Determination of ChPT low energy constants from a precise description of $\pi\pi$ scattering threshold parameters

> <u>G. Ríos</u>, J. Nebreda, J. R. Peláez Universidad Complutense de Madrid

Chiral Dynamics 2012, JLab August 2012

Outline

1 Purpose

2 Introduction

- Chiral Perturbation Theory
- Low Energy Constants (LECs)
- Threshold parameters
- Sum rules

3 Results

- One-loop fits
- Two-loop fits
- 4 Summary

Purpose

Use a very recent **dispersive analysis of data**^{*}, in order to determine the **values of the** $O(p^4)$ **and** $O(p^6)$ **LECs** (low energy constants) appearing in the ChPT $\pi\pi$ scattering amplitudes.

We do it by fitting coefficients of the momentum expansion around threshold.

* R. Garcia-Martin, R. Kaminski, J. R. Pelaez, J. Ruiz de Elvira, F. J. Yndurain, Phys. Rev. D83, 074004 (2011).

Introduction

Chiral Perturbation Theory Weinberg, Gasser & Leutwyler

Low energy ($\ll 4\pi f_{\pi} \sim$ 1.2 GeV) effective theory of QCD with:

- DOF: π → pseudo-Goldstone bosons (NGB) of the spontaneous chiral symmetry breaking
- most general expansion in masses and momenta

$$\mathcal{L}_{eff} = \mathcal{L}_2 + \mathcal{L}_4 + \mathcal{L}_6 + \cdots$$

- parameters: Low Energy Constants (LECs)
 - absorbe loop divergencies
 - contain details of underlying dynamics of QCD
 - must be determined phenomenologically or from lattice calculations

Low Energy Constants (LECs) in $\pi\pi$ scattering

Leading order $(\mathcal{O}(p^2))$ - m_{π}, f_{π}

■ Next-to-next-to-leading order (*O*(*p*⁶)) - *b*₁, *b*₂, *b*₃, *b*₄, *b*₅, *b*₆

Threshold parameters

 $\pi\pi$ scattering amplitudes decomposed in partial waves

$$F_{(I)}(s,t) = \frac{T_{(I)}(s,t)}{4\pi^2} = \frac{8}{\pi} \sum_{\ell} (2\ell+1) t_{\ell I}(s) P_{\ell}(\cos\theta)$$

 $t_{\ell I}(s)$ determined from the phase shift only (elastic regime)

$$t_{\ell I}(s) = \frac{e^{\delta_{\ell I}(s)} \sin \delta_{\ell I}(s)}{\sigma(s)}$$

Effective range expansion at low p

$$\frac{1}{m_{\pi}} \operatorname{Re} t_{\ell I}(s) = p^{2\ell} \left(a_{\ell I} + b_{\ell I} p^2 + \frac{1}{2} c_{\ell I} p^4 + \ldots \right)$$
Scattering length Slope parameter Shape parameter

Contributions to threshold parameters

		$O(p^2)$	$O(p^4)$		$O(p^6)$		
		pol.	l _i pol.	J	b_i pol.	$b_i J$	K
$\ell = 0 \Rightarrow S wave$	a_S	х	х	х	х	х	х
$\frac{\operatorname{Re} t_0(s)}{m_{\pi}} = \left(a_S + b_S p^2 + \frac{1}{2}c_S p^4 + \ldots\right)$	b_S	x	x	x	х	х	х
	c_S		х	х	х	х	х
$\ell = 1 \Rightarrow P$ wave	a_P	х	х	х	х	х	х
$\frac{\operatorname{Re} t_1(s)}{m_{\pi}} = \left(a_P p^2 + b_P p^4 + \frac{1}{2}c_P p^6 + \ldots\right)$	b_P		х	x	х	х	х
	C_P			х	Х	х	х
$\ell = 2 \Rightarrow D$ wave	a_D		х	х	х	Х	х
$\frac{\operatorname{Re} t_3(s)}{m_{\pi}} = \left(a_D p^4 + b_D p^6 + \frac{1}{2}c_D p^8 + \ldots\right)$	b_D			x	х	х	х
	c_D			Х		х	х
$\ell = 3 \Rightarrow F$ wave	a_F			х	х	х	х
$\frac{\operatorname{Re} t_4(s)}{m_{\pi}} = \left(a_F p^6 + b_F p^8 + \frac{1}{2} c_F p^{10} + \ldots\right)$	b_F			x		x	х
	c_F			х		х	Х

