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◮ Standard Nuclear Physics Approach (SNPA)

◮ NuclearχEFT approach

◮ EM current operators up to one loop

◮ EM observables inA ≤ 9 systems

◮ Summary

◮ Outlook
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The Basic Model

◮ The nucleus is a system made of A interacting nucleons, its energy is given by

H = T +V =
A

∑
i=1

ti +∑
i<j

υij + ∑
i<j<k

Vijk + ...

whereυij andVijk are 2- and 3-nucleon interaction operators

◮ Current and charge operators describe the interaction of nuclei with external
fields. They are expanded as a sum of 1−, 2−, ... nucleon operators:

ρ =
A

∑
i=1

ρi +∑
i<j

ρij + ... , j =
A

∑
i=1

ji +∑
i<j

jij + ...

q
+ . . .

N N

γ

◮ EM current operatorj satisfies the current conservation relation (CCR) with the
nuclear Hamiltonian, hence V,ρ, j need to be derived consistently

q · j = [H, ρ ]

CCR does not constrain transverse (orthogonal toq) currents
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Currents from nuclear interactions∗- Marcucciet al. PRC72, 014001 (2005)

◮ Current operatorj constructed so as to satisfy the continuity equation with a
realistic Hamiltonian

◮ Short- and intermediate-behavior of the EM operators inferred from the nuclear
two- and three-body potentials

j = j(1)

+ j(3)(V )

+ j(2)(v) + +

NN

∆
π

q

π

ρω

transverse

∗ also referred to as Standard Nuclear Physics Approach (SNPA) currents
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Currents from nuclear interactions -Marcucciet al. PRC72, 014001 (2005)

Satisfactory description of a variety of nuclear EM properties [see Marcucciet al. (2005)

and (2008)]

2H(p,γ)3He capture
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◮ Isoscalar magnetic moments are a few % off (10% inA=7 nuclei)
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NuclearχEFT approach

S. Weinberg, Phys. Lett.B251, 288 (1990); Nucl. Phys.B363, 3 (1991); Phys. Lett.B295, 114 (1992)

◮ χEFT exploits theχ symmetry exhibited by QCD at low energy to restrict the
form of the interactions ofπ ’s with otherπ ’s, and withN’s, ∆’s, . . .

◮ The pion couples by powers of its momentumQ → Leff can be systematically
expanded in powers ofQ/Λχ ; (Q ≪ Λχ ∼ 1 GeV) allowing for a perturbative
treatment in terms of Q expansions

◮ The coefficients of the expansion, Low Energy Constants (LECs) are unknown
and need to be fixed by comparison with exp data

◮ The systematic expansion inQ naturally has the feature

〈O〉1−body> 〈O〉2−body> 〈O〉3−body
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Previous work

Since Weinberg’s papers (1990–92), nuclearχEFT has developed into an intense
field of research. Avery incomplete list:

◮ NN potentials:

◮ van Kolcket al. (1994–96)
◮ Kaiser, Weiseet al. (1997–98)
◮ Epelbaum, Glöckle, Meissner (1998–2005)
◮ Entem and Machleidt (2002–03)

◮ Currents and nuclear electroweak properties:

◮ Rho, Parket al. (1996–2009), hybrid studies in A=2–4
◮ Meissneret al. (2001), Köllinget al. (2009–2011)
◮ Phillips (2003), deuteron static properties and f.f.’s

Lots of work in pionless EFT too . . .
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Transition amplitude in time-ordered perturbation theory

Tfi = 〈f | T | i〉 = 〈f | H1

∞

∑
n=1

(
1

Ei −H0+ iη
H1

)n−1

| i〉

= 〈f | H1 | i〉+∑
|I〉

〈f | H1| I〉
1

Ei −EI
〈I |H1 | i〉+ ...

