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Based on the papers:

Gauhar Abbas and BA, European Physical Journal A 41 (2009) 7.

Gauhar Abbas, BA, I. Caprini, I. Sentitemsu Imsong and S. Ramanan,

European Physical Journal A 44 (2010) 175; European Physical Journal A

45 (2010) 389.

Gauhar Abbas, BA, I. Caprini and I. Sentitemsu Imsong , Physical Review,

D 82 (2010) 094018

Recent updates: arXiv:1112.4270 (PoS(RADCOR2011)036 ), and

arXiv:1202.5399 (DAE-BRNS Workshop proceedings, to appear)
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Related investigations

Methods have also been used for the pion electromagnetic form factor and

heavy light form factors

Of these the most recent are listed below.

For the pion electromagnetic form factor, see BA, Irinel Caprini and I.

Sentitemsu Imsong, Physical Review, D 85 (2012) 09006 [onset of

perturbative QCD and hence outside the range of validity of ChPT]

For the pion electromagnetic form factor, see BA, Irinel Caprini and I.

Sentitemsu Imsong, Physical Review, D 83 (2012) 09002 [stringent

constraints due to BELLE data on shape parameters and exclusion of zeros]

Applied also to heavy-light systemDπ form factors: BA, Irienl Caprini and

I. Sentitemsu Imsong, European Physical Journal, A 47 (2011) 147.
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The semi-leptonic decays are the processesK → πlνl (andτ → πKντ ).

The matrix element forK+
l3 has the structure:

T =
GF√

2
V ∗

usl
µF+

µ (p′, p)

lµ = u(pν)γµ(1 − γ5)v(pl)

F+(p′, p)µ = 〈π0(p′)|sγµu|K+(p)〉 =
1√
2
((p′ + p)µf+(t) + (p − p′)µf−(t))
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Recent review for isospin violation, A. Kastner and H. Neufeld, European

Physical Journal C57 (2008) 541.
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Process and Definitions

The semi-leptonic decays are the processesK → πlνl (andτ → πKντ ).

The matrix element forK+
l3 has the structure:

T =
GF√

2
V ∗

usl
µF+

µ (p′, p)

lµ = u(pν)γµ(1 − γ5)v(pl)

F+(p′, p)µ = 〈π0(p′)|sγµu|K+(p)〉 =
1√
2
((p′ + p)µf+(t) + (p − p′)µf−(t))

NeutralF 0
µ(p′, p) defined without the1/

√
2

Recent review for isospin violation, A. Kastner and H. Neufeld, European

Physical Journal C57 (2008) 541.

f+(t), t = (p′ − p)2 is known as the vector form factor as it is the P-wave

projection of the crossed channel matrix element〈0|sγµu|K+π0, in〉.
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Definitions continued

The scalar form factor

f0(t) = f+(t) +
t

M2
K − M2

π

f−(t)

is the analogous S-wave projection

The physical region ism2
l ≤ t ≤ (MK −Mπ)2 where the form factor is real

Consider the expansion aboutt = 0

f0(t) = f+(0)

(

1 + λ′

0

t

M2
π

+
1

2
λ′′

0

t2

M4
π

+ · · ·
)

,

λ′
0 = M2

π〈r2
πK〉/6, λ′′

0 = 2M4
π c are related to the radius〈r2

πK〉 and

curvature,c used alternatively in the literature.
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The scalar form factor

f0(t) = f+(t) +
t

M2
K − M2

π

f−(t)

is the analogous S-wave projection

The physical region ism2
l ≤ t ≤ (MK −Mπ)2 where the form factor is real

Consider the expansion aboutt = 0

f0(t) = f+(0)

(

1 + λ′

0

t

M2
π

+
1

2
λ′′

0

t2

M4
π

+ · · ·
)

,

λ′
0 = M2

π〈r2
πK〉/6, λ′′

0 = 2M4
π c are related to the radius〈r2

πK〉 and

curvature,c used alternatively in the literature.

Analogously defined for the vector form factor.

Unitarity and Analyticity Constraints... – p.5/39



Sources of information

The valuef+(0) comes from theory.

Unitarity and Analyticity Constraints... – p.6/39



Sources of information

The valuef+(0) comes from theory.

Chiral theorems for the scalar form factors: values at special points are

related toFπ/FK .

Unitarity and Analyticity Constraints... – p.6/39



Sources of information

The valuef+(0) comes from theory.

Chiral theorems for the scalar form factors: values at special points are

related toFπ/FK .