Sum rules

We use the threshold parameters calculated in * using **Froissart-Gribov sum rules** for $\ell > 0$

$$a_{\ell I} = rac{\sqrt{\pi}\,\Gamma(\ell+1)}{4m_{\pi}\Gamma(\ell+3/2)}\!\int_{4m_{\pi}^2}^{\infty}\!\mathrm{d}s\,rac{\mathrm{Im}\,F_{(I)}(s,4m_{\pi}^2)}{s^{\ell+1}}$$

$$b_{\ell I} = \frac{\sqrt{\pi}\,\Gamma(\ell+1)}{2m_{\pi}\Gamma(\ell+3/2)} \int_{4m_{\pi}^2}^{\infty} \mathrm{d}s \,\Big\{ \frac{4\mathrm{Im}\,F_{(I)}{}_{\cos\theta}(s,4m_{\pi}^2)}{(s-4m_{\pi}^2)s^{\ell+1}} - \frac{(\ell+1)\mathrm{Im}\,F_{(I)}(s,4m_{\pi}^2)}{s^{\ell+2}} \Big\}$$

(obtained by projecting a dispersion relation -or its derivativeover the ℓ th partial wave in the *t* channel)

and fast converging sum rules for b_{S0} , b_{S2} and b_P

^{*} R. Garcia-Martin, R. Kaminski, J. R. Pelaez, J. Ruiz de Elvira, F. J. Yndurain, Phys. Rev. D83, 074004 (2011).

In order to calculate the $c_{\ell I}$ parameters, we use the **Froissart-Gribov sum rule** for $\ell > 0$ for them

$$\begin{split} c_{\ell I} &= \frac{\sqrt{\pi}\,\Gamma(\ell+1)}{m_{\pi}\,\Gamma(\ell+3/2)} \int_{4m_{\pi}^2}^{\infty} \mathrm{d}s \left\{ \frac{16\,\mathrm{Im}\,F_{(I)}{}_{\cos\,\theta}^{\prime\prime}(s,4m_{\pi}^2)}{(s-4m_{\pi}^2)^2 s^{\ell+1}} \right. \\ &- 8(\ell+1) \frac{\mathrm{Im}\,F_{(I)}{}_{\cos\,\theta}^{\prime}(s,4m_{\pi}^2)}{(s-4m_{\pi}^2) s^{\ell+2}} + \frac{\mathrm{Im}\,F_{(I)}(s,4m_{\pi}^2)}{s^{\ell+3}} \frac{(\ell+2)^2(\ell+1)}{\ell+3/2} \right\}, \end{split}$$

and three additional fast converging sum rules for c_{S0} , c_{S2} and c_P

$$c_P = -\frac{14\,a_F}{3} + \frac{16}{3m_\pi} \int_{4m_\pi^2}^{\infty} ds' \left\{ \frac{\mathrm{Im}\,F_{I=0}(s)}{3s'^4} - \frac{\mathrm{Im}\,F_{I=1}(s)}{2s'^4} - \frac{5\mathrm{Im}\,F_{I=2}(s)}{6s'^4} + \left[\frac{\mathrm{Im}\,F_{I=1}(s)}{(s-4m_\pi^2)^4} - \frac{3a_P^2m_\pi}{4\pi(s-4m_\pi^2)^{3/2}} \right] \right\}$$

$$\begin{split} c_{S2} &= -6b_P - 10a_{D2} + \frac{8}{m_\pi} \int_{4m_\pi^2}^{\infty} \left\{ \frac{\ln F^{0+}(s)}{s^3} + \frac{1}{(s - 4m_\pi^2)^{5/2}} \right. \\ & \left. \times \left[\frac{\ln F^{0+}(s)}{\sqrt{s - 4m_\pi^2}} - \frac{2m_\pi a_{S2}^2}{\pi} - \frac{s - 4m_\pi^2}{\pi} \left(\frac{m_\pi}{2} (2a_{S2}b_{S2} + a_{S2}^4) - \frac{a_{S2}^2}{4m_\pi} \right) \right] \right\} \end{split}$$

$$\begin{split} c_{S0} &= -2c_{S2} - 20a_{D2} - 10a_{D0} + \frac{12}{m_{\pi}} \int_{4m_{\pi}^2}^{\infty} \left\{ \frac{\operatorname{Im} F^{00}(s)}{s^3} + \frac{1}{(s - 4m_{\pi}^2)^{5/2}} \right. \\ & \left. \times \left[\frac{\operatorname{Im} F^{00}(s)}{\sqrt{s - 4m_{\pi}^2}} - \frac{4m_{\pi}(2a_{S2}^2 + a_{S0}^2)}{3\pi} - \frac{s - 4m_{\pi}^2}{3\pi} \left(m_{\pi}(2a_{S2}b_{S2} + a_{S2}^4 + 2a_{S0}b_{S0} + a_{S0}^4) - \frac{2a_{S2}^2 + a_{S0}^2}{2m_{\pi}} \right) \right] \right\} \end{split}$$

Threshold limit of the second derivative of a forward dispersion relation for $F_{I_s=1}$, F^{0+} and F^{00} ($F^{0+} = \frac{F_{I_s=2}}{2} + \frac{F_{I_s=1}}{2}$, $F^{00} = 2\frac{F_{I_s=2}}{3} + \frac{F_{I_s=0}}{3}$)

Results

We fit the ChPT expressions for the threshold parameters.

