Electromagnetic moments and M1 transitions in $A \le 9$ nuclei including two-body χ EFT currents *

Saori Pastore @ JLab - Newport News, VA - August 2012

* in collaboration with: Steven Pieper, Rocco Schiavilla, Bob Wiringa, Luca Girlanda, Michele Viviani, Laura E. Marcucci, Alejandro Kievsky, José L. Goity

PRC78, 064002 (2008) - PRC80, 034004 (2009) - PRC81, 034005 (2010) - PRL105, 232502, (2010) - PRC84, 024001 (2011)

- Standard Nuclear Physics Approach (SNPA)
- Nuclear χ EFT approach
- EM current operators up to one loop
- EM observables in $A \le 9$ systems
- Summary
- Outlook

The Basic Model

▶ The nucleus is a system made of A interacting nucleons, its energy is given by

$$H = T + V = \sum_{i=1}^{A} t_i + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk} + \dots$$

where v_{ij} and V_{ijk} are 2- and 3-nucleon interaction operators

Current and charge operators describe the interaction of nuclei with external fields. They are expanded as a sum of 1-, 2-, ... nucleon operators:

EM current operator **j** satisfies the current conservation relation (CCR) with the nuclear Hamiltonian, hence V, ρ , **j** need to be derived consistently

$$\mathbf{q} \cdot \mathbf{j} = [H, \rho]$$

CCR does not constrain transverse (orthogonal to q) currents

Currents from nuclear interactions *- Marcucci et al. PRC72, 014001 (2005)

- Current operator j constructed so as to satisfy the continuity equation with a realistic Hamiltonian
- Short- and intermediate-behavior of the EM operators inferred from the nuclear two- and three-body potentials

* also referred to as Standard Nuclear Physics Approach (SNPA) currents

Currents from nuclear interactions - Marcucci et al. PRC72, 014001 (2005) Satisfactory description of a variety of nuclear EM properties [see Marcucci et al. (2005) and (2008)]

 2 H(p, γ)³He capture

► Isoscalar magnetic moments are a few % off (10% in A=7 nuclei)

Nuclear χ EFT approach

S. Weinberg, Phys. Lett. B251, 288 (1990); Nucl. Phys. B363, 3 (1991); Phys. Lett. B295, 114 (1992)

- > χ EFT exploits the χ symmetry exhibited by QCD at low energy to restrict the form of the interactions of π 's with other π 's, and with *N*'s, Δ 's, ...
- ► The pion couples by powers of its momentum $Q \rightarrow \mathscr{L}_{eff}$ can be systematically expanded in powers of Q/Λ_{χ} ; ($Q \ll \Lambda_{\chi} \sim 1$ GeV) allowing for a perturbative treatment in terms of Q expansions
- The coefficients of the expansion, Low Energy Constants (LECs) are unknown and need to be fixed by comparison with exp data
- ▶ The systematic expansion in *Q* naturally has the feature

$$\langle \mathscr{O} \rangle_{1-body} > \langle \mathscr{O} \rangle_{2-body} > \langle \mathscr{O} \rangle_{3-body}$$

Previous work

Since Weinberg's papers (1990–92), nuclear χ EFT has developed into an intense field of research. A *very* incomplete list:

- ► NN potentials:
 - ▶ van Kolck *et al.* (1994–96)
 - ▶ Kaiser, Weise *et al.* (1997–98)
 - Epelbaum, Glöckle, Meissner (1998–2005)
 - Entem and Machleidt (2002–03)
- Currents and nuclear electroweak properties:
 - ▶ Rho, Park et al. (1996–2009), hybrid studies in A=2-4
 - Meissner et al. (2001), Kölling et al. (2009–2011)
 - Phillips (2003), deuteron static properties and f.f.'s

Lots of work in pionless EFT too ...

Transition amplitude in time-ordered perturbation theory

$$\begin{split} T_{\mathrm{fi}} &= \langle f \mid T \mid i \rangle \quad = \quad \langle f \mid H_1 \sum_{n=1}^{\infty} \left(\frac{1}{E_i - H_0 + i \eta} H_1 \right)^{n-1} \mid i \rangle \\ &= \quad \langle f \mid H_1 \mid i \rangle + \sum_{|I\rangle} \langle f \mid H_1 \mid I \rangle \frac{1}{E_i - E_I} \langle I \mid H_1 \mid i \rangle + \dots \end{split}$$

A contribution with N interaction vertices and L loops scales as

 α_i = number of derivatives in H_1 and β_i = number of π 's at each vertex

 N_K = number of pure nucleonic intermediate states

• Due to the chiral expansion, the transition amplitude $T_{\rm fi}$ can be expanded as

$$T_{\rm fi} = T^{\rm LO} + T^{\rm NLO} + T^{\rm N2LO} + \dots$$
 and $T^{\rm NnLO} \sim (Q/\Lambda_{\chi})^n T^{\rm LO}$

