## Neutron-rich Helium Isotopes based on Hyper-spherical Harmonics

Sonia Bacca | Theory Group | TRIUMF

- Motivation
- The Hyper-spherical Harmonics approach
- Results for ${ }^{6} \mathrm{He}$ :
- Energies and radii
- Nuclear electric polarizability

Nuclear Halo


Nuclear Chart


## Neutron-rich Helium Isotopes

- Develop a unified theory for nuclei and connect it to QCD via Chiral Effective Field Theory

$$
\begin{aligned}
V, J^{\mu} \quad V & =V_{N N}+V_{3 N}+\ldots \\
J^{\mu} & =J_{N}^{\mu}+J_{N N}^{\mu}+\ldots
\end{aligned}
$$



## Neutron-rich Helium Isotopes

- Develop a unified theory for nuclei and connect it to QCD via Chiral Effective Field Theory

$$
\begin{aligned}
V, J^{\mu} & V \\
& =V_{N N}+V_{3 N}+\ldots \\
J^{\mu} & =J_{N}^{\mu}+J_{N N}^{\mu}+\ldots
\end{aligned}
$$



- Ab-initio approach for light nuclei:
start from neutrons and protons and solve the non-relativistic quantum mechanical problem of A-interacting nucleons

$$
H\left|\psi_{i}\right\rangle=E_{i}\left|\psi_{i}\right\rangle \quad H=T+V_{N N}+V_{3 N}+\ldots
$$

## with no approximation or controllable approximations

Calculate low-energy observables form the A-body wave function and compare with
 experiment to test nuclear forces

## Neutron-rich Helium Isotopes

- Develop a unified theory for nuclei and connect it to QCD via Chiral Effective Field Theory

$$
\begin{aligned}
V, J^{\mu} & V \\
& =V_{N N}+V_{3 N}+\ldots \\
J^{\mu} & =J_{N}^{\mu}+J_{N N}^{\mu}+\ldots
\end{aligned}
$$



- Ab-initio approach for light nuclei:
start from neutrons and protons and solve the non-relativistic quantum mechanical problem of A-interacting nucleons

$$
H\left|\psi_{i}\right\rangle=E_{i}\left|\psi_{i}\right\rangle \quad H=T+V_{N N}+V_{3 N}+\ldots
$$

with no approximation or controllable approximations
Calculate low-energy observables fo he A-body wave function and compare with
 experiment to test nuclear forces

## Neutron-rich Helium Isotopes

- Develop a unified theory for nuclei and connect it to QCD via Chiral Effective Field Theory

$$
\begin{aligned}
V, J^{\mu} & V \\
& =V_{N N}+V_{3 N}+\ldots \\
J^{\mu} & =J_{N}^{\mu}+J_{N N}^{\mu}+\ldots
\end{aligned}
$$



- Ab-initio approach for light nuclei:
start from neutrons and protons and solve the non-relativistic quantum mechanical problem of A-interacting nucleons

$$
H\left|\psi_{i}\right\rangle=E_{i}\left|\psi_{i}\right\rangle \quad H=T+V_{N N}+V_{3 N}+\ldots
$$

with no approximation or controllable approximations
Calculate low-energy observables fo he A-body wave function and compare with
 experiment to test nuclear forces

- Neutron-rich nuclei: test nuclear forces at the extremes of matter, where new features could show up



## Neutron-rich Helium Isotopes

- Develop a unified theory for nuclei and connect it to QCD via Chiral Effective Field Theory

$$
\begin{aligned}
V, J^{\mu} & V \\
& =V_{N N}+V_{3 N}+\ldots \\
J^{\mu} & =J_{N}^{\mu}+J_{N N}^{\mu}+\ldots
\end{aligned}
$$



- Ab-initio approach for light nuclei:
start from neutrons and protons and solve the non-relativistic quantum mechanical problem of A-interacting nucleons

$$
H\left|\psi_{i}\right\rangle=E_{i}\left|\psi_{i}\right\rangle \quad H=T+V_{N N}+V_{3 N}+\ldots
$$

with no approximation or controllable approximations
Calculate low-energy observables fo he A-body wave function and compare with
 experiment to test nuclear forces