In order to see how the series converge, we make

- One-loop fits
- Two-loop fits

	$O(p^2)$	$O(p^4)$)
	pol.	l _i pol.	J
a_{S0}, a_{S2}	Х	х	х
b_{S0}, b_{S2}	х	x	x
c_{S0}, c_{S2}		х	х
a _P	х	x	x
b_P		x	x
CP			х
a_{D0}, a_{D2}		x	x
b_{D0}, b_{D2}			x
c_{D0}, c_{D2}			х
a_F			x
b_F			x
c_F			x

- Four parameters: $\bar{l}_i \propto l_i^r(\mu)|_{\mu=m_{\pi}}$
- Only ten observables carry dependence on LECs
- Only five observables have
 \$\mathcal{O}(p^2)\$ as leading contribution

■ a_{S(0,2)}, b_{S(0,2)}, a_P: observables for which the leading contribution is of O(p²)

a_{D(0,2)}: commonly used for the determination of l_1 and l_2

	\overline{l}_1	\overline{l}_2	\overline{l}_3	\overline{l}_4	$\chi^2/d.o.f.$
$a_{S(0,2)},\ b_{S(0,2)},a_P$	(1.1)±1.0	5.1±0.7	-1±8	7.1±0.7	0.23
$a_{D(0,2)}$	-1.75±0.22	$5.91{\pm}0.10$		—	0

Incompatible fits

If we include the 10 observables containing l_i , the incompatibility is even clearer

	\overline{l}_1	\overline{l}_2	\overline{l}_3	\overline{l}_4	$\chi^2/d.o.f.$
All	-2.06±0.14	5.97±0.07	-5±8	7.1±0.6	7.9
All, $f_{\pi} \leftrightarrow f_0$	-1.06±0.11	4.6±0.9	0±6	$5.0{\pm}0.3$	7.06

If one insists in using $O(p^4)$ for simplicity, one needs to sacrifice precision

$$-1.5 \pm 0.5$$
 5.2 ± 0.7 -2 ± 7 6.0 ± 1.2

Hence, a precise description calls for higher order corrections

	$O(p^2)$	$O(p^4)$		0	(p^{6})	
	pol.	l _i pol.	J	b _i pol.	$b_i J$	K
a_{S0}, a_{S2}	x	х	x	x	х	х
b_{S0}, b_{S2}	x	х	x	x	х	x
c_{S0}, c_{S2}		х	x	x	х	х
a_P	x	х	x	x	х	х
b_P		х	x	x	х	х
CP			x	x	х	х
a_{D0}, a_{D2}		х	x	x	х	х
b_{D0}, b_{D2}			x	x	х	х
c_{D0}, c_{D2}			x		х	х
a_F			x	x	х	х
b_F			x		х	х
CF			x		х	х

- Six parameters \bar{b}_i
- 18 observables
- Ten observables have $\mathcal{O}(p^4)$ contributions depending on l_i

• $a_{S,P,D}$, $b_{S,P}$, c_S : we fit the same 10 observables (those for which the $\mathcal{O}(p^4)$ contribution depends on the l_i)

	$ar{b}_1$	\bar{b}_2	\bar{b}_3	$ar{b}_4$	\bar{b}_5	\bar{b}_6	$\chi^2/d.o.f.$
$a_{S,P,D},$ $b_{S,P}, c_S$	-14±4	14.6±1.2	-0.29±0.05	0.76±0.02	0.1±1.1	2.2±0.2	1.19
							1

At two loops, the ten observables are well fitted /

However, if we include in the fit

• All: 18 threshold parameters

	\bar{b}_1	\bar{b}_2	\bar{b}_3	$ar{b}_4$	\bar{b}_5	\bar{b}_6	$\chi^2/d.o.f.$
$a_{S,P,D},$ $b_{S,P}, c_S$	-14±4	14.6±1.2	-0.29±0.05	0.76±0.02	0.1±1.1	2.2±0.2	1.19
All	-2±3	14.2±1.0	-0.39±0.04	0.746±0.013	3.1±0.3	2.58±0.12	5.2
				Not	such a	and fit	