-

◮ A contribution with N interaction vertices and L loops scales as

e

(
N

∏
i=1

Qαi−βi/2

)

︸ ︷︷ ︸

H1scaling

×Q−(N−NK−1) Q−2NK

︸ ︷︷ ︸

denominators

× Q3L
︸︷︷︸

loopintegration

αi = number of derivatives inH1 andβi = number ofπ ’s at each vertex

NK = number of pure nucleonic intermediate states

◮ Due to the chiral expansion, the transition amplitudeTfi can be expanded as

Tfi = TLO+TNLO +TN2LO+ . . . and TNnLO ∼ (Q/Λχ )
nTLO
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Power counting

◮ NK energy denominators scale asQ−2

1
Ei −EI

|I〉=
1

Ei −EN
|I〉 ∼ Q−2|I〉

◮ (N −NK −1) energy denominators scaleQ−1 in the static limit; they can be
further expanded in powers of(Ei −EN)/ωπ ∼ Q

1
Ei −EI

|I〉=
1

Ei −EN −ωπ
|I〉 ∼ −

[
1

ωπ
︸︷︷︸

Q−1

+
Ei −EN

ω2
π

︸ ︷︷ ︸

Q0

+
(Ei −EN)

2

ω3
π

︸ ︷︷ ︸

Q1

+ . . .
]

|I〉

◮ Terms accounted into the Lippmann-Schwinger Eq. are subtracted from the
reducible amplitude

◮ EM operators depend on the off-the-energy shell prescription adopted for the
non-static OPE and TPE potentials

◮ Ultimately, the EM operators are unitarily equivalent: Description of physical
systems is not affected by this ambiguity
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EM current up ton = 1 (or up to N3LO)

LO : j(−2) ∼ eQ−2

NLO : j(−1) ∼ eQ−1

N2LO : j(−0) ∼ eQ0

◮ n =−2,−1, 0, and 1-(loops only):
depend on known LECs namelygA, Fπ ,
and proton and neutronµ

◮ n = 0: (Q/mN)
2 relativistic correction to

j(−2)

◮ unknown LECs enter then = 1 contact
and tree-level currents (the latter
originates from aγπN vertex of order
eQ2)

◮ divergencies associated with loop integrals are reabsorbed by renormalization
of contact terms

◮ loops contributions lead to purely isovector operators

◮ j(n≤1) satisfies the CCR withχEFT two-nucleon potentialυ(n≤2)

unknownLEC′s

N3LO: j(1) ∼ eQ
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EM current up ton = 1 (or up to N3LO)

◮ LECs of contact interactions atQ0 and ‘minimal’ contact interactions atQ2

fixed from fits tonp phases shifts: LECs taken fromQ4 NN potential of D.R.
Entem, R.Machleidt—PRC68, 041001 (2003)

◮ LECs from ‘non-minimal’ interactions fixed by reproducing EM observables:
Different parameterizations are possible

◮ No three-body currents at N3LO

* Note: 2011 EM∗ operators different from 2009 EM∗∗ operators

* Different ‘non-minimal’ contact LECs

* Different parameterization of EM LECs

* Revised derivation of current of type (i) in 2009 EM (more on this issue on
extra slides if interested)

* in preparation, **PRC80, 034004 (2009)
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EM current up ton = 1 (or up to N3LO) - bis

LO : j(−2) ∼ eQ−2

NLO : j(−1) ∼ eQ−1

N2LO : j(−0) ∼ eQ0

◮ n =−2,−1, 0, and 1-(loops only):
depend on known LECs namelygA, Fπ ,
and proton and neutronµ

◮ n = 0: (Q/mN)
2 relativistic correction to

j(−2)

◮ unknown LECs enter then = 1 contact
and tree-level currents (the latter
originates from aγπN vertex of order
eQ2)

◮ divergencies associated with loop integrals are reabsorbed by renormalization
of contact terms

◮ loops contributions lead to purely isovector operators

◮ j(n≤1) satisfies the CCR withχEFT two-nucleon potentialυ(n≤2)

unknownLEC′s

N3LO: j(1) ∼ eQ
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EM observables at N3LO: fixing LECs - final

cS, cVdS, dV
1 , dV

2

Five LECs:dS, dV
1 , anddV

2 could be
determined by pion photo-production
data on the nucleon

Isovector

dV
1 , dV

2

dV
2 anddV

1 are known assuming
∆-resonance saturation
(dV

2 = 4µ∗hA/9m(m∆ −m) anddV
1 = 4dV

2 )

