

Canada's National Laboratory for Particle and Nuclear Physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Neutron-rich Helium Isotopes based on **Hyper-spherical Harmonics**

Sonia Bacca | Theory Group | TRIUMF

- Motivation
- The Hyper-spherical Harmonics approach
- Results for ⁶He:
 - Energies and radii
 - Nuclear electric polarizability
- Outlook

Jefferson Lab

Astrophysics

Neutron-rich Helium Isotopes

 Develop a unified theory for nuclei and connect it to QCD via Chiral Effective Field Theory

$$V, J^{\mu}$$
 $V = V_{NN} + V_{3N} + \dots$
 $J^{\mu} = J^{\mu}_{N} + J^{\mu}_{NN} + \dots$

August 7th 2012

Neutron-rich Helium Isotopes

- Develop a unified theory for nuclei and connect it to QCD via Chiral Effective Field Theory
 - V, J^{μ} $V = V_{NN} + V_{3N} + \dots$ $J^{\mu} = J^{\mu}_{N} + J^{\mu}_{NN} + \dots$
- Ab-initio approach for light nuclei:

start from neutrons and protons and solve the non-relativistic quantum mechanical problem of A-interacting nucleons

$$H|\psi_i\rangle = E_i|\psi_i\rangle \qquad H = T + V_{NN} + V_{3N} + \dots$$

with no approximation or controllable approximations

Calculate low-energy observables form the A-body wave function and compare with experiment to test nuclear forces

Sonia Bacca

Neutron-rich Helium Isotopes

- Develop a unified theory for nuclei and connect it to QCD via Chiral Effective Field Theory
 - V, J^{μ} $V = V_{NN} + V_{3N} + \dots$ $J^{\mu} = J^{\mu}_{N} + J^{\mu}_{NN} + \dots$
- Ab-initio approach for light nuclei:

start from neutrons and protons and solve the non-relativistic quantum mechanical problem of A-interacting nucleons

$$H|\psi_i\rangle = E_i|\psi_i\rangle \qquad H = T + V_{NN} + V_{3N} + \dots$$

with no approximation or controllable approximations

Calculate low-energy observables for the A-body wave function and compare with experiment to test nuclear forces

Sonia Bacca

2

Monday, 6 August, 12

Neutron-rich Helium Isotopes

- Develop a unified theory for nuclei and connect it to QCD via Chiral Effective Field Theory
 - V, J^{μ} $V = V_{NN} + V_{3N} + \dots$ $J^{\mu} = J^{\mu}_{N} + J^{\mu}_{NN} + \dots$
- Ab-initio approach for light nuclei:

start from neutrons and protons and solve the non-relativistic quantum mechanical problem of A-interacting nucleons

$$H|\psi_i\rangle = E_i|\psi_i\rangle \qquad H = T + V_{NN} + V_{3N} + \dots$$

with no approximation or controllable approximations

Calculate low-energy observables for the A-body wave function and compare with experiment to test nuclear forces

• Neutron-rich nuclei: test nuclear forces at the extremes of matter, where new features could show up

August 7th 2012

Neutron-rich Helium Isotopes

- Develop a unified theory for nuclei and connect it to QCD via Chiral Effective Field Theory
 - V, J^{μ} $V = V_{NN} + V_{3N} + \dots$ $J^{\mu} = J^{\mu}_{N} + J^{\mu}_{NN} + \dots$
- Ab-initio approach for light nuclei:

start from neutrons and protons and solve the non-relativistic quantum mechanical problem of A-interacting nucleons

$$H|\psi_i\rangle = E_i|\psi_i\rangle \qquad H = T + V_{NN} + V_{3N} + \dots$$

with no approximation or controllable approximations

Calculate low-energy observables for the A-body wave function and compare with experiment to test nuclear forces

 Neutron-rich nuclei: test nuclear forces at the extremes of matter, where new features could show up

V

Halo Nuclei

August 7th 2012

Halo Nuclei

August 7th 2012

&TRIUMF

Halo Nuclei - Experiment

New Era of Precision Measurements for masses and radii

Halo Nuclei - Experiment

New Era of Precision Measurements for masses and radii

Nuclear Forces from chiral EFT

 $V_{NN} > V_{3N} > V_{4N}$

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Meissner, Nogga, Machleidt, Krebs,...