Power counting

- ► N_K energy denominators scale as Q^{-2} $\frac{1}{E_i - E_I} |I\rangle = \frac{1}{E_i - E_N} |I\rangle \sim Q^{-2} |I\rangle$
- ► $(N N_K 1)$ energy denominators scale Q^{-1} in the <u>static limit</u>; they can be further expanded in powers of $(E_i E_N)/\omega_{\pi} \sim Q$

$$\frac{1}{E_i - E_I} |I\rangle = \frac{1}{E_i - E_N - \omega_{\pi}} |I\rangle \sim - \left[\underbrace{\frac{1}{\omega_{\pi}}}_{Q^{-1}} + \underbrace{\frac{E_i - E_N}{\omega_{\pi}^2}}_{Q^0} + \underbrace{\frac{(E_i - E_N)^2}{\omega_{\pi}^3}}_{Q^1} + \dots\right] |I\rangle$$

- Terms accounted into the Lippmann-Schwinger Eq. are subtracted from the reducible amplitude
- EM operators depend on the off-the-energy shell prescription adopted for the non-static OPE and TPE potentials
- Ultimately, the EM operators are unitarily equivalent: Description of physical systems is not affected by this ambiguity

EM current up to n = 1 (or up to N3LO)

- ► n = -2, -1, 0, and 1-(loops only): depend on known LECs namely g_A, F_π , and proton and neutron μ
- ▶ n = 0: $(Q/m_N)^2$ relativistic correction to $\mathbf{j}^{(-2)}$
- unknown LECs enter the n = 1 contact and tree-level currents (the latter originates from a $\gamma \pi N$ vertex of order $e Q^2$)
- divergencies associated with loop integrals are reabsorbed by renormalization of contact terms
- loops contributions lead to purely isovector operators
- ► $\mathbf{j}^{(n \le 1)}$ satisfies the CCR with χ EFT two-nucleon potential $\boldsymbol{\upsilon}^{(n \le 2)}$

EM current up to n = 1 (or up to N3LO)

- ► LECs of contact interactions at Q^0 and 'minimal' contact interactions at Q^2 fixed from fits to *np* phases shifts: LECs taken from Q^4 NN potential of D.R. Entem, R.Machleidt—PRC68, 041001 (2003)
- LECs from 'non-minimal' interactions fixed by reproducing EM observables: Different parameterizations are possible
- No three-body currents at N3LO
- * Note: 2011 EM* operators different from 2009 EM** operators
 - * Different 'non-minimal' contact LECs
 - * Different parameterization of EM LECs
 - * Revised derivation of current of type (i) in 2009 EM (more on this issue on extra slides if interested)

* in preparation, **PRC80, 034004 (2009)

EM current up to n = 1 (or up to N3LO) - bis

$$\begin{array}{c} \mathbf{LO} & : \mathbf{j}^{(-2)} \sim \mathbf{eQ}^{-2} \\ & & & \\ \mathbf{NLO} & : \mathbf{j}^{(-1)} \sim \mathbf{eQ}^{-1} \\ & & & \\ \mathbf{N}^2 \mathbf{LO} : \mathbf{j}^{(-0)} \sim \mathbf{eQ}^0 \end{array}$$

- ► n = -2, -1, 0, and 1-(loops only): depend on known LECs namely g_A, F_{π} , and proton and neutron μ
- ► n = 0: $(Q/m_N)^2$ relativistic correction to $\mathbf{j}^{(-2)}$
- unknown LECs enter the n = 1 contact and tree-level currents (the latter originates from a $\gamma \pi N$ vertex of order $e Q^2$)
- divergencies associated with loop integrals are reabsorbed by renormalization of contact terms
- loops contributions lead to purely isovector operators
- ► $\mathbf{j}^{(n \le 1)}$ satisfies the CCR with χ EFT two-nucleon potential $\boldsymbol{\upsilon}^{(n \le 2)}$

EM observables at N3LO: fixing LECs - final

Five LECs: d^S , d_1^V , and d_2^V could be determined by pion photo-production data on the nucleon

 d_2^V and d_1^V are known assuming Δ -resonance saturation $(d_2^V = 4\mu^* h_A/9m(m_\Delta - m) \text{ and } d_1^V = 4d_2^V$)

Left with 3 LECs: Fixed in the A = 2 - 3 nucleons' sector

* d^{S} and c^{S} : from EXPT μ_d and $\mu_S({}^{3}\text{H}/{}^{3}\text{He})$

* c^V : from EXPT $\mu_V({}^{3}\text{H}/{}^{3}\text{He})$ magnetic moment

Λ	NN/NNN	$10 \times d^S / \Lambda^2$	c^S/Λ^4	d_1^V/Λ^2	c^V/Λ^4
600	AV18/UIX	-2.033	5.238	4.980	-1.025

Different parameterizations have been studied in the A = 2, 3 systems, and tested into the A = 6, 8 nuclei (more on this topic on extra slides, if interested)