Left with 3 LECs: Fixed in theA = 2−3 nucleons’ sector

* dS andcS: from EXPTµd andµS(3H/3He)

* cV : from EXPTµV (3H/3He) magnetic moment

Λ NN/NNN 10×dS/Λ2 cS/Λ4 dV
1 /Λ2 cV/Λ4

600 AV18/UIX –2.033 5.238 4.980 –1.025

Different parameterizations have been studied in theA = 2,3 systems, and tested into
theA = 6,8 nuclei (more on this topic on extra slides, if interested)
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Variational Monte Carlo

Minimize expectation value ofH

EV =
〈ΨV |H|ΨV〉

〈ΨV |ΨV〉
≥ E0

using trial function

|ΨV〉=

[

S ∏
i<j

(1+Uij + ∑
k 6=i,j

Uijk)

][

∏
i<j

fc(rij)

]

|ΦA(JMTT3)〉

◮ single-particleΦA(JMTT3) is fully antisymmetric and translationally invariant

◮ central pair correlationsfc(r) keep nucleons at favorable pair separation

◮ pair correlation operatorsUij reflect influence ofυij (AV18)

◮ triple correlation operatorUijk added whenVijk (IL7) is present

ΨV are spin-isospin vectors in 3A dimensions with∼ 2A
(

A
Z

)
components

Lomnitz-Adler, Pandharipande, Smith, NPA361, 399 (1981) Wiringa, PRC43, 1585 (1991)
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Green’s function Monte Carlo

Given a decent trial functionΨV , we can further improve it by “filtering” out the
remaining excited state contamination:

Ψ(τ) = exp[−(H−E0)τ]ΨV =∑
n

exp[−(En −E0)τ]anψn

Ψ(τ → ∞) = a0ψ0

Evaluation ofΨ(τ) is done stochastically (Monte Carlo method) in small time steps
∆τ using a Green’s function formulation.
In practice, we evaluate a “mixed” estimates

〈O(τ)〉= f 〈Ψ(τ)|O|Ψ(τ)〉i

〈Ψ(τ)|Ψ(τ)〉
≈ 〈O(τ)〉i

Mixed+ 〈O(τ)〉f
Mixed−〈O〉V

〈O(τ)〉i
Mixed =

f 〈ΨV |O|Ψ(τ)〉i

f 〈ΨV |Ψ(τ)〉i
; 〈O(τ)〉f

Mixed =
f〈Ψ(τ)|O|ΨV〉i

f 〈Ψ(τ)|ΨV 〉i

Pudliner, Pandharipande, Carlson, Pieper, & Wiringa, PRC56, 1720 (1997)
Wiringa, Pieper, Carlson, & Pandharipande, PRC62, 014001 (2000)
Pieper, Wiringa, & Carlson, PRC70, 054325 (2004)
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Examples of GFMC propagation: M1 Transition inA = 7

0.0 0.1 0.2 0.3 0.4

�  (MeV�1 )

2.5

3.0

3.5

4.0

<
J
f
|| 

M
1

 ||
J
i
>

  
(�

N
)

7 Li (1/2� ) to 7 Li (3/2� ) (g.s.)

VMC
IA    (g_ext)
TOT (g_ext)

IA    (g_mix_i)
IA    (g_mix_f)
TOT (g_mix_i)
TOT (g_mix_f)

16 / 21



Examples of GFMC propagation: Magnetic moment inA = 9
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Reduce noise by increasing the statistic for the IA results
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GFMC calculation of magnetic moments inA ≤ 9 nuclei: Summary

Predictions forA > 3 nuclei
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Preliminary results

µ(IA ) = µN ∑
i

[(Li +gpSi)(1+ τi,z)/2+gnSi(1− τi,z)/2]
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Magnetic moments inA ≤ 9 nuclei: SNPA andχEFT

A s.s. SNPA χEFT* EXP

IS 7 [43] 0.840 (18) 0.911 (11) 0.929
IV [43] 4.595 (36) 4.779 (22) 4.654

IS 8 [431] 1.178 (24) 1.292 (16) 1.344
IV [431] -0.146 (24) -0.142 (16) -0.310

IS 9 [T = 3/2] [432] 0.927 (45) 1.058 (29) 1.024
IV [432] -1.415 (30) -1.527 (19) -1.610

IS 9 [T = 1/2] [441] 0.787 (16) 0.884 (12) n.a.
IV [441] 4.207 (36) 4.395 (24) n.a.