The slope and curvature parameters are determined from fitting to Dalitz

plot distributions. Detailed discussion on experiments will be presented.

Unitarity and Analyticity Constraints... – p.6/39



Sources of information

The valuef+(0) comes from theory.

Chiral theorems for the scalar form factors: values at special points are

related toFπ/FK .

The slope and curvature parameters are determined from fitting to Dalitz

plot distributions. Detailed discussion on experiments will be presented.

More recently fromτ decays: BELLE has fitted them with resonances in

the time-like region on the unitarity cut.

Unitarity and Analyticity Constraints... – p.6/39



Sources of information

The valuef+(0) comes from theory.

Chiral theorems for the scalar form factors: values at special points are

related toFπ/FK .

The slope and curvature parameters are determined from fitting to Dalitz

plot distributions. Detailed discussion on experiments will be presented.

More recently fromτ decays: BELLE has fitted them with resonances in

the time-like region on the unitarity cut.

Solutions of Muskelishvili-Omnès equations for form factors using phase

shift information and some additional inputs to self- consistently generate

them. Work of Moussallam, group of Jamin, Oller, Pich, Boito, Escribano.
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f+(0) = 1 in the limit of md = mu = ms (SU(3) limit)

Corrections to the relation due toSU(3) breaking:∼ 20%.

Even smaller due to Ademollo-Gatto theorem.

Crucial for knowledge of Cabibbo-Kobayashi-Maskawa matrix as the

combinationf+(0)Vus appears in the expression for rates and Dalitz plot

densities.

Crucial work by H. Leutwyler and M. Roos, Zeitschrift für Physik, C25

(1984) 91.
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f+(0)

f+(0) = 1 in the limit of md = mu = ms (SU(3) limit)

Corrections to the relation due toSU(3) breaking:∼ 20%.

Even smaller due to Ademollo-Gatto theorem.

Crucial for knowledge of Cabibbo-Kobayashi-Maskawa matrix as the

combinationf+(0)Vus appears in the expression for rates and Dalitz plot

densities.

Crucial work by H. Leutwyler and M. Roos, Zeitschrift für Physik, C25

(1984) 91.

Recent determinations from the lattice, e.g., RBC+UKQCD collaboration

[P. A. Boyle et al., Physical Review Letters 100 (2008) 141601] gives

f+(0) = 0.964(5). They use 2+1 flavour of dynamical wall quarks.

(recent update, G. Colangelo et al., European Physical Journal, C (2011)

71:1695 [FLAG report] gives0.956 ± 0.008)
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Low energy theorems - I

A soft-pion theorem due to Callan and Treiman (C. G. Callan and S. B.

Treiman, Physical Review Letters 16 (1966) 153) says

f0(M
2
K − M2

π) = FK/Fπ + ∆CT

∆CT ≃ 0 to two-loops in chiral perturbation theory (J. Bijnens and P.

Talavera, Nuclear Physics B 669 (2003) 341.)

This point calledCT1 is above the end-point of theKl3 but is in the

analyticity part of the timelike region.
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A soft-pion theorem due to Callan and Treiman (C. G. Callan and S. B.

Treiman, Physical Review Letters 16 (1966) 153) says

f0(M
2
K − M2

π) = FK/Fπ + ∆CT

∆CT ≃ 0 to two-loops in chiral perturbation theory (J. Bijnens and P.

Talavera, Nuclear Physics B 669 (2003) 341.)

This point calledCT1 is above the end-point of theKl3 but is in the

analyticity part of the timelike region.

Knowledge ofFK/Fπ at high precision is therefore crucial.
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Low energy theorems - II

A soft-kaon theorem due to Oehme (R. Oehme, Physical Review Letters 16

(1966) 215) says

f0(M
2
π − M2

K) = Fπ/FK + ∆CT

∆CT = 0.03 is one-loop in chiral perturbation theory (J. Gasser and H.

Leutwyler, Nuclear Physics B250 (1985) 517).

This point known asCT2 is in the spacelike region.
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Low energy theorems - II

A soft-kaon theorem due to Oehme (R. Oehme, Physical Review Letters 16

(1966) 215) says

f0(M
2
π − M2

K) = Fπ/FK + ∆CT

∆CT = 0.03 is one-loop in chiral perturbation theory (J. Gasser and H.

Leutwyler, Nuclear Physics B250 (1985) 517).

This point known asCT2 is in the spacelike region.

Difficult to estimate higher order corrections (to our knowledge not yet

done in the literature).
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FK/Fπ

No such relations for vector form factor.