Variational Monte Carlo

Minimize expectation value of H

$$E_V = \frac{\langle \Psi_V | H | \Psi_V \rangle}{\langle \Psi_V | \Psi_V \rangle} \ge E_0$$

using trial function

$$|\Psi_V\rangle = \left[\mathscr{S}\prod_{i < j} (1 + \frac{U_{ij}}{U_{ij}} + \sum_{k \neq i,j} U_{ijk})\right] \left[\prod_{i < j} f_c(r_{ij})\right] |\Phi_A(JMTT_3)\rangle$$

- ▶ single-particle $\Phi_A(JMTT_3)$ is fully antisymmetric and translationally invariant
- central pair correlations $f_c(r)$ keep nucleons at favorable pair separation
- pair correlation operators U_{ij} reflect influence of v_{ij} (AV18)
- ▶ triple correlation operator U_{ijk} added when V_{ijk} (IL7) is present

 Ψ_V are spin-isospin vectors in 3A dimensions with $\sim 2^A \binom{A}{Z}$ components Lomnitz-Adler, Pandharipande, Smith, NP A361, 399 (1981) Wiringa, PRC 43, 1585 (1991)

Green's function Monte Carlo

Given a decent trial function Ψ_V , we can further improve it by "filtering" out the remaining excited state contamination:

$$\Psi(\tau) = \exp[-(H - E_0)\tau]\Psi_V = \sum_n \exp[-(E_n - E_0)\tau]a_n\psi_n$$
$$\Psi(\tau \to \infty) = a_0\psi_0$$

Evaluation of $\Psi(\tau)$ is done stochastically (Monte Carlo method) in small time steps $\Delta \tau$ using a Green's function formulation. In practice, we evaluate a "mixed" estimates

$$\begin{split} \langle O(\tau) \rangle &= \frac{f \langle \Psi(\tau) | O | \Psi(\tau) \rangle_i}{\langle \Psi(\tau) | \Psi(\tau) \rangle} \approx \langle O(\tau) \rangle_{\text{Mixed}}^i + \langle O(\tau) \rangle_{\text{Mixed}}^f - \langle O \rangle_V \\ \langle O(\tau) \rangle_{\text{Mixed}}^i &= \frac{f \langle \Psi_V | O | \Psi(\tau) \rangle_i}{f \langle \Psi_V | \Psi(\tau) \rangle_i} \ ; \ \langle O(\tau) \rangle_{\text{Mixed}}^f = \frac{f \langle \Psi(\tau) | O | \Psi_V \rangle_i}{f \langle \Psi(\tau) | \Psi_V \rangle_i} \end{split}$$

Pudliner, Pandharipande, Carlson, Pieper, & Wiringa, PRC **56**, 1720 (1997) Wiringa, Pieper, Carlson, & Pandharipande, PRC **62**, 014001 (2000) Pieper, Wiringa, & Carlson, PRC **70**, 054325 (2004)

Examples of GFMC propagation: M1 Transition in A = 7

Examples of GFMC propagation: Magnetic moment in A = 9

Reduce noise by increasing the statistic for the IA results

GFMC calculation of magnetic moments in $A \le 9$ nuclei: Summary

Predictions for A > 3 nuclei

Preliminary results

$$\mu(IA) = \mu_N \sum_i [(L_i + g_p S_i)(1 + \tau_{i,z})/2 + g_n S_i(1 - \tau_{i,z})/2]$$
18/21

Magnetic moments in $A \leq 9$ nuclei: SNPA and χ EFT

	А	s.s.	SNPA	$\chi { m EFT}^*$	EXP
IS	7	[43]	0.840 (18)	0.911 (11)	0.929
IV		[43]	4.595 (36)	4.779 (22)	4.654
IS	8	[431]	1.178 (24)	1.292 (16)	1.344
IV		[431]	-0.146 (24)	-0.142 (16)	-0.310
IS	9 [$T = 3/2$]	[432]	0.927 (45)	1.058 (29)	1.024
IV		[432]	-1.415 (30)	-1.527 (19)	-1.610
IS	9 [<i>T</i> = 1/2]	[441]	0.787 (16)	0.884 (12)	n.a.
IV		[441]	4.207 (36)	4.395 (24)	n.a.

Preliminary results

Overall improvement of isoscalar (IS) component of the magnetic moment

 $\mu = \mu_S + \tau_z \mu_V$

GFMC calculation of M1 transitions in $A \le 9$ nuclei: Summary

$$\begin{aligned} \mathsf{M1}(\mathbf{IA}) &= & \mu_N \sum_i [(L_i + g_p S_i)(1 + \tau_{i,z})/2 \\ &+ g_n S_i (1 - \tau_{i,z})/2] \end{aligned}$$

Prediction for ⁹Li($1/2^- \rightarrow 3/2^-$) M1 transition $\Gamma^{IA} = 5.93(10) (10^{-1} \text{ eV})$ $\Gamma^{TOT} = 7.89(25) (10^{-1} \text{ eV})$

Preliminary results

Summary

- EM current operators have been derived in χ EFT up to n = 1
- Predictions from hybrid calculations of magnetic moment and M1 transitions in A ≤ 9 nuclei are in good agreement with experimental data: Corrections of order > LO are important to bring theory in agreement with experimental data