Hints to the need of **higher order corrections** in order to describe the threshold parameters at the current level of precision

We observe that the larger contribution to the χ^2 comes from c_P

• W/o c_P: All parameters except c_P

	$ar{b}_1$	\bar{b}_2	\bar{b}_3	$ar{b}_4$	\bar{b}_5	$ar{b}_6$	$\chi^2/d.o.f.$
$a_{S,P,D},$ $b_{S,P}, c_S$	-14±4	14.6±1.2	-0.29±0.05	0.76±0.02	0.1±1.1	2.2±0.2	1.19
All	-2±3	14.2±1.0	-0.39±0.04	0.746±0.013	3.1±0.3	2.58±0.12	5.2
W/o c _P	-6±3	15.9±1.1	-0.36±0.04	$0.753{\pm}0.012$	$2.2{\pm}0.3$	$2.44{\pm}0.12$	2.9

We repeat the fit without c_P replacing f_{π} by f_0 in $O(p^6)$ terms (higher order effect)

	\bar{b}_1	\bar{b}_2	\bar{b}_3	$ar{b}_4$	\bar{b}_5	\bar{b}_6	$\chi^2/d.o.f.$
W/o <i>c</i> _P	-6±3	15.9±1.1	-0.36±0.04	$0.75{\pm}0.01$	2.2±0.3	2.4±0.1	2.9
$\frac{W/o\ c_P}{f_\pi \leftrightarrow f_0}$	-12±3	13.9±0.9	-0.30±0.04	0.73±0.01	1.0±0.3	1.9±0.1	1.04
Our estimate	-7±6	14±2	-0.31±0.07	0.73±0.02	1.2±1.1	2.0±0.5	

weighted average with systematic errors to include both results

We repeat the fit without c_P replacing f_{π} by f_0 in $O(p^6)$ terms (higher order effect)

	\bar{b}_1	\bar{b}_2	\bar{b}_3	$ar{b}_4$	\bar{b}_5	\bar{b}_6	$\chi^2/d.o.f.$
W/o <i>c</i> _P	-6±3	15.9±1.1	-0.36±0.04	0.75±0.01	2.2±0.3	2.4±0.1	2.9
$ W / o c_P f_\pi \leftrightarrow f_0 $	-12±3	13.9±0.9	-0.30±0.04	0.73±0.01	1.0±0.3	1.9±0.1	1.04
Our estimate	-7±6	14±2	-0.31±0.07	0.73±0.02	1.2±1.1	2.0±0.5	
CGL *	-13±1	11.7±0.9	-0.33±0.12	0.74±0.03	3.6±1.7	2.4±0.2	

Results compatible with previous determinations

* G. Colangelo, J. Gasser, and H. Leutwyler, Nucl. Phys. B 603 (2001) 125.

Summary

Summary

We have calculated the threshold parameters c_{ℓ} by using a precise dispersive data analysis in sum rules.

We have shown results of one and two-loop fits:

• One loop (4 parameters, \bar{l}_i):

- not enough to describe observables with precision
- Two loops (6 parameters, \bar{b}_i):
 - all observables except for c_P are well described
 - with parameters consistent with previous determinations
 - but, at least c_P , calls for even higher order corrections

Thank you!

Resulting observables:

	Avg. $O(p^4)$	Avg. $O(p^6)$	Sum rules
a_{S0}	0.213 ± 0.009	0.235 ± 0.015	0.220 ± 0.008
$a_{S2}(\times 10^2)$	-4.45 ± 0.3	-4.1 ± 0.4	-4.2 ± 0.4
$a_P(\times 10^3)$	38.6 ± 1.2	38.8 ± 0.9	38.1 ± 0.9
$a_{D0}(\times 10^4)$	15 ± 3	16.8 ± 0.6	17.8 ± 0.3
$a_{D2}(\times 10^4)$	1.3 ± 1.0	1.8 ± 0.3	1.85 ± 0.18
$a_F(\times 10^5)$	—	$\underline{4.6\pm0.5}$	5.65 ± 0.23
b_{S0}	$\underline{0.254 \pm 0.010}$	0.270 ± 0.008	0.278 ± 0.005
$b_{S2}(\times 10^2)$	-8.2 ± 0.5	-8.4 ± 0.3	-8.2 ± 0.4
$b_P(\times 10^3)$	$\underline{4.4 \pm 0.5}$	5.1 ± 0.2	5.37 ± 0.14
$b_{D0}(\times 10^4)$	—	-3.6 ± 0.4	-3.5 ± 0.2
$b_{D2}(\times 10^4)$	—	-3.1 ± 0.4	-3.3 ± 0.1
$b_F(\times 10^5)$	—	$\underline{-3.5\pm0.3}$	-4.06 ± 0.27
$c_{S0}(\times 10^2)$	2.3 ± 1.3	1.2 ± 0.7	0.45 ± 0.67
$c_{S2}(\times 10^2)$	3.4 ± 0.7	2.8 ± 0.14	2.80 ± 0.24
$c_P(\times 10^3)$	—	0.3 ± 0.2	1.39 ± 0.12
c_{D0}	—	$\underline{3.6\pm0.2}$	4.4 ± 0.3
c_{D2}	—	3.2 ± 0.2	3.6 ± 0.2
$c_F(\times 10^5)$		$\underline{5.6\pm0.5}$	6.9 ± 0.4

