A scrutiny of hard pion chiral perturbation theory

Massimiliano Procura

b UNIVERSITÄT BERN

Albert Einstein Center for Fundamental Physics

7th Workshop on Chiral Dynamics, JLab, Newport News, August 2012

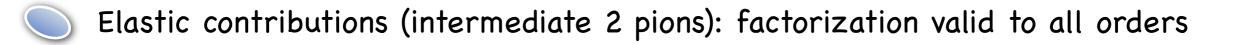
Outline

 \bigcirc

Hard pion ChPT: factorization of leading chiral logarithms

 \bigcirc

Pion vector and scalar form factors for $M_\pi^2 \ll s$: dispersive representation



G. Colangelo, MP, L. Rothen, R. Stucki and J. Tarrús Castellà arXiv: 1208.0498

Flynn and Sachrajda (2008)

 $K \to \pi$ form factors in SU(2) ChPT: predictions for leading chiral logarithms even for $q^2 = 0$ (i.e. $E_\pi \simeq M_K/2$)

Bijnens and Celis (2009), Bijnens and Jemos (2010, 2011)

predictions for leading chiral logarithms in a variety of processes with hard pions in the final state: $K \to \pi\pi$ decays, $B \to \pi$ and $D \to \pi$ form factors at $q^2 < q^2_{\rm max}$, pion form factors $F_{V,S}(s, M^2_{\pi})$ for $M^2_{\pi} \ll s$

Vector and scalar pion form factors

 \bigcirc

Hard pion ChPT predicts that, for $M_\pi^2/s \ll 1$, the leading chiral logarithm factorizes from the energy dependence in the chiral limit:

$$F_{V,S}(s, M^2) = \overline{F}_{V,S}(s) \left[1 + \alpha_{V,S} L \right] + \mathcal{O}(M^2)$$

with

$$L \equiv \frac{M^2}{(4\pi F)^2} \ln \frac{M^2}{s} , \quad M_\pi^2 = M^2 + \mathcal{O}(M^4) , \quad F_\pi^2 = F + \mathcal{O}(M^2)$$

 \bigcirc

Expanding the two-loop standard SU(2) ChPT result in Bijnens, Colangelo and Talavera (1998) for $M_\pi^2/s\ll 1$ one obtains the factorized form predicted by Hard pion ChPT with

$$\alpha_S = -\frac{5}{2} \,, \qquad \alpha_V = -1$$

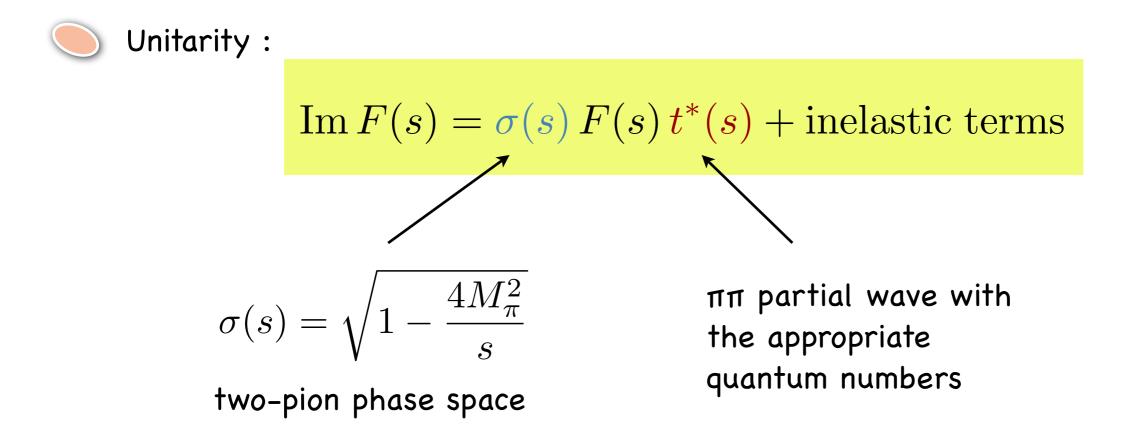
Quantitative explanation of this factorization property ?

Still valid beyond two loops ?