Outlook: electroweak properties of light nuclei

- * EM structure of light nuclei
 - Extend hybrid calculations to different combinations of 2N and 3N potentials to study charge radii, charge and magnetic form factors of $A \le 10$ systems (on going project)
- * Weak structure of light nuclei
 - Extend hybrid calculations to weak properties of light nuclei

EXTRA SLIDES

EM observables at N3LO: fixing LECs p.1/3

$$d^{\mathbf{S}}, d^{\mathbf{V}}_{1}, d^{\mathbf{V}}_{2} \qquad c^{\mathbf{S}}, c^{\mathbf{V}}$$

Five LECs: d^S , d_1^V , and d_2^V could be determined by pion photo-production data on the nucleon

 d_2^V and d_1^V are known assuming Δ -resonance saturation ($d_2^V/d_1^V = 1/4$)

Left with 5 LECs: Fixed in the A = 2 - 3 nucleons' sector

Isoscalar sector:

* d^{S} and c^{S} from EXPT μ_{d} and $\mu_{S}(^{3}\text{H}/^{3}\text{He})$

Λ	NN/NNN	$10 \times d^S / \Lambda^2$	c^S/Λ^4
600	AV18/UIX	-2.033	5.238

EM observables at N3LO: fixing LECs p.2/3

Five LECs: d^S , d_1^V , and d_2^V could be determined by pion photo-production data on the nucleon

 d_2^V and d_1^V are known assuming Δ -resonance saturation ($d_2^V/d_1^V = 1/4$)

Left with 4 LECs: Fixed in the A = 2 - 3 nucleons' sector

Isovector sector:

* I = c^V and d_1^V from EXPT $\mu_V({}^{3}\text{H}{}^{3}\text{He})$ m.m. and EXPT $npd\gamma$ xsec. or

* II = c^V from EXPT $npd\gamma$ xsec. and d_1^V from Δ -saturation

* III = c^V from EXPT $\mu_V({}^{3}\text{H}{}^{/3}\text{He})$ m.m. and d_1^V from Δ -saturation*

Λ	NN/NNN	Current	d_1^V/Λ^2	c^V/Λ^4
600	AV18/UIX	Ι	75.0	257.5
		II	4.98	-11.57
		III	4.98	-1.025

$$d_{1}^{V} = 4\mu^{*}h_{A}/9m(m_{\Delta}-m)$$

EM observables at N3LO: fixing LECs p.3/3

Nucleus	Current	IA	NLO	N2LO	N3LO	LECs(tree)	LECs(ct)	SUM
³ H	Ι	2.590	0.253	-0.033	0.091	1.612	-1.555	2.958
	III					0.102	-0.011	2.992
⁷ Li	I	2.899	0.254	-0.064	0.081	1.718	-1.855	3.033
	III					0.109	-0.011	3.268
⁸ Li	Ι	1.258	0.223	-0.039	0.088	1.084	-1.541	1.073
	III					0.066	-0.015	1.581

Table: m.m.'s of ³H, ⁷Li, and ⁸Li, with currents I or III and Λ =600 MeV from VMC

2009 EM current vs 2011 EM currents p. 1/2

 Non-static corrections entering single-nucleon operators accounted into the derivation of current i)

$$i) \text{OLD} = i \frac{e g_A^2}{F_\pi^2} \tau_{1,z} \int \frac{\mathbf{q}_1 - \mathbf{q}_2}{\omega_1^2 \omega_2^3} \frac{\omega_1^2 + \omega_1 \omega_2 + \omega_2^2}{\omega_1 + \omega_2} \left[C_S \boldsymbol{\sigma}_1 \cdot (\mathbf{q}_1 \times \mathbf{q}_2) - C_T \boldsymbol{\sigma}_2 \cdot (\mathbf{q}_1 \times \mathbf{q}_2) \right] + 1 \rightleftharpoons 2$$
$$i) \text{NEW} = 2i \frac{e g_A^2 C_T}{F_\pi^2} \tau_{1z} \int_{\mathbf{q}_1, \mathbf{q}_2} \frac{\omega_1^2 + \omega_1 \omega_2 + \omega_2^2}{\omega_1^3 \omega_2^3 (\omega_1 + \omega_2)} (\mathbf{q}_1 - \mathbf{q}_2) \boldsymbol{\sigma}_2 \cdot \mathbf{q}_2 \times \mathbf{q}_1 + 1 \rightleftharpoons 2$$

▶ i) NEW in agreement with Kölling 2009/2011* but for a factor of 2, which has no impact because (i + g) = 0

* PRC80, 045502 (2009)/ PRC 84, 054008 (2011)

2009 EM current vs 2011 EM currents p. 2/2

- A different derivation in Kölling 2009/2011* leads to an additional term ~ (σ_i × q) × q in the N3LO current at tree level, which however does not contribute to the magnetic moment
- ► The N3LO contact current of Pastore 2009 is in agreement with that of Kölling 2011 after Fierz-reordering, apart from differences in the term $\propto C_5$:

$$\mathbf{j}_{\text{ct}}^{\text{N3LO}} = -\frac{iC_5}{4} \left(\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2\right) \times \left(e_1 \,\mathbf{k}_1 + e_2 \,\mathbf{k}_2\right)$$