August 7th 2012

Nuclear Forces from chiral EFT

 $V_{NN} > V_{3N} > V_{4N}$

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Meissner, Nogga, Machleidt, Krebs,...

August 7th 2012

Nuclear Forces from chiral EFT

 $V_{NN} > V_{3N} > V_{4N}$

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Meissner, Nogga, Machleidt, Krebs,...

August 7th 2012

Effective field theory potentials and low-momentum evolution

Evolution of 2N forces: phase-shift equivalent

Low-momentum interactions: Bogner, Kuo, Schwenk (2003) need smaller basis

Like acting with a unitary transformation U⁻¹VU still preserve phase-shifts and properties of 2N systems

Effective field theory potentials and low-momentum evolution

Evolution of 2N forces: phase-shift equivalent

Low-momentum interactions: Bogner, Kuo, Schwenk (2003) need smaller basis

Like acting with a unitary transformation U⁻¹VU still preserve phase-shifts and properties of 2N systems

$$H(\Lambda) = T + V_{NN}(\Lambda) + V_{3N}(\Lambda) + \dots$$

Sonia Bacca

Effective field theory potentials and low-momentum evolution

Evolution of 2N forces: phase-shift equivalent

Low-momentum interactions: Bogner, Kuo, Schwenk (2003) need smaller basis

Like acting with a unitary transformation U⁻¹VU still preserve phase-shifts and properties of 2N systems

Monday, 6 August, 12

Effective field theory potentials and low-momentum evolution

Evolution of 2N forces: phase-shift equivalent

Low-momentum interactions: Bogner, Kuo, Schwenk (2003) need smaller basis

Like acting with a unitary transformation U⁻¹VU still preserve phase-shifts and properties of 2N systems

Monday, 6 August, 12

A basis set, that can be used to solve the Schroedinger equation by expanding the w.f. on a complete basis states

 ∞

$$H |\psi\rangle = E |\psi\rangle \qquad |\psi\rangle = \sum_{i}^{\infty} c_{i} |\psi_{i}\rangle$$

August 7th 2012

A basis set, that can be used to solve the Schroedinger equation by expanding the w.f. on a complete basis states

$$H |\psi\rangle = E |\psi\rangle \qquad |\psi\rangle = \sum_{i}^{N} c_{i} |\psi_{i}\rangle$$

cannot store an infinite vector

August 7th 2012

A basis set, that can be used to solve the Schroedinger equation by expanding the w.f. on a complete basis states

$$H |\psi\rangle = E |\psi\rangle \qquad |\psi\rangle = \sum_{i}^{N} c_{i} |\psi_{i}\rangle$$

cannot store an infinite vector

August 7th 2012

A basis set, that can be used to solve the Schroedinger equation by expanding the w.f. on a complete basis states

$$H |\psi\rangle = E |\psi\rangle \qquad |\psi\rangle = \sum_{i}^{N} c_{i} |\psi_{i}\rangle \quad \text{cannot store an infinite vector}$$

$$\langle \psi_{j} | \times H \sum_{i}^{N} c_{i} |\psi_{i}\rangle = E \sum_{i}^{N} c_{i} |\psi_{i}\rangle$$

$$\sum_{i}^{N} \langle \psi_{j} | H |\psi_{i}\rangle c_{i} = E \sum_{i}^{N} c_{i} \langle \psi_{j} |\psi_{i}\rangle$$

$$Hc = Ec \qquad \text{Eigenvalue problem for an} \quad H = H^{\dagger}$$

Finding eigenvalues and eigenvectors is equivalent to diagonalize the matrix N³ operation