Analyticity :

$$F(s) = 1 + \frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} ds' \, \frac{\operatorname{Im} F(s')}{s'(s'-s)}$$

with $F_{V,S}(0) = 1$

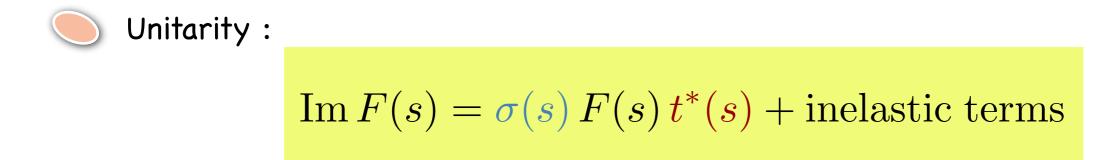


Analyticity :

$$F(s) = 1 + \frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} ds' \, \frac{\operatorname{Im} F(s')}{s'(s'-s)}$$

 $F_{V,S}(0) = 1$

with



Our notation (diagrammatic definition):

$$F(s) = F_{\rm el}(s) + F_{\rm inel}(s)$$

2 pion intermediate states also for the $\pi\pi$ partial wave

the only contribution up to 2 loops

Analyticity :

Unitarity :

$$F(s) = 1 + \frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} ds' \, \frac{\operatorname{Im} F(s')}{s'(s'-s)}$$

 $F_{V,S}(0) = 1$

with

Im $F(s) = \sigma(s) F(s) t^*(s)$ + inelastic terms

ChPT provides a perturbative solution to the dispersion relation, allows us to argue recursively applying the chiral counting:

one loop
$$Im F^{(2)}(s) = \sigma(s) t^{(2)*}(s)$$
 tree level
 $Im F^{(4)}(s) = \sigma(s) \left[t^{(4)*}(s) + F^{(2)}(s) t^{(2)}(s) \right]$

Analyticity :

Unitarity :

$$F(s) = 1 + \frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} ds' \, \frac{\operatorname{Im} F(s')}{s'(s'-s)}$$

 $F_{V,S}(0) = 1$

with

Im $F(s) = \sigma(s) F(s) t^*(s)$ + inelastic terms

ChPT provides a perturbative solution to the dispersion relation, allows us to argue recursively applying the chiral counting:

$$\operatorname{Im} F^{(2)}(s) = \sigma(s) \ t^{(2)*}(s) \qquad \text{one loop} \\ \operatorname{Im} F^{(4)}(s) = \sigma(s) \left[t^{(4)*}(s) + F^{(2)}(s) \ t^{(2)}(s) \right]$$

Analyticity :

$$F(s) = 1 + \frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} ds' \, \frac{\operatorname{Im} F(s')}{s'(s'-s)} \qquad \text{with} \qquad F_{V,S}(0) = 1$$

The leading chiral logarithms can arise :

- 1. from an integrand which does not contain a log of the pion mass and this is produced by the integration over s'
- 2. if the integrand itself contains a chiral log

Chiral logs from integration (ELASTIC)

Produced at the lower integration boundary $s'\sim 4M_\pi^2$:

use standard ChPT to analyze the integrand for $s' \sim M^2 \ll s$

$$F(s) = 1 + \frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} ds' \, \frac{\operatorname{Im} F(s')}{s'(s'-s)} = 1 + \frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} ds' \frac{\sigma(s')}{s'(s'-s)} \left(c_1 \, M^2 + c_2 \, s' + \mathcal{O}(p^4) \right)$$

The numerical constants c_1 and c_2 are related to the leading chiral contributions to the $\pi\pi$ scattering lengths and effective ranges

The leading chiral logarithm generated by the dispersive integration is

in agreement with Bijnens, Colangelo, Talavera (1998), Bijnens and Jemos (2011)

Chiral logs in the integrand (ELASTIC)

Contribution to the form factors at 2 loops :

$$\operatorname{Im} F^{(4)}(s) = \sigma(s) \begin{bmatrix} t^{(4)*}(s) + F^{(2)}(s) t^{(2)}(s) \end{bmatrix}$$

$$F^{(2)}(s) t^{(2)}(s) = \left(\overline{F}^{(2)}(s) + \alpha L\right) \overline{t}^{(2)}(s) + \mathcal{O}(M^2)$$

$$t^{(4)}(s) = \overline{t}^{(4)}(s) + \beta sL + \mathcal{O}(M^2)$$

Using Roy equations for $\pi\pi$ partial waves, we show that $\beta=0$, which implies that factorization is valid up to 2 loops :

$$F(s) = \left(1 + \overline{F}^{(2)}(s)\right)\left(1 + \alpha L\right) + \overline{F}^{(4)}(s) + \mathcal{O}(M^2) + \mathcal{O}(p^6)$$

in agreement with Hard pion ChPT

Chiral logs in the integrand (ELASTIC)