* PRC80, 045502 (2009)/ PRC 84, 054008 (2011)

Magnetic moment (m.m.) operator

comparison with Kölling et al.:

i) LO, NLO, N2LO, N3LO TPE, N3LO CT, N3LO TREE m.m.'s agree, but for the N3LO CT term $\propto C_5$ ii) currents associated with one loop corrections to the OPE are missing in these calculations of m.m.'s; renormalization of OPE currents has been carried out in Kölling 2011*

comparison with Park et al.**:

i) Sachs' m.m. is missing (no problem in two-body systems),

ii) TPE box contribution at N3LO generates an extra term $\propto (\tau_i \times \tau_j)_z$

Ultimately, in actual calculations these differences are presumably mitigated by fitting LECs to experimental data

* loop corrections to OPE: terms $\propto L(k)$ in Eq. (4.28) of Kölling 2011;

** NP A596, 515, (1996)

courtesy of R.B.Wiringa

NUCLEAR HAMILTONIAN

$$H = \sum_{i} K_i + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk}$$

Ki: Non-relativistic kinetic energy, mn-mp effects included

Argonne v₁₈: $v_{ij} = v_{ij}^{\gamma} + v_{ij}^{\pi} + \frac{v_{ij}^I}{v_{ij}} + v_{ij}^S = \sum v_p(r_{ij})O_{ij}^p$

- · 18 spin, tensor, spin-orbit, isospin, etc., operators
- · full EM and strong CD and CSB terms included
- · predominantly local operator structure
- fits Nijmegen PWA93 data with χ^2 /d.o.f.=1.1

Wiringa, Stoks, & Schiavilla, PRC 51, (1995)

Urbana & Illinois: $V_{ijk} = V_{ijk}^{2\pi} + V_{ijk}^{3\pi} + V_{ijk}^{R}$

- Urbana has standard 2π P-wave + short-range repulsion for matter saturation
- Illinois adds 2π S-wave + 3π rings to provide extra T=3/2 interaction
- Illinois-7 has four parameters fit to 23 levels in A ≤10 nuclei

Pieper, Pandharipande, Wiringa, & Carlson, PRC 64, 014001 (2001) Pieper, AIP CP 1011, 143 (2008)

courtesy of R.B.Wiringa

THREE-NUCLEON POTENTIALS

Urbana $V_{ijk} = V_{ijk}^{2\pi P} + V_{ijk}^{R}$

Carlson, Pandharipande, & Wiringa, NP A401, 59 (1983)

Illinois $V_{ijk} = V_{ijk}^{2\pi P} + V_{ijk}^{2\pi S} + V_{ijk}^{3\pi\Delta R} + V_{ijk}^{R}$

Pieper, Pandharipande, Wiringa, & Carlson, PRC 64, 014001 (2001)

Illinois-7 has 4 strength parameters fit to 23 energy levels in $A \le 10$ nuclei. In light nuclei we find (thanks to large cancellation between $\langle K \rangle \& \langle v_{ij} \rangle$):

 $\begin{array}{l} \langle V_{ijk}\rangle\sim(0.02\ {\rm to}\ 0.07)\ \langle v_{ij}\rangle\sim(0.15\ {\rm to}\ 0.5)\ \langle H\rangle\\ \mbox{We expect}\ \langle \mathcal{V}_{ijkl}\rangle\sim0.05\ \langle V_{ijk}\rangle\sim(0.01\ {\rm to}\ 0.03)\ \langle H\rangle\sim1\ {\rm MeV}\ {\rm in}\ ^{12}{\rm C}\ . \end{array}$

EM observables at N3LO: fixing LECs p.1/3

$$d^{\mathbf{S}}, d^{\mathbf{V}}_{1}, d^{\mathbf{V}}_{2} \qquad c^{\mathbf{S}}, c^{\mathbf{V}}$$

Five LECs: d^S , d_1^V , and d_2^V could be determined by pion photo-production data on the nucleon

 d_2^V and d_1^V are known assuming Δ -resonance saturation ($d_2^V/d_1^V = 1/4$)

Left with 5 LECs: Fixed in the A = 2 - 3 nucleons' sector

Isoscalar sector:

* d^{S} and c^{S} from EXPT μ_{d} and $\mu_{S}(^{3}\text{H}/^{3}\text{He})$

Λ	NN/NNN	$10 \times d^S / \Lambda^2$	c^S/Λ^4
600	AV18/UIX	-2.033	5.238

EM observables at N3LO: fixing LECs p.2/3

Five LECs: d^S , d_1^V , and d_2^V could be determined by pion photo-production data on the nucleon

 d_2^V and d_1^V are known assuming Δ -resonance saturation ($d_2^V/d_1^V = 1/4$)

Left with 4 LECs: Fixed in the A = 2 - 3 nucleons' sector

Isovector sector:

