention.)
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The Leading Order Potential

What to iterate? Two (a posteriori obvious) candidates:

• a) The bound (virtual) state happen at momenta of γ = 45MeV

(8MeV), much smaller than mπ = 140MeV.

• b) There is an accidental low energy scale in tensor OPE

ΛT =
16π f2

π

3MNg2
≃ 100MeV

Kaplan, Savage, Wise (98); van Kolck (98); Gegelia (98); Birse et al. (98); Nogga,

Timmermans, van Kolck (06); Birse (06); Valderrama (11); Long and Chen (11).
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Check for Renormalizability (I)

The next step is to check cut-off dependence:
Nogga, Timmermans, van Kolck (06); Valderrama, Arriola (06); Epelbaum, Gegelia (12)

• S-waves:
• 1S0: everything’s working fine.
• 3S1: everything’s working fine too.

• P-waves:
• 1P1, 3P1: again, everything’s working fine.
• 3P2: hmmm... looks fine, unless the cut-off’s really high.
• 3P0: definitively, something’s wrong with this wave.

• D-waves and higher:

• a few hmmm...’s, but generally OK.

So it seems that we are not done with the leading order!
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Check for Renormalizability (II)

Nogga, Timmermans, van Kolck (06); Valderrama, Arriola (06); Epelbaum, Gegelia (12)

The 3P0 shows a strong cut-off dependence:
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actually is cyclic, but we have only shown the first cycle.

Nuclear EFT – p. 15



Check for Renormalizability (III)

Nogga, Timmermans, van Kolck (06); Valderrama, Arriola (06); Epelbaum, Gegelia (12)

How to solve this issue? Easy: we include a P-wave counterterm at LO

• In principle we should have

C3P0
~p · ~p ′ −→

︸︷︷︸

Q→λQ

λ2 C3P0
~p · ~p ′

i.e. order Q2, which is true as far as C3P0
(λQ) = C3P0

(Q).

• But cut-off dependence at soft scales indicates that actually:

C3P0
(λQ) =

1

λ3
C3P0

(Q) or C3P0
∝

1

Λ0Q3
with Q = ΛT
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Check for Renormalizability (IV)

Nogga, Timmermans, van Kolck (06); Valderrama, Arriola (06); Epelbaum, Gegelia (12)

After the promotion of C3P0
from Q2 to Q−1:
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we recover approximate cut-off independence. A similar thing happens
for the 3P2 and 3D2 partial waves.
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Subleading Orders

Birse (06); Valderrama (11); Long and Chen (11).

We just follow the power counting recipe:

• 1) We include the subleading potential as a perturbation.

• 2) We check again for cut-off dependence.

• 3) And there is cut-off dependence:
we include a few new counterterms.

• 4) We re-check for cut-off dependence,
and now everything is working fine.

Of course, the actual calculations are fairly technnical,
but the underlying idea is fairly simple.

And we can summarize the results in a table.
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Nuclear EFT: Power Counting

Partial wave LO NLO N2LO N3LO

1S0 1 3 3 4

3S1 −
3D1 1 6 6 6

1P1 0 1 1 2

3P0 1 2 2 2

3P1 0 1 1 2

3P2 −
3F2 1 6 6 6

1D2 0 0 0 1

3D2 1 2 2 2

3D3 −
3G3 0 0 0 1

All 5 21 21 27

Weinberg 2 9 9 24

i) dependent on counterterm representation; ii) there are variations and fugues over this

theme; iii) equivalent to Birse’s RGA of 2006, modulo i) and ii).
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Nuclear EFT: Phase Shifts

S, P and D-Waves

The following values have been taken:

fπ = 92.4MeV, mπ = 138.04MeV, d18 = −0.97GeV2

c1 = −0.81GeV−1, c3 = −3.4GeV−1, c4 = 3.4GeV−1

1/MN corrections included at N2LO

Comparison with N2LO Weinberg results of Epelbaum and Meißner.
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Nuclear EFT: S-Wave Phase Shifts
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Nuclear EFT: P-Wave Phase Shifts
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Nuclear EFT: D-Wave Phase Shifts
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Nuclear EFT: Remarks

• S-waves are in general well-reproduced up to k ∼ 350− 400MeV.