Contribution to the form factors at 2 loops :

$$\operatorname{Im} F^{(4)}(s) = \sigma(s) \begin{bmatrix} t^{(4)*}(s) + F^{(2)}(s) t^{(2)}(s) \end{bmatrix}$$

$$F^{(2)}(s) t^{(2)}(s) = \left(\overline{F}^{(2)}(s) + \alpha L\right) \overline{t}^{(2)}(s) + \mathcal{O}(M^2)$$

$$t^{(4)}(s) = \overline{t}^{(4)}(s) + \beta sL + \mathcal{O}(M^2)$$

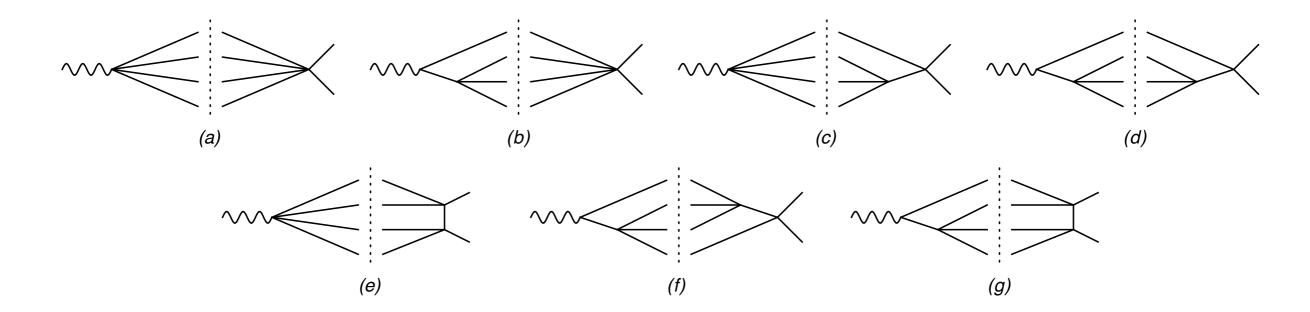
Using Roy equations for $\pi\pi$ partial waves, we show that eta=0 , which implies that factorization is valid up to 2 loops

By induction, we prove that all terms $s^{n-1}L$ in $t^{(2n)}(s)$ are absent: the elastic part (subclass of diagrams: 2 pion intermediate states) of the form factors factorizes to all orders in the chiral counting

Inelastic contributions to the DR

Start with 4 intermediate pions (3-loop diagrams)

$$F_{\text{inel}}(s) = \frac{s}{\pi} \int_{16M_{\pi}^2}^{\infty} ds' \, \frac{\text{Im} \, F_{\text{inel}}(s')}{s'(s'-s)} \, , \quad \text{Im} \, F_{\text{inel}}(s) = \frac{1}{2} \int d\Phi_4(s; p_1, p_2, p_3, p_4) \, F_{4\pi} \cdot T_{6\pi}^*$$

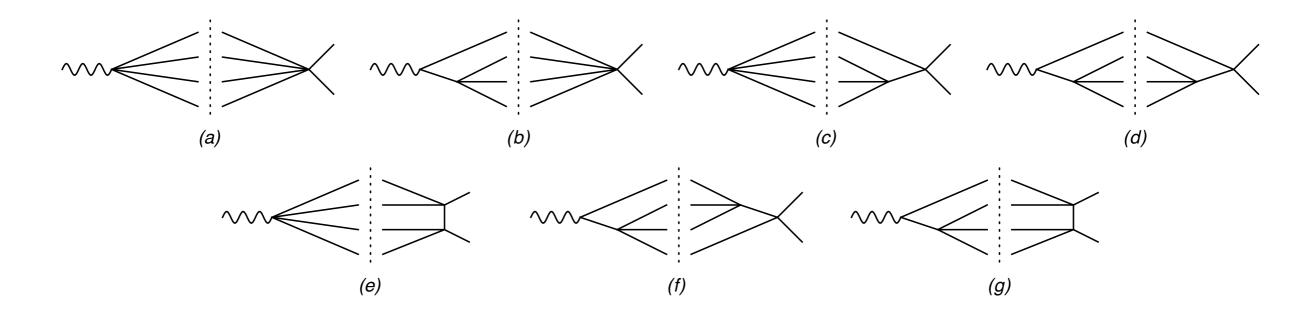


Chiral logs are produced by integrations over intermediate momenta with pion-mass-dependent boundaries