* I = c^V and d_1^V from EXPT $\mu_V({}^{3}\text{H}{}^{3}\text{He})$ m.m. and EXPT $npd\gamma$ xsec. or

* II = c^V from EXPT $npd\gamma$ xsec. and d_1^V from Δ -saturation

* III = c^V from EXPT $\mu_V({}^{3}\text{H}{}^{/3}\text{He})$ m.m. and d_1^V from Δ -saturation*

Λ	NN/NNN	Current	d_1^V/Λ^2	c^V/Λ^4
600	AV18/UIX	Ι	75.0	257.5
		II	4.98	-11.57
		III	4.98	-1.025

*
$$d_1^V = 4\mu^* h_A/9m(m_\Delta - m)$$

EM observables at N3LO: fixing LECs p.3/3

Nucleus	Current	IA	NLO	N2LO	N3LO	LECs(tree)	LECs(ct)	SUM
³ H	Ι	2.590	0.253	-0.033	0.091	1.612	-1.555	2.958
	III					0.102	-0.011	2.992
⁷ Li	I	2.899	0.254	-0.064	0.081	1.718	-1.855	3.033
	III					0.109	-0.011	3.268
⁸ Li	I	1.258	0.223	-0.039	0.088	1.084	-1.541	1.073
	III					0.066	-0.015	1.581

Table: m.m.'s of ³H, ⁷Li, and ⁸Li, with currents I or III and Λ =600 MeV from VMC

Magnetic moment at N³LO

• Magnetic moment operator due to two-body current density $\mathbf{J}(\mathbf{x})$

$$\boldsymbol{\mu}(\mathbf{R},\mathbf{r}) = \frac{1}{2} \left[\mathbf{R} \times \int d\mathbf{x} \, \mathbf{J}(\mathbf{x}) + \int d\mathbf{x} \, (\mathbf{x} - \mathbf{R}) \times \mathbf{J}(\mathbf{x}) \right]$$

▶ Sachs' and translationally invariant magnetic moments

$$\mu_{\text{Sachs}}(\mathbf{R}, \mathbf{r}) = -i \frac{\mathbf{R}}{2} \times \int d\mathbf{x} \, \mathbf{x} \left[\rho(\mathbf{x}), \upsilon_{12} \right]$$

$$\mu_{\text{T}}(\mathbf{r}) = -\frac{i}{2} \int_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{r}} \nabla_{q} \times \mathbf{j}(\mathbf{q}, \mathbf{k}) \Big|_{\mathbf{q}=0}$$

Currents from nuclear interactions - Marcucci et al. PRC72, 014001 (2005)

$$v^{\text{ME}} = \frac{f_{\text{PS}}}{\mathbf{k}, m_a} + \mathbf{v}$$

- Exploiting the meson exchange (ME) mechanism, one assumes that the static part v_0 of v is due to pseudoscalar (PS) and vector (V) exchanges
- ► v^{ME} is expressed in terms of 'effective propagators' v_{PS} , v_V , v_{VS} , fixed such to reproduce v_0 , for example

$$\boldsymbol{\upsilon_{PS}} = [\boldsymbol{\upsilon}^{\sigma\,\tau}(k) - 2\boldsymbol{\upsilon}^{t\,\tau}(k)]/3$$

with $v^{\sigma \tau}$ and $v^{t \tau}$ components of v_0

The current operator is obtained by taking the non relativistic reduction of the ME Feynman amplitudes and replacing the bare propagators with the 'effective' ones

$$\mathbf{j}^{(2)}(\mathbf{v}_0) = \mathbf{PS, V} + \mathbf{PS, V}$$

OPEP beyond the static limit

On-the-energy-shell, non-static OPEP at N2LO (Q^2) can be equivalently written as

$$\begin{split} \mathfrak{v}_{\pi}^{(2)}(\mathbf{v} = 0) &= \mathfrak{v}_{\pi}^{(0)}(\mathbf{k}) \; \frac{(E_{1}' - E_{1})^{2} + (E_{2}' - E_{2})^{2}}{2 \, \omega_{k}^{2}} \\ \mathfrak{v}_{\pi}^{(2)}(\mathbf{v} = 1) &= -\mathfrak{v}_{\pi}^{(0)}(\mathbf{k}) \; \frac{(E_{1}' - E_{1}) (E_{2}' - E_{2})}{\omega_{k}^{2}} \\ \mathfrak{v}_{\pi}^{(0)}(\mathbf{k}) &= -\frac{g_{A}^{2}}{F_{\pi}^{2}} \tau_{1} \cdot \tau_{2} \; \frac{\sigma_{1} \cdot \mathbf{k} \; \sigma_{2} \cdot \mathbf{k}}{\omega_{k}^{2}} \end{split}$$

υ⁽²⁾_π(v) corrections are different off-the-energy-shell (E₁ + E₂ ≠ E'₁ + E'₂)
 TPE contributions are affected by the choice made for the parameter v