Preliminary results

Overall improvement of isoscalar (IS) component of the magnetic moment

µ = µS + τzµV
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GFMC calculation of M1 transitions inA ≤ 9 nuclei: Summary

M1(IA) = µN ∑
i
[(Li +gpSi)(1+ τi,z)/2

+ gnSi(1− τi,z)/2]

Prediction for9Li(1/2− → 3/2−)
M1 transition
ΓIA = 5.93(10) (10−1 eV)
ΓTOT = 7.89(25) (10−1 eV)

0 1 2 3

Ratio to experiment

EXPT

7Li(1/2
- → 3/2

-) B(M1)

7Be(1/2
- → 3/2

-) B(M1)

8Li(1+ → 2+) B(M1)

8B(1+ → 2+) B(M1)

8Li(3+ → 2+) B(M1)

8B(3+ → 2+) B(M1)

9Be(5/2
- → 3/2

-) B(M1)

GFMC(IA) GFMC(MEC)

Preliminary results
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Summary

◮ EM current operators have been derived inχEFT up ton = 1

◮ Predictions from hybrid calculations of magnetic moment and M1 transitions in
A ≤ 9 nuclei are in good agreement with experimental data: Corrections of
order> LO are important to bring theory in agreement with experimental data

Outlook: electroweak properties of light nuclei

∗ EM structure of light nuclei

◮ Extend hybrid calculations to different combinations of 2Nand 3N
potentials to study charge radii, charge and magnetic form factors of
A ≤ 10 systems (on going project)

∗ Weak structure of light nuclei

◮ Extend hybrid calculations to weak properties of light nuclei
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EXTRA SLIDES
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EM observables at N3LO: fixing LECs p.1/3

cS, cVdS, dV
1 , dV

2

Five LECs:dS, dV
1 , anddV

2 could be
determined by pion photo-production
data on the nucleon

Isovector

dV
1 , dV

2

dV
2 anddV

1 are known assuming
∆-resonance saturation (dV

2 /dV
1 = 1/4 )

Left with 5 LECs: Fixed in theA = 2−3 nucleons’ sector

◮ Isoscalar sector:

* dS andcS from EXPTµd andµS(3H/3He)

Λ NN/NNN 10×dS/Λ2 cS/Λ4

600 AV18/UIX –2.033 5.238
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EM observables at N3LO: fixing LECs p.2/3
cS, cVdS, dV

1 , dV
2

Five LECs:dS, dV
1 , anddV

2 could be
determined by pion photo-production
data on the nucleon

Isovector

dV
1 , dV

2

dV
2 anddV

1 are known assuming
∆-resonance saturation (dV

2 /dV
1 = 1/4 )

Left with 4 LECs: Fixed in theA = 2−3 nucleons’ sector

◮ Isovector sector:
* I = cV anddV

1 from EXPTµV (3H/3He) m.m. and EXPTnpdγ xsec.
or

* II = cV from EXPTnpdγ xsec. anddV
1 from ∆-saturation

or
* III = cV from EXPTµV (3H/3He) m.m. anddV

1 from ∆-saturation∗

Λ NN/NNN Current dV
1 /Λ2 cV/Λ4

600 AV18/UIX I 75.0 257.5
II 4.98 -11.57
III 4.98 -1.025

* dV
1 = 4µ∗hA/9m(m∆ −m)
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EM observables at N3LO: fixing LECs p.3/3