- Neutron-rich nuclei: test nuclear forces at the extremes of matter, where new features could show up
Helium chain ${ }^{3} \mathrm{He}$


## Halo Nuclei



## Halo Nuclei



## Halo Nuclei - Experiment

## New Era of Precision Measurements for masses and radii

- High-precision Penning trap and laser spectroscopy techniques allow accurate measurements of energies and charge radii of exotic isotopes challenge for ab initio calculations


TRIUMF, Ryjkov et al. PRL 101, 012501 (2008)

scattering

NCSM
GFMC
s

NCSM GFMC

ARGONNE, Wang et al. PRL 93, 142501 (2004) GANIL, Mueller et al. PRL 99, 252501 (2007)

## Halo Nuclei - Experiment

## New Era of Precision Measurements for masses and radii

- High-precision Penning trap and laser spectroscopy techniques allow accurate measurements of energies and charge radii of exotic isotopes challenge for ab initio calculations


TRIUMF, Ryjkov et al. PRL 101, 012501 (2008)
 scattering

NCSM
GFMC

Nuclear

NCSM GFMC

ARGONNE, Wang et al. PRL 93, 142501 (2004) GANIL, Mueller et al. PRL 99, 252501 (2007)

## Nuclear Forces from chiral EFT

$$
\begin{aligned}
& H(\Lambda)=T+V_{N N}(\Lambda)+V_{3 N}(\Lambda)+V_{4 N}(\Lambda)+\ldots \\
& \mathrm{NN} \quad 3 \mathrm{~N} \quad 4 \mathrm{~N} \\
& V_{N N}>V_{3 N}>V_{4 N}
\end{aligned}
$$

Weinberg, van Kolck, Kaplan, Savage, Wise,

## Nuclear Forces from chiral EFT



Weinberg, van Kolck, Kaplan, Savage, Wise,

## Nuclear Forces from chiral EFT



Weinberg, van Kolck, Kaplan, Savage, Wise,

## Low-momentum Forces from chiral EFT

Effective field theory potentials and low-momentum evolution
Evolution of 2 N forces: phase-shift equivalent
Low-momentum interactions: Bogner, Kuo, Schwenk (2003) need smaller basis
Like acting with a unitary transformation $\mathrm{U}^{-1} \mathrm{VU}$ still preserve phase-shifts and properties of 2 N systems


## Low-momentum Forces from chiral EFT

Effective field theory potentials and low-momentum evolution
Evolution of 2 N forces: phase-shift equivalent
Low-momentum interactions: Bogner, Kuo, Schwenk (2003) need smaller basis
Like acting with a unitary transformation $\mathrm{U}^{-1} \mathrm{VU}$ still preserve phase-shifts and properties of 2 N systems


$$
H(\Lambda)=T+V_{N N}(\Lambda)+V_{3 N}(\Lambda)+\ldots
$$

## Low-momentum Forces from chiral EFT

## Effective field theory potentials and low-momentum evolution

Evolution of 2 N forces: phase-shift equivalent
Low-momentum interactions: Bogner, Kuo, Schwenk (2003) need smaller basis
Like acting with a unitary transformation $\mathrm{U}^{-1} \mathrm{VU}$ still preserve phase-shifts and properties of 2 N systems


$$
H(\Lambda)=T+V_{N N}(\Lambda)+V_{3 N}(\Lambda)+\ldots
$$



## Low-momentum Forces from chiral EFT

## Effective field theory potentials and low-momentum evolution

Evolution of 2 N forces: phase-shift equivalent
Low-momentum interactions: Bogner, Kuo, Schwenk (2003) need smaller basis
Like acting with a unitary transformation $\mathrm{U}^{-1} \mathrm{VU}$ still preserve phase-shifts and properties of 2 N systems


$$
H(\Lambda)=T+V_{N N}(\Lambda)+V_{3 N}(\Lambda)+\ldots
$$



Can evolve consistently 3N forces: Jurgenson, Navratil, Furnstahl, (2009)
Variation of the cutoff provides a tool to estimate the effect of the short-range 3 N forces


## Hyperspherical Harmonics Expansions

A basis set, that can be used to solve the Schroedinger equation by expanding the w.f. on a complete basis states

$$
H|\psi\rangle=E|\psi\rangle \quad|\psi\rangle=\sum_{i}^{\infty} c_{i}\left|\psi_{i}\right\rangle
$$