Inelastic contributions to the DR

Start with 4 intermediate pions (3-loop diagrams)

$$F_{\text{inel}}(s) = \frac{s}{\pi} \int_{16M_{\pi}^2}^{\infty} ds' \, \frac{\text{Im} \, F_{\text{inel}}(s')}{s'(s'-s)} \, , \quad \text{Im} \, F_{\text{inel}}(s) = \frac{1}{2} \int d\Phi_4(s; p_1, p_2, p_3, p_4) \, F_{4\pi} \cdot T_{6\pi}^*$$



Analytical results for the chiral limit values and coefficients of the leading chiral log for graphs (a), (b), (c), (d) and numerical results for (e), (f) and (g)

Inelastic contributions to the DR

Factorization is not valid at three loops:

$$F(s) = \left(1 + \overline{F}^{(2)}(s) + \overline{F}^{(4)}(s)\right) \left(1 + \alpha L\right) + \alpha_{\text{inel}}(s)L + \overline{F}^{(6)}(s) + \mathcal{O}(M^2) + \mathcal{O}(p^8)$$

with

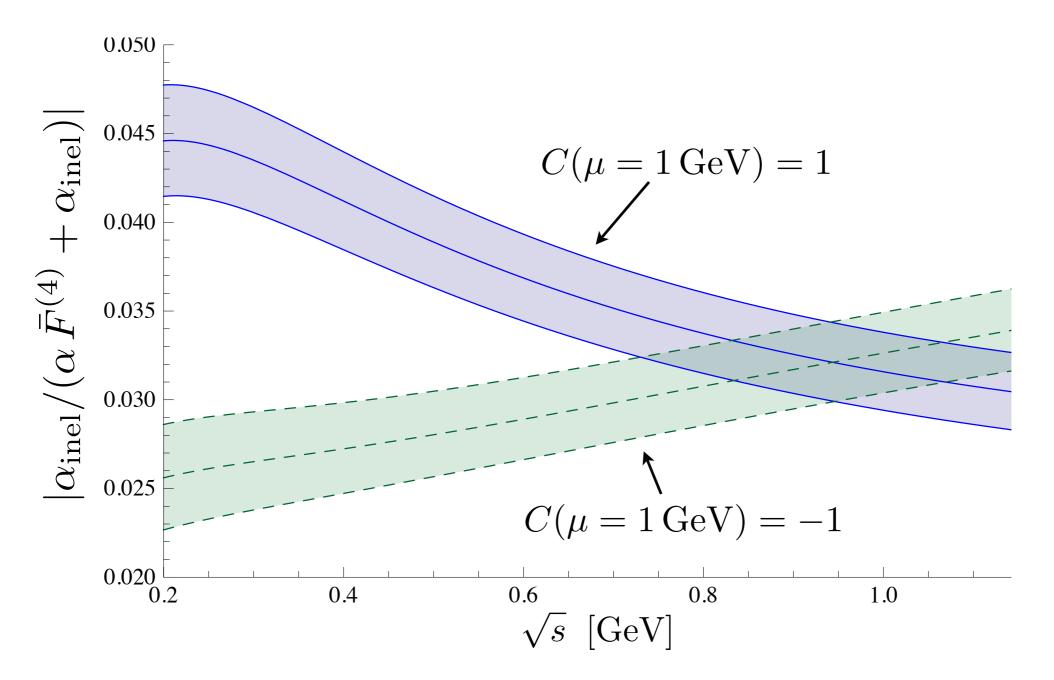
$$\alpha_{\text{inel}}(s) = \left[C(\mu^2) + \delta \times \left(\ln\frac{\mu^2}{s} + i\pi\right)\right] \frac{s^2}{(4\pi F)^4} , \quad \delta = -0.53 \pm 0.05$$

The coefficient of the leading chiral log is not universal

For values of \sqrt{s} which are not small compared to Λ_χ the three-loop contribution is not suppressed compared to one and two loops