Table:m.m.’s of3H, 7Li, and8Li, with currents I or III andΛ=600 MeV from VMC

Nucleus Current IA NLO N2LO N3LO LECs(tree) LECs(ct) SUM

3H I -2.590 -0.253 -0.033 -0.091 -1.612 -1.555 -2.958

III -0.102 -0.011 -2.992

7Li I -2.899 -0.254 -0.064 -0.081 -1.718 -1.855 -3.033

III -0.109 -0.011 -3.268

8Li I -1.258 -0.223 -0.039 -0.088 -1.084 -1.541 -1.073

III -0.066 -0.015 -1.581
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2009 EM current vs 2011 EM currents p. 1/2

g) i)

◮ Non-static corrections entering single-nucleon operators accounted into the
derivation of current i)

i)OLD = i
eg2

A

F2
π

τ1,z

∫ q1−q2

ω3
1 ω3

2

ω2
1 +ω1 ω2+ω2

2
ω1+ω2

[

CSσ1 · (q1×q2)

− CT σ2 · (q1×q2)

]

+1⇋ 2

i)NEW = 2i
eg2

A CT

F2
π

τ1z

∫

q1,q2

ω2
1 +ω1ω2+ω2

2

ω3
1ω3

2(ω1+ω2)
(q1−q2)σ2 ·q2×q1+1⇋ 2

◮ i) NEW in agreement with Kölling 2009/2011∗ but for a factor of 2, which has
no impact because (i + g) = 0

* PRC80, 045502 (2009)/ PRC84, 054008 (2011)
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2009 EM current vs 2011 EM currents p. 2/2

TREE CT

◮ A different derivation in Kölling 2009/2011∗ leads to an additional term
∼ (σi ×q)×q in the N3LO current at tree level, which however does not
contribute to the magnetic moment

◮ The N3LO contact current of Pastore 2009 is in agreement withthat of Kölling
2011 after Fierz-reordering, apart from differences in theterm∝ C5:

jN3LO
ct =−

iC5

4
(σ1+σ2)× (e1 k1+e2 k2)

* PRC80, 045502 (2009)/ PRC84, 054008 (2011)
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Magnetic moment (m.m.) operator

◮ comparison with Köllinget al.:

i) LO, NLO, N2LO, N3LO TPE, N3LO CT, N3LO TREE m.m.’s agree,
but for the N3LO CT term∝ C5
ii) currents associated with one loop corrections to the OPEare missing in
these calculations of m.m.’s; renormalization of OPE currents has been
carried out in Kölling 2011∗

◮ comparison with Parket al.∗∗:

i) Sachs’ m.m. is missing (no problem in two-body systems),
ii) TPE box contribution at N3LO generates an extra term∝ (τi ×τj)z

* Ultimately, in actual calculations these differences are presumably
mitigated by fitting LECs to experimental data

* loop corrections to OPE: terms∝ L(k) in Eq. (4.28) of Kölling 2011;

** NP A596, 515, (1996)
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courtesy of R.B.Wiringa

NUCLEAR HAMILTONIAN

H =
X

i

Ki +
X

i<j

vij +
X

i<j<k

Vijk

Ki: Non-relativistic kinetic energy,mn-mp effects included

Argonne v18: vij = vγ
ij + vπ

ij + vI
ij + vS

ij =
P

vp(rij)O
p
ij

• 18 spin, tensor, spin-orbit, isospin, etc., operators
• full EM and strong CD and CSB terms included
• predominantly local operator structure
• fits Nijmegen PWA93 data withχ2/d.o.f.=1.1

Wiringa, Stoks, & Schiavilla, PRC51, (1995) 0 100 200 300 400 500 600
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∆
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ππ

π ∆
∆

∆

π

π

π

π
π π

Urbana & Illinois:Vijk = V 2π
ijk + V 3π

ijk + V R
ijk

• Urbana has standard2π P -wave +
short-range repulsion for matter saturation

• Illinois adds2π S-wave +3π rings
to provide extraT=3/2 interaction

• Illinois-7 has four parameters fit to 23 levels inA ≤10 nuclei

Pieper, Pandharipande, Wiringa, & Carlson, PRC64, 014001 (2001)
Pieper, AIP CP1011, 143 (2008)
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courtesy of R.B.Wiringa

THREE-NUCLEON POTENTIALS

UrbanaVijk = V
2πP

ijk + V
R

ijk

Carlson, Pandharipande, & Wiringa, NPA401, 59 (1983)

Illinois Vijk = V
2πP

ijk + V
2πS

ijk + V
3π∆R

ijk + V
R

ijk

Pieper, Pandharipande, Wiringa, & Carlson, PRC64, 014001 (2001)

Illinois-7 has 4 strength parameters fit to 23 energy levels inA ≤ 10 nuclei.