From amplitudes to potentials

The two-nucleon potential $v = v^{(0)} + v^{(1)} + v^{(2)} + \dots$ (with $v^{(n)} \sim Q^n$) is iterated into the Lippmann-Schwinger (LS) equation *i.e.*

$$\upsilon + \upsilon G_0 \upsilon + \upsilon G_0 \upsilon G_0 \upsilon + \dots$$
, $G_0 = 1/(E_i - E_I + i\eta)$

 $v^{(n)}$ is obtained subtracting from the transition amplitude $T_{\rm fi}^{(n)}$ terms already accounted for into the LS equation

$$\begin{aligned} \boldsymbol{\upsilon}^{(0)} &= T^{(0)}, \\ \boldsymbol{\upsilon}^{(1)} &= T^{(1)} - \left[\boldsymbol{\upsilon}^{(0)} G_0 \, \boldsymbol{\upsilon}^{(0)}\right], \\ \boldsymbol{\upsilon}^{(2)} &= T^{(2)} - \left[\boldsymbol{\upsilon}^{(0)} G_0 \, \boldsymbol{\upsilon}^{(0)} G_0 \, \boldsymbol{\upsilon}^{(0)}\right] - \left[\boldsymbol{\upsilon}^{(1)} G_0 \, \boldsymbol{\upsilon}^{(0)} + \boldsymbol{\upsilon}^{(0)} G_0 \, \boldsymbol{\upsilon}^{(1)}\right], \\ \boldsymbol{\upsilon}^{(3)}(\boldsymbol{\nu}) &= T^{(3)} - \left[\boldsymbol{\upsilon}^{(0)} G_0 \, \boldsymbol{\upsilon}^{(0)} G_0 \, \boldsymbol{\upsilon}^{(0)} G_0 \, \boldsymbol{\upsilon}^{(0)}\right] - \left[\boldsymbol{\upsilon}^{(1)} G_0 \, \boldsymbol{\upsilon}^{(0)} G_0 \, \boldsymbol{\upsilon}^{(0)} + \text{permutations}\right] \\ &- \underbrace{\left[\boldsymbol{\upsilon}^{(1)} G_0 \, \boldsymbol{\upsilon}^{(1)}\right] - \left[\boldsymbol{\upsilon}^{(2)}(\boldsymbol{\nu}) G_0 \, \boldsymbol{\upsilon}^{(0)} + \boldsymbol{\upsilon}^{(0)} G_0 \, \boldsymbol{\upsilon}^{(2)}(\boldsymbol{\nu})\right]} \end{aligned}$$

LS terms

From amplitudes to potentials: an example with OPE and TPE only

• To each $v_{\pi}^{(2)}(\mathbf{v})$ corresponds a $v_{2\pi}^{(3)}(\mathbf{v})$

Unitary equivalence of $v_{\pi}^{(2)}(\mathbf{v})$ and $v_{2\pi}^{(3)}(\mathbf{v})$

 Different off-the-energy-shell parameterizations lead to unitarily equivalent two-nucleon Hamiltonians

$$H(\mathbf{v}) = t^{(-1)} + v_{\pi}^{(0)} + v_{2\pi}^{(2)} + v_{\pi}^{(2)}(\mathbf{v}) + v_{2\pi}^{(3)}(\mathbf{v})$$

 $t^{(-1)}$ is the kinetic energy, $v_{\pi}^{(0)}$ and $v_{2\pi}^{(2)}$ are the static OPEP and TPEP

The Hamiltonians are related to each other via

$$H(\mathbf{v}) = e^{-iU(\mathbf{v})} H(\mathbf{v} = 0) e^{+iU(\mathbf{v})}, \qquad i U(\mathbf{v}) \simeq i U^{(0)}(\mathbf{v}) + i U^{(1)}(\mathbf{v})$$

from which it follows

$$H(\mathbf{v}) = H(\mathbf{v} = 0) + \left[t^{(-1)} + v_{\pi}^{(0)}, i U^{(0)}(\mathbf{v})\right] + \left[t^{(-1)}, i U^{(1)}(\mathbf{v})\right]$$

 Predictions for physical observables are unaffected by off-the-energy-shell effects

From amplitudes to EM charge and current operators

• In presence of EM interaction the transition amplitude T_{γ} is expanded as

$$T_{\gamma} = T_{\gamma}^{(-3)} + T_{\gamma}^{(-2)} + T_{\gamma}^{(-1)} + \dots, \qquad T_{\gamma}^{(n)} \sim e Q^{n}$$

and the charge and current operators are related to $T_{\gamma}^{(n)}$ via

$$v_{\gamma}^{(n)} = A^0 \rho^{(n)} - \mathbf{A} \cdot \mathbf{j}^{(n)} = T_{\gamma}^{(n)} - \mathbf{LS}$$
 terms

that is

.