## Hyperspherical Harmonics Expansions

A basis set, that can be used to solve the Schroedinger equation by expanding the w.f. on a complete basis states

$$
H|\psi\rangle=E|\psi\rangle \quad|\psi\rangle=\sum_{i}^{\infty} c_{i}\left|\psi_{i}\right\rangle \quad \text { cannot store an infinite vector }
$$

## Hyperspherical Harmonics Expansions

A basis set, that can be used to solve the Schroedinger equation by expanding the w.f. on a complete basis states

$$
\begin{aligned}
& H|\psi\rangle=E|\psi\rangle \quad|\psi\rangle=\sum_{i}^{\infty} c_{i}\left|\psi_{i}\right\rangle \quad \text { cannot store an infinite vector } \\
& \left\langle\psi_{j}\right| \times H \sum_{i}^{N} c_{i}\left|\psi_{i}\right\rangle=E \sum_{i}^{N} c_{i}\left|\psi_{i}\right\rangle \\
& \sum_{i}^{N}\left\langle\psi_{j}\right| \underbrace{H\left|\psi_{i}\right\rangle}_{H_{j i}} c_{i}=E \sum_{i}^{N} c_{i} \underbrace{\left\langle\psi_{j} \mid \psi_{i}\right\rangle}_{\delta_{j i}}
\end{aligned}
$$

## ©triumf

## Hyperspherical Harmonics Expansions

A basis set, that can be used to solve the Schroedinger equation by expanding the w.f. on a complete basis states

$$
\begin{aligned}
& H|\psi\rangle=E|\psi\rangle \quad|\psi\rangle=\sum_{i}^{\infty} c_{i}\left|\psi_{i}\right\rangle \quad \text { cannot store an infinite vector } \\
& \left\langle\psi_{j}\right| \times H \sum_{i}^{N} c_{i}\left|\psi_{i}\right\rangle=E \sum_{i}^{N} c_{i}\left|\psi_{i}\right\rangle \\
& \sum_{i}^{N}\langle\psi_{j} \underbrace{H \mid \psi_{i}}_{H_{j i}}\rangle c_{i}=E \sum_{i}^{N} c_{i} \underbrace{\psi_{j} \mid \psi_{i}}_{\delta_{j i}}\rangle
\end{aligned}
$$

$$
\mathbf{H c}=E \mathbf{c} \quad \begin{gathered}
\text { Eigenvalue problem for an } \\
\text { Hermitian matrix }
\end{gathered} \quad \mathbf{H}=\mathbf{H}^{\dagger}
$$

Finding eigenvalues and eigenvectors is equivalent to diagonalize the matrix $\mathrm{N}^{3}$ operation

## ©triumf

## Hyperspherical Harmonics Expansions

A basis set, that can be used to solve the Schroedinger equation by expanding the w.f. on a complete basis states

$$
\begin{aligned}
& H|\psi\rangle=E|\psi\rangle \quad|\psi\rangle=\sum_{i}^{\infty} c_{i}\left|\psi_{i}\right\rangle \quad \text { cannot store an infinite vector } \\
& \left\langle\psi_{j}\right| \times H \sum_{i}^{N} c_{i}\left|\psi_{i}\right\rangle=E \sum_{i}^{N} c_{i}\left|\psi_{i}\right\rangle \\
& \sum_{i}^{N}\langle\psi_{j} \underbrace{H \mid \psi_{i}}_{H_{j i}}\rangle c_{i}=E \sum_{i}^{N} c_{i} \underbrace{\psi_{j}\left|\psi_{i}\right\rangle}_{\delta_{j i}}
\end{aligned}
$$

Finding eigenvalues and eigenvectors is equivalent to diagonalize the matrix $\mathrm{N}^{3}$ operation
Computationally challenging for growing N , and growing A

## Hyperspherical Harmonics Expansions



## Hyperspherical Harmonics Expansions



- Solve the problem in the CM frame

$$
[T+V(r)] \psi(\vec{r})=E \psi(\vec{r})
$$

## Three-body Nucleus



- Solve the problem in the CM frame

$$
\left[T+V\left(\eta_{1}, \eta_{2}\right)\right] \psi\left(\vec{\eta}_{1}, \vec{\eta}_{2}\right)=E \psi\left(\vec{\eta}_{1}, \vec{\eta}_{2}\right)
$$