In light nuclei we find (thanks to large cancellation between〈K〉 & 〈vij〉):

〈Vijk〉 ∼ (0.02 to 0.07) 〈vij〉 ∼ (0.15 to 0.5) 〈H〉

We expect〈Vijkl〉 ∼ 0.05 〈Vijk〉 ∼ (0.01 to 0.03) 〈H〉 ∼ 1 MeV in 12C .
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EM observables at N3LO: fixing LECs p.1/3

cS, cVdS, dV
1 , dV

2

Five LECs:dS, dV
1 , anddV

2 could be
determined by pion photo-production
data on the nucleon

Isovector

dV
1 , dV

2

dV
2 anddV

1 are known assuming
∆-resonance saturation (dV

2 /dV
1 = 1/4 )

Left with 5 LECs: Fixed in theA = 2−3 nucleons’ sector

◮ Isoscalar sector:

* dS andcS from EXPTµd andµS(3H/3He)

Λ NN/NNN 10×dS/Λ2 cS/Λ4

600 AV18/UIX –2.033 5.238
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EM observables at N3LO: fixing LECs p.2/3
cS, cVdS, dV

1 , dV
2

Five LECs:dS, dV
1 , anddV

2 could be
determined by pion photo-production
data on the nucleon

Isovector

dV
1 , dV

2

dV
2 anddV

1 are known assuming
∆-resonance saturation (dV

2 /dV
1 = 1/4 )

Left with 4 LECs: Fixed in theA = 2−3 nucleons’ sector

◮ Isovector sector:
* I = cV anddV

1 from EXPTµV (3H/3He) m.m. and EXPTnpdγ xsec.
or

* II = cV from EXPTnpdγ xsec. anddV
1 from ∆-saturation

or
* III = cV from EXPTµV (3H/3He) m.m. anddV

1 from ∆-saturation∗

Λ NN/NNN Current dV
1 /Λ2 cV/Λ4

600 AV18/UIX I 75.0 257.5
II 4.98 -11.57
III 4.98 -1.025

* dV
1 = 4µ∗hA/9m(m∆ −m)
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EM observables at N3LO: fixing LECs p.3/3

Table:m.m.’s of3H, 7Li, and8Li, with currents I or III andΛ=600 MeV from VMC

Nucleus Current IA NLO N2LO N3LO LECs(tree) LECs(ct) SUM

3H I -2.590 -0.253 -0.033 -0.091 -1.612 -1.555 -2.958

III -0.102 -0.011 -2.992

7Li I -2.899 -0.254 -0.064 -0.081 -1.718 -1.855 -3.033

III -0.109 -0.011 -3.268

8Li I -1.258 -0.223 -0.039 -0.088 -1.084 -1.541 -1.073

III -0.066 -0.015 -1.581

33 / 21



Magnetic moment at N3LO

◮ Magnetic moment operator due to two-body current densityJ(x)

µ(R,r) =
1
2

[

R×
∫

dx J(x)+
∫

dx(x−R)×J(x)

]

◮ Sachs’ and translationally invariant magnetic moments

µSachs(R,r) = −i
R
2

×
∫

dx x [ρ(x) , υ12]

µT(r) = −
i
2

∫

k
eik·r ∇q × j(q,k)

∣
∣
∣
∣
q=0
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Currents from nuclear interactions -Marcucciet al. PRC72, 014001 (2005)

vME = +
VPSfPS

k ,ma

◮ Exploiting the meson exchange (ME) mechanism, one assumes that the
static partυ0 of υ is due to pseudoscalar (PS) and vector (V) exchanges