As a result, scalar form factor much better suited to theoretical analysis.

These relations in the unphysical region will be used by us inthe unitarity

bound technique.

FK/Fπ = 1.193 ± 0.006 according to recent lattice evaluations (see e.g., L.

Lellouch, arXiv:0902.4545; see also A. Bazavov et al. [MILC

collaboration], arXiv:0910.2966, which uses 2+1 flavor with improved

staggered quark action). Confirmed by S. Dürr et al. [BMW collaboration],

arXiv:1001.4692.

(FLAG report gives1.193 ± 0.005 for 2+1 flavors averaged over three

calculations, and1.210 ± 0.018 with 2 flavors and a single calculation)
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FK/Fπ

No such relations for vector form factor.

As a result, scalar form factor much better suited to theoretical analysis.

These relations in the unphysical region will be used by us inthe unitarity

bound technique.

FK/Fπ = 1.193 ± 0.006 according to recent lattice evaluations (see e.g., L.

Lellouch, arXiv:0902.4545; see also A. Bazavov et al. [MILC

collaboration], arXiv:0910.2966, which uses 2+1 flavor with improved

staggered quark action). Confirmed by S. Dürr et al. [BMW collaboration],

arXiv:1001.4692.

(FLAG report gives1.193 ± 0.005 for 2+1 flavors averaged over three

calculations, and1.210 ± 0.018 with 2 flavors and a single calculation)

An extremely interesting joint analysis off+(0) andFK/Fπ is by V.

Bernard and E. Passemar, JHEP 1004 (2010) 001
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Experiments

ISTRA: Experimental setup up at the IHEP 70 GeV proton synchrotron

U-70. Secondary beam with about 25 GeV protons.

O. P. Yushchenko et al., Physics Letters B 581 (2004) 31. Charged to muon.
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O. P. Yushchenko et al., Physics Letters B 581 (2004) 31. Charged to muon.

KLOE detector at DAFNE (e+e− collider at 1.02 GeV)

KL → πµν analysis based on about 1.8 million events from 328pb−1.

F. Ambrosino et al., JHEP 0712 (2007) 105.
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KLOE detector at DAFNE (e+e− collider at 1.02 GeV)

KL → πµν analysis based on about 1.8 million events from 328pb−1.

F. Ambrosino et al., JHEP 0712 (2007) 105.

NA48: KL produced at the 450 GeV SPS proton synchrotron at CERN.

A. Lai et al., Physics Letters B 602 (2004) 41, electron mode.

A. Lai et al., Physics Letters B 647 (2007) 341, muon mode

(possibly superceded by M. Veltri, arXiv:1101.5031)
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U-70. Secondary beam with about 25 GeV protons.

O. P. Yushchenko et al., Physics Letters B 581 (2004) 31. Charged to muon.

KLOE detector at DAFNE (e+e− collider at 1.02 GeV)

KL → πµν analysis based on about 1.8 million events from 328pb−1.

F. Ambrosino et al., JHEP 0712 (2007) 105.

NA48: KL produced at the 450 GeV SPS proton synchrotron at CERN.

A. Lai et al., Physics Letters B 602 (2004) 41, electron mode.

A. Lai et al., Physics Letters B 647 (2007) 341, muon mode

(possibly superceded by M. Veltri, arXiv:1101.5031)

KTeV experiment at Fermilab. 1.9 millionKL electron and 1.5 millionKL

muono decays.

T. Alexopoulos et al., Physical Review D 70 (2004) 092007

E. Abouzaid et al., Physical Review D 81 (2010) 052001
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Scalar experiments – summary

-0.02 0 0.02 0.04 0.06
λ

0

/

Alexopoulos, KTeV (2004)

Yushchenko, ISTRA (2004)

Lai, NA48 (2007)

Ambrosino, KLOE (2007)

Sciascia, Flavianet Kaon WG (2008)

Amsler, PDG (2009)
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Updated summary
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Sciascia, Flavianet Kaon WG (2008)

Amsler, PDG (2009)

Abouzaid, KTeV (2009)

Veltri, NA48 (2011)
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τ decays from BELLE

D. Epifanov et al., Physics Letters B 654 (2007) 65 reports measurement of

modulus and phase of theKπ form factors in terms of resonances, based on

about 53,000 lepton tagged events.

Unitarity and Analyticity Constraints... – p.14/39



τ decays from BELLE

D. Epifanov et al., Physics Letters B 654 (2007) 65 reports measurement of

modulus and phase of theKπ form factors in terms of resonances, based on

about 53,000 lepton tagged events.