$$\begin{split} \upsilon_{\gamma}^{(-3)} &= T_{\gamma}^{(-3)} ,\\ \upsilon_{\gamma}^{(-2)} &= T_{\gamma}^{(-2)} - \left[\upsilon_{\gamma}^{(-3)} \, G_0 \, \upsilon^{(0)} + \upsilon^{(0)} \, G_0 \, \upsilon_{\gamma}^{(-3)} \right] ,\\ \upsilon_{\gamma}^{(-1)} &= T_{\gamma}^{(-1)} - \left[\upsilon_{\gamma}^{(-3)} \, G_0 \, \upsilon^{(0)} \, G_0 \, \upsilon^{(0)} + \text{permutations} \right] \\ &- \underbrace{\left[\upsilon_{\gamma}^{(-2)} \, G_0 \, \upsilon^{(0)} + \upsilon^{(0)} \, G_0 \, \upsilon_{\gamma}^{(-2)} \right]}_{\text{LS terms}} \end{split}$$

Technical issue II - Recoil corrections at N³LO

Reducible contributions

$$\begin{aligned} \mathbf{j}_{\text{red}} &\sim \int \upsilon^{\pi}(\mathbf{q}_2) \, \frac{1}{E_i - E_I} \, \mathbf{j}^{\text{NLO}}(\mathbf{q}_1) \\ &- \int 2 \, \frac{\omega_1 + \omega_2}{\omega_1 \, \omega_2} \, V_{\pi NN}(2, \mathbf{q}_2) \, V_{\pi NN}(2, \mathbf{q}_1) \, V_{\pi NN}(1, \mathbf{q}_2) \, V_{\gamma \pi NN}(1, \mathbf{q}_1) \end{aligned}$$

Irreducible contributions

$$\mathbf{j}_{\text{irr}} = \int 2 \frac{\omega_1 + \omega_2}{\omega_1 \omega_2} V_{\pi NN}(2, \mathbf{q}_2) V_{\pi NN}(2, \mathbf{q}_1) V_{\pi NN}(1, \mathbf{q}_2) V_{\gamma \pi NN}(1, \mathbf{q}_1) - \int 2 \frac{\omega_1^2 + \omega_2^2 + \omega_1 \omega_2}{\omega_1 \omega_2 (\omega_1 + \omega_2)} [V_{\pi NN}(2, \mathbf{q}_2), V_{\pi NN}(2, \mathbf{q}_1)]_{-} V_{\pi NN}(1, \mathbf{q}_2) V_{\gamma \pi NN}(1, \mathbf{q}_1)$$

 Observed partial cancellations at N³LO between recoil corrections to reducible diagrams and irreducible contributions

The box diagram: an example at N³LO

$$- f_c(\boldsymbol{\omega}_1, \boldsymbol{\omega}_2) [V_{\boldsymbol{a}}, V_{\boldsymbol{b}}]_{-} V_c V_d$$

EM charge up to n = 0 (or up to N3LO)

n = −3 $\rho^{(-3)}(\mathbf{q}) = e(2\pi)^{3} \delta(\mathbf{p}_{1} + \mathbf{q} - \mathbf{p}'_{1})(1 + \tau_{1,z})/2 + 1 \rightleftharpoons 2$ n = −1: $(Q/m_{N})^{2} \text{ relativistic correction to } \rho^{(-3)}$ n = 0:

i) 'static' tree-level current (originates from a $\gamma \pi N$ vertex of order eQ)

ii) 'non-static' OPE charge operators, $\rho_{\pi}^{(0)}(\mathbf{v})$ depends on $\upsilon_{\pi}^{(2)}(\mathbf{v})$

• $\rho_{\pi}^{(0)}(\mathbf{v})$'s are unitarily equivalent

$$\rho_{\pi}^{(0)}(\mathbf{v}) = \rho_{\pi}^{(0)}(\mathbf{v}=0) + \left[\rho^{(-3)}, i U^{(0)}(\mathbf{v})\right]$$

▶ No unknown LECs up to this order (g_A, F_π)

EM charge @ n = 1 (or N4LO) 1.

- (a), (f), (d), and (i) vanish
- Divergencies associated with (b) + (g), (c) + (h), and (e) + (j) cancel out—as they must since there are no counter-terms at N4LO
- ► $\rho_{\rm h}^{(1)}(\mathbf{v})$ depends on the parametrization adopted for $\upsilon_{\pi}^{(2)}(\mathbf{v})$ and $\upsilon_{2\pi}^{(3)}(\mathbf{v})$
- $\rho_{\rm h}^{(1)}(\mathbf{v})$'s are unitarily equivalent

$$\rho_{\rm h}^{(1)}(\mathbf{v}) = \rho_{\rm h}^{(1)}(\mathbf{v}=0) + \left[\rho^{(-3)}, i U^{(1)}(\mathbf{v})\right]$$

EM charge @ n = 1 (or N4LO) 2.

• Charge operators (v-dependent included) up to n = 1 satisfy the condition

$$\rho^{(n>-3)}(\mathbf{q}=0)=0$$

which follows from charge conservation

$$\rho(\mathbf{q}=0) = \int d\mathbf{x} \rho(\mathbf{x}) = e \frac{(1+\tau_{1,z})}{2} + 1 \rightleftharpoons 2 = \rho^{(-3)}(\mathbf{q}=0)$$

• $\rho^{(1)}$ does not depend on unknown LECs and it is purely isovector