## Hyperspherical Harmonics Expansions

## Hydrogen atom <br> 

- Solve the problem in the CM frame

$$
[T+V(r)] \psi(\vec{r})=E \psi(\vec{r})
$$

- Use spherical coordinates

$$
\begin{aligned}
& \vec{r}=(r, \underbrace{\theta, \phi}_{\Omega}) \\
& \psi(\vec{r}) \sim Y_{\ell m}(\Omega) u_{\ell}(r)
\end{aligned}
$$

## Three-body Nucleus



- Solve the problem in the CM frame

$$
\left[T+V\left(\eta_{1}, \eta_{2}\right)\right] \psi\left(\vec{\eta}_{1}, \vec{\eta}_{2}\right)=E \psi\left(\vec{\eta}_{1}, \vec{\eta}_{2}\right)
$$

- Use hyperspherical coordinates

$$
\begin{aligned}
& \rho=\sqrt{\eta_{1}^{2}+\eta_{2}^{2}} \quad \Omega=\left(\theta_{1}, \phi_{1}, \theta_{2}, \phi_{2}, \alpha\right) \\
& \psi\left(\vec{\eta}_{1}, \overrightarrow{\eta_{2}}\right) \sim \mathcal{Y}_{[K]}(\Omega) R_{[K]}(\rho)
\end{aligned}
$$

## Hyperspherical Harmonics Expansions

## Hydrogen atom <br> 

- Solve the problem in the CM frame
$[[T+V(r)] \psi(\vec{r})=E \psi(\vec{r})$
- Use spherical coordinates
$\vec{r}=(r, \underbrace{\theta, \phi}_{\Omega})$
$\psi(\vec{r}) \sim Y_{\ell m}(\Omega) u_{\ell}(r)$
$\leftrightarrows T=T_{r}-\frac{\hat{\ell}^{2}}{r^{2}}$
$\hat{\ell}^{2} Y_{\ell m}(\Omega)=\ell(\ell+1) Y_{\ell m}(\Omega)$

Three-body Nucleus


- Solve the problem in the CM frame
$\Gamma^{\left[T+V\left(\eta_{1}, \eta_{2}\right)\right] \psi\left(\vec{\eta}_{1}, \vec{\eta}_{2}\right)=E \psi\left(\vec{\eta}_{1}, \vec{\eta}_{2}\right)}$
- Use hyperspherical coordinates

$$
\rho=\sqrt{\eta_{1}^{2}+\eta_{2}^{2}} \quad \Omega=\left(\theta_{1}, \phi_{1}, \theta_{2}, \phi_{2}, \alpha\right)
$$

$$
\psi\left(\vec{\eta}_{1}, \overrightarrow{\eta_{2}}\right) \sim \mathcal{Y}_{[K]}(\Omega) R_{[K]}(\rho)
$$

$$
\rightarrow T=T_{\rho}-\frac{\hat{K}^{2}}{\rho^{2}}
$$

$$
\hat{K}^{2} \mathcal{Y}_{[K]}(\Omega) \stackrel{\rho^{2}}{=} K(K+4) \mathcal{Y}_{[K]}(\Omega)
$$

## Hyperspherical Harmonics Expansions

## Hydrogen atom <br> 

- Solve the problem in the CM frame
$[[T+V(r)] \psi(\vec{r})=E \psi(\vec{r})$
- Use spherical coordinates

$$
\vec{r}=(r, \underbrace{\theta, \phi}_{\Omega})
$$

$$
\psi(\vec{r}) \sim Y_{\ell m}(\Omega) u_{\ell}(r)
$$

$$
\rightarrow T=T_{r}-\frac{\hat{\ell}^{2}}{r^{2}}
$$

$$
\hat{\ell}^{2} Y_{\ell m}(\Omega)=\ell(\ell+1) Y_{\ell m}(\Omega)
$$

- Solve the radial equation

$$
\left[T_{r}-\frac{\ell(\ell+1)}{r^{2}}+V(r)-E\right] u_{\ell}(r)=0
$$

Three-body Nucleus


- Solve the problem in the CM frame

$$
\Gamma\left[T+V\left(\eta_{1}, \eta_{2}\right)\right] \psi\left(\vec{\eta}_{1}, \vec{\eta}_{2}\right)=E \psi\left(\vec{\eta}_{1}, \vec{\eta}_{2}\right)
$$