Pion scalar FF at 3 loops

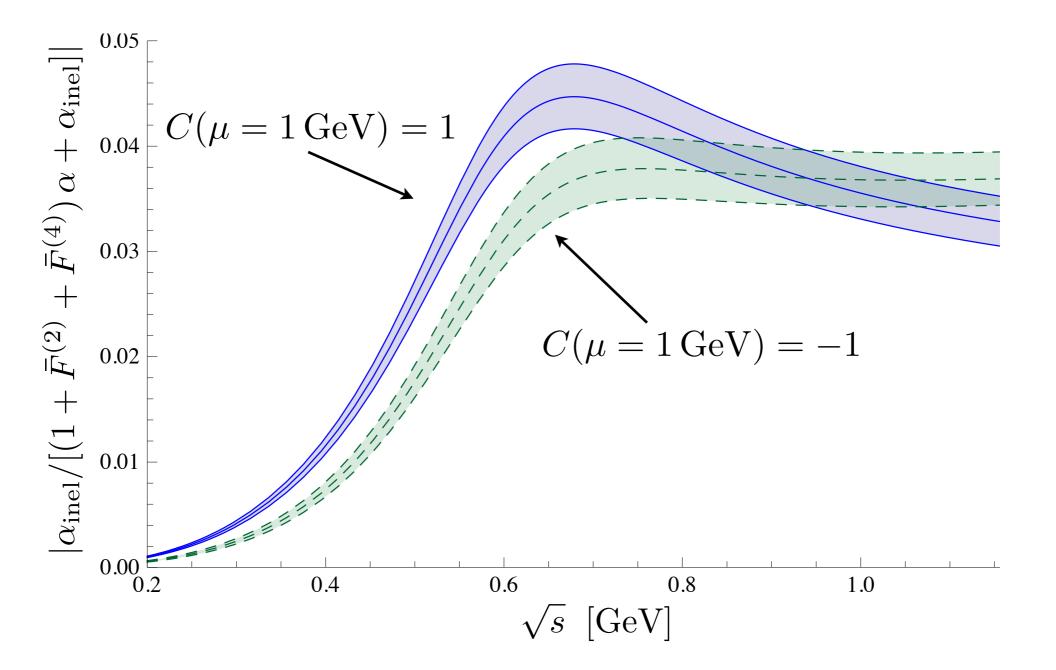
$$F(s) = \left(1 + \overline{F}^{(2)}(s) + \overline{F}^{(4)}(s)\right) \left(1 + \alpha L\right) + \alpha_{\text{inel}}(s)L + \overline{F}^{(6)}(s) + \mathcal{O}(M^2) + \mathcal{O}(p^8)$$



The 2-loop scalar FF in the chiral limit is extracted from Bijnens, Colangelo, Talavera (1998)

Pion scalar FF at 3 loops

$$F(s) = \left(1 + \overline{F}^{(2)}(s) + \overline{F}^{(4)}(s)\right) \left(1 + \alpha L\right) + \alpha_{\text{inel}}(s)L + \overline{F}^{(6)}(s) + \mathcal{O}(M^2) + \mathcal{O}(p^8)$$



The 2-loop scalar FF in the chiral limit is extracted from Bijnens, Colangelo, Talavera (1998)

Conclusions and outlook

Factorization of leading chiral logs in the pion form factors for $M_\pi^2 \ll s$

Dispersion relations and application of chiral counting: recursive analysis

We show how factorization emerges at two loops and is valid for a whole subclass of diagrams to all orders (with 2 intermediate pions)

Our calculation at 3 loops shows that factorization is broken by multipion contributions, which generate new leading chiral logs

Factorization could be valid to a good approximation only if one remains in the low-energy regime, with very small quark masses

Future work: extension of our analysis to heavy-light form factors

Additional slides

Chiral logs for asymptotic energies

For asymptotically large values of s ,

$$F_V(s) = \frac{F_{\pi}^2}{s} \int_0^1 dx \, dy \, T(x, y, s) \, \phi_{\pi}(x) \phi_{\pi}(y) \times \left[1 + \mathcal{O}(\Lambda_{\text{QCD}}^2/s, M_{\pi}^2/s)\right]$$

Brodsky and Lepage (1980)

The leading chiral log is given just by the one in F_π

Chen and Stewart (2004)

) Hence the leading chiral log does factorize for $s\gg\Lambda_{\rm QCD}^2$ but $lpha_V=-2$ while Hard pion ChPT predicts $lpha_V=-1$ (valid only in the low-energy regime)