August 7th 2012

A basis set, that can be used to solve the Schroedinger equation by expanding the w.f. on a complete basis states

$$H |\psi\rangle = E |\psi\rangle \qquad |\psi\rangle = \sum_{i}^{N} c_{i} |\psi_{i}\rangle \quad \text{cannot store an infinite vector}$$

$$\langle \psi_{j}| \times H \sum_{i}^{N} c_{i} |\psi_{i}\rangle = E \sum_{i}^{N} c_{i} |\psi_{i}\rangle$$

$$\sum_{i}^{N} \langle \psi_{j}| H |\psi_{i}\rangle c_{i} = E \sum_{i}^{N} c_{i} \langle \psi_{j}|\psi_{i}\rangle$$

$$Hc = Ec \qquad \text{Eigenvalue problem for an} \quad H = H^{\dagger}$$

Finding eigenvalues and eigenvectors is equivalent to diagonalize the matrix N³ operation

Computationally challenging for growing N, and growing A

August 7th 2012

Sonia Bacca

Monday, 6 August, 12

Hyperspherical Harmonics Expansions

Hydrogen atom

Three-body Nucleus

August 7th 2012

Sonia Bacca

Monday, 6 August, 12

Hyperspherical Harmonics Expansions

Hydrogen atom

• Solve the problem in the CM frame

 $\left[T+V(r)\right]\psi(\vec{r})=E\psi(\vec{r})$

Three-body Nucleus

• Solve the problem in the CM frame

 $[T + V(\eta_1, \eta_2)] \,\psi(\vec{\eta}_1, \vec{\eta}_2) = E \psi(\vec{\eta}_1, \vec{\eta}_2)$

August 7th 2012

∕∂triumf

Hyperspherical Harmonics Expansions

Hydrogen atom

• Solve the problem in the CM frame

 $[T + V(r)]\psi(\vec{r}) = E\psi(\vec{r})$

• Use spherical coordinates

$$\vec{r} = (r, \underbrace{\theta, \phi}_{\Omega})$$
$$\vec{\psi}(\vec{r}) \sim Y_{\ell m}(\Omega) u_{\ell}(r)$$

Three-body Nucleus

• Solve the problem in the CM frame

 $[T + V(\eta_1, \eta_2)] \,\psi(\vec{\eta}_1, \vec{\eta}_2) = E \psi(\vec{\eta}_1, \vec{\eta}_2)$

• Use hyperspherical coordinates

 $\rho = \sqrt{\eta_1^2 + \eta_2^2} \qquad \Omega = (\theta_1, \phi_1, \theta_2, \phi_2, \alpha)$ $\psi(\vec{\eta}_1, \vec{\eta}_2) \sim \mathcal{Y}_{[K]}(\Omega) R_{[K]}(\rho) \qquad \eta_2$