◮ υME is expressed in terms of ’effective propagators’υPS, υV , υVS, fixed such to
reproduceυ0, for example

υPS = [υσ τ (k)−2υ t τ (k)]/3

with υσ τ andυ t τ components ofυ0

◮ The current operator is obtained by taking the non relativistic reduction of the
ME Feynman amplitudes and replacing the bare propagators with the ’effective’
ones

j(2)(v0) =
PS,V

+ +
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OPEP beyond the static limit

E ′
1

k

v(2)π ∼ Q2v(1)π ∼ Q1v(0)π ∼ Q0

E1 E2

E ′
2

On-the-energy-shell, non-static OPEP at N2LO (Q2) can be equivalently written as

υ(2)
π (ν = 0) = υ(0)

π (k)
(E ′

1−E1)
2+(E ′

2−E2)
2

2ω2
k

υ(2)
π (ν = 1) = −υ(0)

π (k)
(E ′

1−E1)(E ′
2−E2)

ω2
k

υ(0)
π (k) = −

g2
A

F2
π
τ1 ·τ2

σ1 ·k σ2 ·k

ω2
k

υ(2)
π (ν) corrections are different off-the-energy-shell(E1+E2 6= E′

1+E′
2)

◮ TPE contributions are affected by the choice made for the parameterν
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From amplitudes to potentials

The two-nucleon potentialυ = υ(0)+υ(1)+υ(2)+ . . . (with υ(n) ∼ Qn) is iterated
into the Lippmann-Schwinger (LS) equationi.e.

υ +υ G0 υ +υ G0υ G0υ + . . . , G0 = 1/(Ei −EI + iη)

υ(n) is obtained subtracting from the transition amplitudeT(n)
fi terms already

accounted for into the LS equation

υ(0) = T(0) ,

υ(1) = T(1)−
[

υ(0) G0υ(0)
]

,

υ(2) = T(2)−
[

υ(0) G0υ(0) G0 υ(0)
]

−
[

υ(1)G0 υ(0)+υ(0) G0 υ(1)
]

,

υ(3)(ν) = T(3)−
[

υ(0) G0υ(0) G0 υ(0)G0 υ(0)
]

−
[

υ(1) G0υ(0) G0 υ(0)+permutations
]

−
[

υ(1) G0 υ(1)
]

−
[

υ(2)(ν)G0 υ(0)+υ(0) G0 υ(2)(ν)
]

︸ ︷︷ ︸

LS terms
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From amplitudes to potentials: an example with OPE and TPE only

T (3)

v
(2)
2π + LS terms

v
(3)
2π (ν) + LS terms

v(2)π (ν)

v(1)π

T (1)

T (0)

T (2)

v(0)π

LS terms

◮ To eachυ(2)
π (ν) corresponds aυ(3)

2π (ν)
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Unitary equivalence ofυ (2)
π (ν) andυ (3)

2π (ν)

◮ Different off-the-energy-shell parameterizations lead to unitarily equivalent
two-nucleon Hamiltonians

H(ν) = t(−1)+υ(0)
π +υ(2)

2π +υ(2)
π (ν)+υ(3)

2π (ν)

t(−1) is the kinetic energy,υ(0)
π andυ(2)

2π are the static OPEP and TPEP

◮ The Hamiltonians are related to each other via

H(ν) = e−iU(ν) H(ν = 0)e+iU(ν) , iU(ν)≃ iU(0)(ν)+ iU(1)(ν)

from which it follows

H(ν) = H(ν = 0)+
[

t(−1)+υ(0)
π , iU(0)(ν)

]

+
[

t(−1), iU(1)(ν)
]

◮ Predictions for physical observables are unaffected by off-the-energy-shell
effects
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From amplitudes to EM charge and current operators

◮ In presence of EM interaction the transition amplitudeTγ is expanded as

Tγ = T(−3)
γ +T(−2)

γ +T(−1)
γ + . . . , T(n)

γ ∼ eQn

and the charge and current operators are related toT(n)
γ via

υ(n)
γ = A0ρ(n)−A · j(n) = T(n)