Guillermo Ríos

ChPT LECs from threshold parameters

	\overline{l}_1	\overline{l}_2	\overline{l}_3	\overline{l}_4	$\chi^2/d.o.f.$
with LO	1.1±1.0	5.1±0.7	-1±8	7.1±0.7	0.23

• With LO: five observables with $\mathcal{O}(p^2)$ contribution

	\overline{l}_1	\overline{l}_2	\overline{l}_3	\overline{l}_4	$\chi^2/d.o.f.$
with LO	1.1±1.0	5.1±0.7	-1±8	$7.1{\pm}0.7$	0.23
D-waves	-1.75±0.22	5.91±0.10	—	_	0

- With LO: five observables with $\mathcal{O}(p^2)$ contribution
- D-waves: l_1 and l_2 from a_{D0} and a_{D2}

	\overline{l}_1	\overline{l}_2	\overline{l}_3	\overline{l}_4	$\chi^2/d.o.f.$
with LO	1.1±1.0	5.1±0.7	-1±8	$7.1{\pm}0.7$	0.23
D-waves	-1.75±0.22	$5.91{\pm}0.10$	—	—	0
Only c _S	-2.4±0.9	4.8±0.4		—	0

- With LO: five observables with $\mathcal{O}(p^2)$ contribution
- D-waves: l_1 and l_2 from a_{D0} and a_{D2}
- Only c_s : l_1 and l_2 from c_{S0} and c_{S2}

	\overline{l}_1	\overline{l}_2	\overline{l}_3	\overline{l}_4	$\chi^2/d.o.f.$
with LO	1.1±1.0	5.1±0.7	-1±8	$7.1{\pm}0.7$	0.23
D-waves	-1.75±0.22	5.91±0.10	—	—	0
Only c _S	-2.4±0.9	4.8±0.4	_		0
All	-2.06±0.14	5.97±0.07	-5±8	7.1±0.6	7.9

- \bullet With LO: five observables with $\mathcal{O}(p^2)$ contribution
- D-waves: l_1 and l_2 from a_{D0} and a_{D2}
- Only c_s : l_1 and l_2 from c_{S0} and c_{S2}
- All: ten observables fitted

	\overline{l}_1	\overline{l}_2	\overline{l}_3	\overline{l}_4	$\chi^2/d.o.f.$
with LO	1.1±1.0	5.1±0.7	-1±8	$7.1{\pm}0.7$	0.23
D-waves	-1.75±0.22	5.91±0.10		—	0
Only c _S	-2.4±0.9	4.8±0.4	_	—	0
All	-2.06±0.14	5.97±0.07	-5±8	7.1±0.6	7.9
$\operatorname{All} f_0$	-1.06±0.11	4.6±0.9	0±6	5.0±0.3	7.06

- With LO: five observables with $\mathcal{O}(p^2)$ contribution
- D-waves: l_1 and l_2 from a_{D0} and a_{D2}
- Only c_s : l_1 and l_2 from c_{S0} and c_{S2}
- All: ten observables fitted
- All f_0 : same, replacing f_{π} by f_0 in $\mathcal{O}(p^4)$ terms

	\overline{l}_1	\overline{l}_2	\overline{l}_3	\overline{l}_4	$\chi^2/d.o.f.$
with LO	1.1±1.0	5.1±0.7	-1±8	$7.1{\pm}0.7$	0.23
D-waves	-1.75±0.22	5.91±0.10		—	0
Only c _s	-2.4±0.9	4.8±0.4		—	0
All	-2.06±0.14	5.97±0.07	-5±8	7.1±0.6	7.9
$\operatorname{All} f_0$	-1.06±0.11	4.6±0.9	0±6	$5.0{\pm}0.3$	7.06
Our estimate	-1.5±0.5	5.2±0.7	-2±7	6.0±1.2	_