FRIUMF

Hyperspherical Harmonics Expansions

Hydrogen atom

Solve the problem in the CM frame

$$T = [T + V(r)] \psi(\vec{r}) = E\psi(\vec{r})$$

• Use spherical coordinates

$$\vec{r} = (r, \underline{\theta}, \phi)$$

$$\widehat{\Omega}$$

$$\psi(\vec{r}) \sim Y_{\ell m}(\Omega) u_{\ell}(r)$$

$$\Rightarrow T = T_r - \frac{\hat{\ell}^2}{r^2}$$

$$\hat{\ell}^2 Y_{\ell m}(\Omega) = \ell(\ell+1) Y_{\ell m}(\Omega)$$

Three-body Nucleus

• Solve the problem in the CM frame

RIUMF

Hyperspherical Harmonics Expansions

Hydrogen atom

Solve the problem in the CM frame

$$T = [T + V(r)] \psi(\vec{r}) = E\psi(\vec{r})$$

• Use spherical coordinates

$$\vec{r} = (r, \underbrace{\theta, \phi})$$

$$\Omega$$

$$\psi(\vec{r}) \sim Y_{\ell m}(\Omega) u_{\ell}(r)$$

$$\Rightarrow T = T_r - \frac{\hat{\ell}^2}{r^2}$$

$$\hat{\ell}^2 Y_{\ell m}(\Omega) = \ell(\ell+1) Y_{\ell m}(\Omega)$$

Solve the radial equation

$$\left[T_r - \frac{\ell(\ell+1)}{r^2} + V(r) - E\right] u_\ell(r) = 0$$

August 7th 2012

Three-body Nucleus

Solve the problem in the CM frame

• Use hyperspherical coordinates $\rho = \sqrt{\eta_1^2 + \eta_2^2} \qquad \Omega = (\theta_1, \phi_1, \theta_2, \phi_2, \alpha)$

Solve the hyperradial equation

$$\left[T_{\rho} - \frac{K(K+4)}{\rho^2} + V(\rho) - E\right] R_K(\rho) = 0$$

Hyperspherical Harmonics Expansions

$$|\psi\rangle = \sum_{[K]}^{K_{max}} \sum_{\nu}^{\nu_{max}} c_{[K]\nu} \mathcal{Y}_{[K]}(\Omega) \ e^{-\rho/2b} L_{\nu}(\rho)$$

$$K_{max} * \nu_{max} = \#$$
 states

Monday, 6 August, 12

Hyperspherical Harmonics Expansions

$$|\psi\rangle = \sum_{[K]}^{K_{max}} \sum_{\nu}^{\nu_{max}} c_{[K]\nu} \mathcal{Y}_{[K]}(\Omega) \ e^{-\rho/2b} L_{\nu}(\rho)$$

$$K_{max} * \nu_{max} = \#$$
 states

⁶He from hyper-spherical harmonics

TRIUMF

 P_a

Pa Haff

 $Q_a 0$

 Q_a

0

 $Q_a X_a H X_a^{-1} Q_a$

⁶He from hyper-spherical harmonics

Signatures of the halo

⁸He from hyper-spherical harmonics?

⁸ He from coupled cluster theory	⁸ He closed sub-shell nucleus			
Hilbert space: 15 major shell Interaction: $V_{\rm low~k}$ from N ³ LO (500 MeV)	1p _{1/2} 1p _{3/2} 1s _{1/2}	—		
Values in MeV		р	n	
$\Lambda = E[CCSD] = E[Lambda-CCSD(T)]$	Δ			

1.8	-30.33	-31.21	0.88
2.0	-28.72	-29.84	1.12
2.4	-25.88	-27.54	1.66

S.B et al., EPJ A 42, 553 (2009)

August 7th 2012

⁸He from hyper-spherical harmonics?

 Δ

Values in MeV

Λ

1.8	-30.33	-31.21	0.88
2.0	-28.72	-29.84	1.12
2.4	-25.88	-27.54	1.66
0.0			

E[Lambda-CCSD(T)]

S.B et al., EPJ A 42, 553 (2009)

⁸He from coupled cluster theory

Interaction: $V_{\text{low k}}$ from N³LO (500 MeV)

Hilbert space: 15 major shell

E[CCSD]

- Difference between HH and EIHH is about 2.4 MeV
- EIHH seems less effective than for ⁶He
- Extrapolating HH results get

 $E_{\infty} = -31.49 \mathrm{MeV}$

August 7th 2012

⁸He from hyper-spherical harmonics

S.B. et al., <u>arXiv:1202.0516</u>

⁸He from hyper-spherical harmonics?