- Use hyperspherical coordinates

$$
\begin{aligned}
& \quad \begin{array}{l}
\rho=\sqrt{\eta_{1}^{2}+\eta_{2}^{2}} \quad \Omega=\left(\theta_{1}, \phi_{1}, \theta_{2}, \phi_{2}, \alpha\right) \\
\psi\left(\vec{\eta}_{1}, \overrightarrow{\eta_{2}}\right) \sim \mathcal{Y}_{[K]}(\Omega) R_{[K]}(\rho) \\
\rightarrow T=T_{\rho}-\frac{\hat{K}^{2}}{\rho_{2}^{2}} \\
\hat{K}^{2} \mathcal{Y}_{[K]}(\Omega)=K(K+4) \mathcal{Y}_{[K]}(\Omega)
\end{array} \underbrace{\rho}_{\eta_{1}}
\end{aligned}
$$

- Solve the hyperradial equation

$$
\left[T_{\rho}-\frac{K(K+4)}{\rho^{2}}+V(\rho)-E\right] R_{K}(\rho)=0
$$

## BTRIUMF

## Hyperspherical Harmonics Expansions

$$
|\psi\rangle=\sum_{[K]}^{K_{\max } \nu_{\max }} \sum_{\nu} c_{[K] \nu} \mathcal{Y}_{[K]}(\Omega) e^{-\rho / 2 b} L_{\nu}(\rho) \quad K_{\max } * \nu_{\max }=\# \text { states }
$$



## QTRIUMF

## Hyperspherical Harmonics Expansions

$$
|\psi\rangle=\sum_{[K]}^{K_{\max }} \sum_{\nu}^{\nu_{\max }} c_{[K] \nu} \mathcal{Y}_{[K]}(\Omega) e^{-\rho / 2 b} L_{\nu}(\rho) \quad K_{\max } * \nu_{\max }=\# \text { states }
$$



## ${ }^{6} \mathrm{He}$ from hyper-spherical harmonics

Interaction: $V_{\text {low k }}$ from $\mathrm{N}^{3} \mathrm{LO}(500 \mathrm{MeV})$


EIHH agrees with extrapolated HH results
August 7th 2012
from EPJ A 42, 553 (2009)

## ${ }^{6} \mathrm{He}$ from hyper-spherical harmonics

## Signatures of the halo



## ${ }^{8} \mathrm{He}$ from hyper-spherical harmonics?

| ${ }^{8} \mathrm{He}$ from coupled cluster theory <br> Hilbert space: 15 major shell <br> Interaction: $V_{\text {low }}$ k from N ${ }^{3} \mathrm{LO}(500 \mathrm{MeV})$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Values in MeV |  |  |  |
| $\Lambda$ | E[CCSD] | E[Lambda-CC | $\Delta$ |
| 1.8 | -30.33 | -31.21 | 0.88 |
| 2.0 | -28.72 | -29.84 | 1.12 |
| 2.4 | -25.88 | -27.54 | 1.66 |

## ${ }^{8} \mathrm{He}$ from hyper-spherical harmonics?

${ }^{8} \mathrm{He}$ from coupled cluster theory Hilbert space: 15 major shell Interaction: $V_{\text {low k }}$ from N3 $\mathrm{LO}(500 \mathrm{MeV})$

Values in MeV
$\Lambda \quad \mathrm{E}[\mathrm{CCSD}] \quad \mathrm{E}[\operatorname{Lambda-CCSD}(\mathrm{T})] \quad \Delta$

| 1.8 | -30.33 | -31.21 | 0.88 |
| :--- | :--- | :--- | :--- |
| 2.0 | -28.72 | -29.84 | 1.12 |
| 2.4 | -25.88 | -27.54 | 1.66 |

S.B et al., EPJ A 42, 553 (2009)