Note that the measurement here is in the time-like region on the unitarity

cut. Produces an important consistency check.

Unitarity and Analyticity Constraints... – p.14/39



τ decays from BELLE

D. Epifanov et al., Physics Letters B 654 (2007) 65 reports measurement of

modulus and phase of theKπ form factors in terms of resonances, based on

about 53,000 lepton tagged events.

Note that the measurement here is in the time-like region on the unitarity

cut. Produces an important consistency check.

Mushkelishvili-Omnès study ofπK, πK∗, Kρ and use of high statistics

LASS experiment phase shifts used to produce theπK vector form factor

and compared with BELLE (B. Moussallam, European Physical Journal C

53 (2008) 401)

Unitarity and Analyticity Constraints... – p.14/39



τ decays from BELLE

D. Epifanov et al., Physics Letters B 654 (2007) 65 reports measurement of

modulus and phase of theKπ form factors in terms of resonances, based on

about 53,000 lepton tagged events.

Note that the measurement here is in the time-like region on the unitarity

cut. Produces an important consistency check.

Mushkelishvili-Omnès study ofπK, πK∗, Kρ and use of high statistics

LASS experiment phase shifts used to produce theπK vector form factor

and compared with BELLE (B. Moussallam, European Physical Journal C

53 (2008) 401)

Series of studies based on these data: M. Jamin et al. PhysicsLetters B 664

(2008) 78; B 640 (2006) 176

D. R. Boito et al., European Physical Journal C 59 (2009) 821.
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Our work is motivated by the need to exploit in a complete and optimal way

the available information.
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Theoretical approaches

Our work is motivated by the need to exploit in a complete and optimal way

the available information.

We use analyticity, dispersion relations and theoretical inputs.

We use experimental scattering phase shifts determined using Roy-Steiner

equations via Watson theorem (the phase of the form factor isthe scattering

phase shift in the elastic region).

Uses experimental information in such a way as to optimize all available

inputs, and the modulus information only to evaluate an integral.

For a guide, we look at the scalar form factor analysis of M. Jamin, J. A.

Oller and A. Pich, Nuclear Physics B622 (2002) 279; PhysicalReview D 74

(2006) 074009.

Our phase and modulus data come from Moussallam, group of Jamin et al.,

and from BELLE.
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QCD correlator χ
0
(Q2) - I

Consider the QCD correlator

χ
0
(Q2) ≡ ∂

∂q2

[

q2Π0

]

=
1

π

∫ ∞

t+

dt
tImΠ0(t)

(t + Q2)2
,

ImΠ0(t) ≥
3

2

t+t−
16π

[(t − t+)(t − t−)]1/2

t3
|f0(t)|2 ,

with t± = (MK ± Mπ)2.
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QCD correlator χ
0
(Q2) - I

Consider the QCD correlator

χ
0
(Q2) ≡ ∂

∂q2

[

q2Π0

]

=
1

π

∫ ∞

t+

dt
tImΠ0(t)

(t + Q2)2
,

ImΠ0(t) ≥
3

2

t+t−
16π

[(t − t+)(t − t−)]1/2

t3
|f0(t)|2 ,

with t± = (MK ± Mπ)2.

Positive definite and can be bounded.

Bounds can be obtained using analyticity to transform the problem, and to

input values of the form factor and its derivatives att = 0 and/or knowledge

at various points in the analyticity region (method of unitarity bounds).
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QCD correlator χ
0
(Q2) - II

On the other hand, in pQCD whenQ ≫ ΛQCD, mq, αS MS scheme.

χ0(Q
2)=

3(ms − mu)2

8π2Q2

[

1 + 1.80αs + 4.65α2
s + 15.0α3

s + 57.4α4
s . . .

]

.
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QCD correlator χ
0
(Q2) - II

On the other hand, in pQCD whenQ ≫ ΛQCD, mq, αS MS scheme.

χ0(Q
2)=

3(ms − mu)2

8π2Q2

[

1 + 1.80αs + 4.65α2
s + 15.0α3

s + 57.4α4
s . . .

]

.

For details, Gauhar Abbas et al, arXiv:0912.2831, C. Bourrely and Irinel

Caprini, Nuclear Physics B722 (2005) 149.
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QCD correlator χ
0
(Q2) - II

On the other hand, in pQCD whenQ ≫ ΛQCD, mq, αS MS scheme.