 ^{8}He from coupled cluster theory Hilbert space: 15 major shell Interaction: $V_{low\ k}$ from N^3LO (500 MeV)

Values in MeV

 $\Lambda \quad \text{E[CCSD]} \quad \text{E[Lambda-CCSD(T)]} \quad \Delta$ $1.8 \quad -30.33 \quad -31.21 \quad 0.88$

S.B et al., EPJ A 42, 553 (2009)

- Difference between HH and EIHH is about 2.4 MeV
- EIHH seems less effective than for ⁶He
- Extrapolating HH results get

 $E_{\infty} = -31.49 \mathrm{MeV}$

August 7th 2012

⁸He from hyper-spherical harmonics

S.B. et al., <u>arXiv:1202.0516</u>

Comparison with experiment

Comparison with experiment

Nuclear Electric Polarizability of ⁶He

August 7th 2012

Sonia Bacca

Monday, 6 August, 12

Nuclear Electric Polarizability of 6He

⁶He^{*} $D = \alpha_D E$ E

August 7th 2012

Sonia Bacca

Monday, 6 August, 12

Nuclear Electric Polarizability of ⁶He

CTRIUMF

Nuclear Electric Polarizability of ⁶He

The Helium Isotopes from NCSM with EFT potentials Stetcu et al., PRC 79, 064001 (2009)

Nucleus	$\alpha_E^{\rm calc}({\rm fm}^3)$	Ref.	$\alpha_E^{\exp}(\mathrm{fm}^3)$	Ref.
³ He	0.149(5)		0.250(40)	[53]
	0.145	[49]	0.130(13)	[54]
	0.153(15)	[55]		
⁴ He	0.0683(8)(14)		0.072(4)	[31]
	0.0655(4)	[56]	0.076(8)	[55]
	0.076	[49]		
⁶ He	?		1.99(40)	[55]
Sonia Bacca				
	Nucleus ³ He ⁴ He ⁶ He	Nucleus $\alpha_E^{calc}(fm^3)$ ³ He 0.149(5) 0.145 0.153(15) ⁴ He 0.0683(8)(14) 0.0655(4) 0.076 ⁶ He ?	Nucleus $\alpha_E^{calc}(fm^3)$ Ref. ³ He 0.149(5) [49] 0.145 [49] 0.153(15) [55] ⁴ He 0.0683(8)(14) 0.076 [49] ⁶ He ? Sonia Bacca	Nucleus $\alpha_E^{calc}(fm^3)$ Ref. $\alpha_E^{exp}(fm^3)$ ³ He 0.149(5) 0.250(40) 0.145 [49] 0.130(13) 0.153(15) [55] ⁴ He 0.0683(8)(14) 0.072(4) 0.0655(4) [56] 0.076(8) 0.076 [49] 1.99(40)

Nuclear Electric Polarizability of ⁶He

Calculations from EIHH with the simple semi-realistic Minnesota potential which gives α_D compatible to the realistic potentials for ⁴He.

Correlation $\alpha_D - S_{2n}$

August 7th 2012

RIUMF

Nuclear Electric Polarizability of 6He

Calculations from EIHH with the simple semi-realistic Minnesota potential which gives α_D compatible to the realistic potentials for ⁴He.

August 7th 2012

Sonia Bacca

• K=12

⁶He

0.8

FRIUMF

Nuclear Electric Polarizability of ⁶He

Calculations from EIHH with the simple semi-realistic Minnesota potential which gives α_D compatible to the realistic potentials for ⁴He.

Correlation $\alpha_D - r_{\rm skin}$

Nuclear Electric Polarizability of ⁶He

Calculations from EIHH with the simple semi-realistic Minnesota potential which gives α_D compatible to the realistic potentials for ⁴He.

Monday, 6 August, 12

Nuclear Electric Polarizability of ⁶He

Calculations from EIHH with the simple semi-realistic Minnesota potential which gives α_D compatible to the realistic potentials for ⁴He.

Monday, 6 August, 12

Outlook

- Hyper-spherical harmonics provide a powerful tool to perform accurate studies of light nuclei for g.s. (and excited states) properties to test nuclear forces
- Room to study further 3NF effects and to add exchange currents for consistent EFT calculations

Thanks to my collaborators:

Outlook

- Hyper-spherical harmonics provide a powerful tool to perform accurate studies of light nuclei for g.s. (and excited states) properties to test nuclear forces
- Room to study further 3NF effects and to add exchange currents for consistent EFT calculations

Thanks to my collaborators:

Thank you!