- Difference between HH and EIHH is about 2.4 MeV
- EIHH seems less effective than for ${ }^{6} \mathrm{He}$
- Extrapolating HH results get
$E_{\infty}=-31.49 \mathrm{MeV}$
${ }^{8} \mathrm{He}$ closed sub-shell nucleus

${ }^{8} \mathrm{He}$ from hyper-spherical harmonics
S.B. et al., arXiv:1202.0516



## ${ }^{8} \mathrm{He}$ from hyper-spherical harmonics?

${ }^{8} \mathrm{He}$ from coupled cluster theory Hilbert space: 15 major shell Interaction: $V_{\text {low k }}$ from N3 $\mathrm{LO}(500 \mathrm{MeV})$

Values in MeV
$\Lambda \quad \mathrm{E}[\mathrm{CCSD}] \quad \mathrm{E}[\operatorname{Lambda-CCSD}(\mathrm{T})] \Delta$

| 1.8 | -30.33 | -31.21 | 0.88 |
| :--- | :--- | :--- | :--- |
| 2.0 | -28.72 | -29.84 | 1.12 |
| 2.4 | -25.88 | -27.54 | 1.66 |

S.B et al., EPJ A 42, 553 (2009)

- Difference between HH and EIHH is about 2.4 MeV
- EIHH seems less effective than for ${ }^{6} \mathrm{He}$
- Extrapolating HH results get

$$
E_{\infty}=-31.49 \mathrm{MeV}
$$

${ }^{8} \mathrm{He}$ closed sub-shell nucleus

${ }^{8} \mathrm{He}$ from hyper-spherical harmonics
S.B. et al., arXiv:1202.0516


## Comparison with experiment



## Comparison with experiment



Monday, 6 August, 12

## Nuclear Electric Polarizability of ${ }^{6} \mathrm{He}$

${ }^{6} \mathrm{He}$

## Nuclear Electric Polarizability of ${ }^{6} \mathrm{He}$



## ${ }^{6} \mathrm{He}{ }^{*}$

$$
D=\alpha_{D} E
$$

## Nuclear Electric Polarizability of ${ }^{6} \mathrm{He}$



$$
{ }^{6} \mathrm{He}{ }^{*} \quad D=\alpha_{D} E
$$

It is a sum rule of the photo-disintegration cross section

$$
\alpha_{D}=\frac{1}{2 \pi^{2}} \int_{\omega_{t h}}^{\infty} d \omega \frac{\sigma_{\gamma}(\omega)}{\omega^{2}}
$$

Can be calculated using the Lanczos algorithm as with starting vector $\left|\phi_{0}\right\rangle=\frac{\hat{D}_{z}\left|\psi_{0}\right\rangle}{\sqrt{\left\langle\psi_{0}\right| \hat{D}_{z} \hat{D}_{z}\left|\psi_{0}\right\rangle}}$

$$
\alpha_{D} \longrightarrow\left\langle\psi_{0}\right| \hat{D}_{z} \hat{D}_{z}\left|\psi_{0}\right\rangle \frac{1}{E_{0}-a_{0}-\frac{b_{1}^{2}}{E_{0}-a_{1}-\frac{b_{2}^{2}}{E_{0}-a_{2}-\frac{b_{3}^{2}}{\ldots}}}}
$$

## Nuclear Electric Polarizability of ${ }^{6} \mathrm{He}$


${ }^{6} \mathrm{He}{ }^{*}$

$$
D=\alpha_{D} E
$$

It is a sum rule of the photo-disintegration cross section

$$
\alpha_{D}=\frac{1}{2 \pi^{2}} \int_{\omega_{t h}}^{\infty} d \omega \frac{\sigma_{\gamma}(\omega)}{\omega^{2}}
$$

Can be calculated using the Lanczos algorithm as with starting vector $\quad\left|\phi_{0}\right\rangle=\frac{\hat{D}_{z}\left|\psi_{0}\right\rangle}{\sqrt{\left\langle\psi_{0}\right| \hat{D}_{z} \hat{D}_{z}\left|\psi_{0}\right\rangle}}$

$$
\alpha_{D} \longrightarrow\left\langle\psi_{0}\right| \hat{D}_{z} \hat{D}_{z}\left|\psi_{0}\right\rangle \frac{1}{E_{0}-a_{0}-\frac{b_{1}^{2}}{E_{0}-a_{1}-\frac{b_{2}^{2}}{E_{0}-a_{2}-\frac{b_{3}^{2}}{\cdots}}}}
$$