γ − LS terms

that is

υ(−3)
γ = T(−3)

γ ,

υ(−2)
γ = T(−2)

γ −
[

υ(−3)
γ G0υ(0)+υ(0) G0 υ(−3)

γ

]

,

υ(−1)
γ = T(−1)

γ −
[

υ(−3)
γ G0υ(0) G0υ(0)+permutations

]

−
[

υ(−2)
γ G0υ(0)+υ(0) G0υ(−2)

γ

]

︸ ︷︷ ︸

LS terms
. . . . . .
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Technical issue II - Recoil corrections at N3LO

jN
3LO =

q2

q1

Direct Crossed

21

◮ Reducible contributions

jred ∼

∫

υπ (q2)
1

Ei −EI
jNLO(q1)

−

∫

2
ω1+ω2

ω1 ω2
VπNN(2,q2)VπNN(2,q1)VπNN(1,q2)VγπNN (1,q1)

◮ Irreducible contributions

jirr =

∫

2
ω1+ω2

ω1 ω2
VπNN(2,q2)VπNN(2,q1)VπNN(1,q2)VγπNN (1,q1)

−
∫

2
ω2

1 +ω2
2 +ω1 ω2

ω1 ω2(ω1+ω2)
[VπNN(2,q2),VπNN(2,q1)]−VπNN(1,q2)VγπNN(1,q1)

◮ Observed partial cancellations at N3LO between recoil corrections to reducible
diagrams and irreducible contributions
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The box diagram: an example at N3LO

q1

q2
Reducible

Irreducible

direct

Irreducible

crossed

1 2

a
b

d

a

b

c

d

c

direct = fd(ω1,ω2)Va Vb Vc Vd

crossed = fc(ω1,ω2)Vb Va Vc Vd VbVa = Va Vb − [Va,Vb]−

irreducible = [ fd(ω1,ω2)+ fc(ω1,ω2)]Va Vb Vc Vd

− fc(ω1,ω2)[Va,Vb]−Vc Vd
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EM charge up ton = 0 (or up to N3LO)

ρ
(0)
π (ν)

LO : ρ(−3)

N3LO : ρ(0)

N2LO : ρ(−1)

◮ n =−3

ρ (−3)(q) = e(2π)3δ (p1+q−p′
1)(1+τ1,z)/2+1⇋ 2

◮ n =−1:

(Q/mN)
2 relativistic correction toρ(−3)

◮ n = 0:

i) ‘static’ tree-level current (originates
from aγπN vertex of ordereQ)

ii) ‘non-static’ OPE charge operators,

ρ(0)
π (ν) depends onυ(2)

π (ν)

◮ ρ(0)
π (ν)’s are unitarily equivalent

ρ(0)
π (ν) = ρ(0)

π (ν = 0)+
[

ρ(−3) , iU(0)(ν)
]

◮ No unknown LECs up to this order (gA, Fπ )
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EM charge @n = 1 (or N4LO) 1.

N4LO : ρ(1) (d) (e)(a) (b) (c)

(g) (h) (i)(f) (j)

◮ (a), (f), (d), and (i) vanish

◮ Divergencies associated with (b) + (g), (c) + (h), and (e) + (j) cancel out—as
they must since there are no counter-terms at N4LO

◮ ρ(1)
h (ν) depends on the parametrization adopted forυ(2)

π (ν) andυ(3)
2π (ν)

◮ ρ(1)
h (ν)’s are unitarily equivalent

ρ(1)
h (ν) = ρ(1)

h (ν = 0)+
[

ρ(−3) , iU(1)(ν)
]
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EM charge @n = 1 (or N4LO) 2.

N4LO : ρ(1) (d) (e)(a) (b) (c)

(g) (h) (i)(f) (j)

◮ Charge operators (ν-dependent included) up ton = 1 satisfy the condition

ρ (n>−3)(q = 0) = 0

which follows from charge conservation

ρ(q = 0) =
∫

dxρ(x) = e
(1+ τ1,z)

2
+1⇋ 2= ρ (−3)(q = 0)

◮ ρ(1) does not depend on unknown LECs and it is purely isovector
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