• P-waves tend to fail earlier (at k ∼ 300MeV).

• There is a defined convergence pattern.
• Results are very sensitive to the value of c3 and c4.

• Resulting power counting very similar to Birse’s 06.
(but a bit different from Long and Chen 11)

• However there are consistency reasons to prefer higher cut-offs:
convergence of the perturbative series may require rc > 0.7 fm.
• Phenomenologically higher cut-offs are also preferred:

the rc = 0.9− 1.2 fm results are very similar to, and sometimes
better than, the rc = 0.6− 0.9 fm ones.
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Formal Developments

What is the value of Λ0 in nuclear EFT?

This interesting question is linked with the following observations:

• The cut-off is a separation scale: Q ≪ Λ ≪ Λ0

• If the cut-off Λ ≥ Λ0 inconsistencies may happen.

(Well, this is actually a gross oversimplification. The real derivation is way too long.)

So we are going to look for a serious inconsistency that happens for a
hard value of the cut-off.

Which one? A failure in the perturbative expansion!
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Which is the Hardest Possible Cut-off?

If power counting is on a firm basis perturbation theory must converge
and this condition imposes specific cut-off restrictions.

This condition holds for non-observables: if their perturbative
expansion is not converging we are not using the right counting.

Example: the running of C0(rc) at N2LO in two schemes:

• Non-perturbatively, solving C0(rc) for the full N2LO potential.

• With TPE potential as a perturbation :
• The 0th order is C0(rc) plus non-perturbative OPE
• The 1st order is C0(rc) plus first order perturbative TPE
• The 2nd order is C0(rc) plus second order perturbative TPE

Then we compare perturbative versus the non-perturbative.
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Which is the Hardest Possible Cut-off?

If power counting is on a firm basis perturbation theory must converge
and this condition imposes specific cut-off restrictions.
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At rc ≃ 0.7 fm, C0 changes sign ⇒ first deeply bound state.
(Cannot be reproduced in perturbation theory)
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The Breakdown Scale

• For transforming the Rdb radius into a momentum scale we use

Λ0Rdb =
π

2
,

(Entem, Arriola, Machleidt, Valderrama 07) yielding Λ0 ≃ 400− 500MeV.

• The expected expansion parameter is:

Q

Λ0
≃

1

3
−

1

2

for the more conservative estimation Λ0 = 300− 400MeV.

• The breakdown scale could have been anticipated on sigma and
rho exchange, yielding Λ0,s = mσ/2 and Λ0,t = mρ/2.

• Not completely new: the KSW expansion parameter (NTvK is
equivalent to KSW in the singlet), Birse’s remarks from
deconstruction, pole in the chiral potential by Baru et al. (12).
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The Cut-off Window

The softest value of the cut-off is related to the maximum external
momentum that we expect to describe within EFT (kmax ∝ Λ).

In r-space, the ideal cut-off window is given by:

0.7 fm ∼
π

2Λ0
≤ rc ≤

π

kmax
∼ 1.4 fm

• The phase shifts can be described up to kmax.

• If we want to get the most from nuclear EFT, we set kmax = Λ0.
• A softer cut-off will simply reduce kmax.

• In momentum space, the conditions are more stringent:

kmax ≤ Λ ≤ Λ0

explaining the narrowness of usual cut-off windows.
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External Probes and Power Counting

The previous ideas can be directly extended to deuteron reactions, in
which case renormalizability controls the counting of counterterms:

= +

+

+

+

+ + . . .
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Conclusions

• Nuclear EFT
• There exist a well-defined power counting for two-body

processes, and we know how to build it.
Minor issues: How many counterterms? RGA of repulsive interactions.

• Scattering Observables well-reproduced up to
kcm ≃ 300− 400MeV.

• Contact interactions are enhanced with respect to Weinberg.
• As good as Weinberg, but without the consistency problems.

• Formal developments:

• Determination of the expansion parameter
• Extension to reactions on the deuteron
• Other things underway: chiral extrapolations, three body

systems, etc.
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