The Helium Isotopes from NCSM with EFT potentials Stetcu et al., PRC 79, 064001 (2009)

|  | Nucleus | $\alpha_{E}^{\text {cak }}\left(\mathrm{fm}^{3}\right)$ | Ref. | $\alpha_{E}^{\text {exp }}\left(\mathrm{fm}^{3}\right)$ | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | ${ }^{3} \mathrm{He}$ | 0.149(5) |  | 0.250(40) | [53] |
|  |  | 0.145 | [49] | 0.130(13) | [54] |
|  |  | 0.153(15) | [55] |  |  |
| From HH with AV18+UIX PRC 74, 061001 (2006) | ${ }^{4} \mathrm{He}$ | $0.0683(8)(14)$ |  | 0.072(4) | [31] |
|  |  | $-0.0655(4)$ | [56] | 0.076(8) | [55] |
|  |  | $0.076$ | [49] |  |  |
|  | ${ }^{6} \mathrm{He}$ | ? |  | 1.99(40) | [55] |

## Nuclear Electric Polarizability of ${ }^{6} \mathrm{He}$

Calculations from ElHH with the simple semi-realistic Minnesota potential which gives $\alpha_{D}$ compatible to the realistic potentials for ${ }^{4} \mathrm{He}$.


## Nuclear Electric Polarizability of ${ }^{6} \mathrm{He}$

Calculations from EIHH with the simple semi-realistic Minnesota potential which gives $\alpha_{D}$ compatible to the realistic potentials for ${ }^{4} \mathrm{He}$.



## Nuclear Electric Polarizability of ${ }^{6} \mathrm{He}$

Calculations from EIHH with the simple semi-realistic Minnesota potential which gives $\alpha_{D}$ compatible to the realistic potentials for ${ }^{4} \mathrm{He}$.




## Nuclear Electric Polarizability of ${ }^{6} \mathrm{He}$

Calculations from EIHH with the simple semi-realistic Minnesota potential which gives $\alpha_{D}$ compatible to the realistic potentials for ${ }^{4} \mathrm{He}$.




Estimate from calculations $\quad \alpha_{D}=0.87(13) \mathrm{fm}^{3}$
K.Pachucki and A.M.Moro, PRA 75, 032521 (2007)
estimate based on Aumann et al.
$\alpha_{D}^{e x p}=1.99(40) \mathrm{fm}^{3}$ data for $\mathrm{B}(\mathrm{E} 1)$

## Nuclear Electric Polarizability of ${ }^{6} \mathrm{He}$

Calculations from EIHH with the simple semi-realistic Minnesota potential which gives $\alpha_{D}$ compatible to the realistic potentials for ${ }^{4} \mathrm{He}$.




Estimate from calculations $\quad \alpha_{D}=0.87(13) \mathrm{fm}^{3}$
K.Pachucki and A.M.Moro, PRA 75, 032521 (2007) estimate based on Aumann et al.
$\alpha_{D}^{e x p}=1.99(40) \mathrm{fm}^{3}$ data for $B(E 1)$

Potential disagreement between theory and experiment

Future:
Prediction from EFT

## Outlook

- Hyper-spherical harmonics provide a powerful tool to perform accurate studies of light nuclei for g.s. (and excited states) properties to test nuclear forces
- Room to study further 3NF effects and to add exchange currents for consistent EFT calculations

Thanks to my collaborators:


## Outlook

- Hyper-spherical harmonics provide a powerful tool to perform accurate studies of light nuclei for g.s. (and excited states) properties to test nuclear forces
- Room to study further 3NF effects and to add exchange currents for consistent EFT calculations

Thanks to my collaborators:


Nir Barnea
The Hebrew University of Jerusalem
Raymond Goerke

## Thank you!

Winfried Leidemann, Giuseppina Orlandini

Achim Schwenk

Trumps Ion Trap for Atomic and Nuclear Science NWMumame