χ0(Q
2)=

3(ms − mu)2

8π2Q2

[

1 + 1.80αs + 4.65α2
s + 15.0α3

s + 57.4α4
s . . .

]

.

For details, Gauhar Abbas et al, arXiv:0912.2831, C. Bourrely and Irinel

Caprini, Nuclear Physics B722 (2005) 149.

Reverse problem: to constrainλ′
0, λ′′

0 andf0(∆Kπ) andf0(∆Kπ).
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Transforming via Conformal map

z − 1

z + 1
= i

√

t

t+
− 1
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Transforming via Conformal map

z − 1

z + 1
= i

√

t

t+
− 1

Im t

Re t

z(t)

Conformal map
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The problem transformed

We can now use the conformal map to transform this to an integral that

reads

1

2π

∫ 2π

0

|h(exp(iθ))|2 ≤ IpQCD

and needs to be bounded.
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The problem transformed

We can now use the conformal map to transform this to an integral that

reads

1

2π

∫ 2π

0

|h(exp(iθ))|2 ≤ IpQCD

and needs to be bounded.

This requires the knowledge of theouter function associated with the

function multiplying|f0(t)|2 and the Jacobian of the transformation.
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The problem transformed

We can now use the conformal map to transform this to an integral that

reads

1

2π

∫ 2π

0

|h(exp(iθ))|2 ≤ IpQCD

and needs to be bounded.

This requires the knowledge of theouter function associated with the

function multiplying|f0(t)|2 and the Jacobian of the transformation.

For the case at hand:

w(z) =
3

16
√

2π

MK − Mπ

MK + Mπ

√
1 − z (1 + z)3/2

× (1 + z(−Q2))2

(1 − z z(−Q2))2
(1 − z z(t−))1/2

(1 + z(t−))1/2
,

h(z) = w(z)f0(z).
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Analytic Interpolation Theory and Hardy Spaces

The class of problems involving such pieces of information comes under the

purview of ‘ananlytic interpolation theory’
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Analytic Interpolation Theory and Hardy Spaces

The class of problems involving such pieces of information comes under the

purview of ‘ananlytic interpolation theory’

The class of functions is defined on the unit disc|z| < 1

Typical denominators involving(1 − z1z
∗
2)

Theory of Hardy Spaces (H2) involves square integrable functions on the

open unit disc

Ideal setting for us since the original integral now is reduced to a series

expansion on the Hardy Space and involves only the expansioncoefficients.
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Power series and origin of the bound

Power series:h(z) = a0 + a1z + a2z
2 + ... [Fourier series with

non-negative powers ofeiθ]. Guaranteed for such functions.
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Power series:h(z) = a0 + a1z + a2z
2 + ... [Fourier series with

non-negative powers ofeiθ]. Guaranteed for such functions.

Very important to note that the origin in the complex-t plane is mapped to

the origin in the complex-z plane. Expansion in powers ofz is related to

expansion in powers oft, which is why slope and curvature parameters

enter here.
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Furthermore and significantly, square integrability implies

I = |a0|2 + |a1|2 + ... [Parseval theorem]
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I = |a0|2 + |a1|2 + ... [Parseval theorem]
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Power series and origin of the bound

Power series:h(z) = a0 + a1z + a2z
2 + ... [Fourier series with

non-negative powers ofeiθ]. Guaranteed for such functions.

Very important to note that the origin in the complex-t plane is mapped to

the origin in the complex-z plane. Expansion in powers ofz is related to

expansion in powers oft, which is why slope and curvature parameters

enter here.

Furthermore and significantly, square integrability implies

I = |a0|2 + |a1|2 + ... [Parseval theorem]

Outer function is known and can be expanded in a series inz.

If the first n coefficients of the form factor are known, a boundon the

quantity of interest is obtained after a finite number of terms.
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Some explicit expressions

a0 = h(0) = f+(0)w(0),
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Some explicit expressions

a0 = h(0) = f+(0)w(0),

a1 = h′(0) = f+(0)(w′(0) +
2

3
〈r2

πK〉t+w(0)),
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Some explicit expressions

a0 = h(0) = f+(0)w(0),

a1 = h′(0) = f+(0)(w′(0) +
2

3
〈r2

πK〉t+w(0)),

a2 =
h′′(0)

2!
=

f+(0)

2

[

w(0)

(

−8

3
〈r2

πK〉t+ + 32 c t2+

)]

+
f+(0)

2

[

2w′(0)

(

2

3
〈r2

πK〉tπ
)

+ w′′(0)

]

,
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Improving the bounds

Improvement of the bound arises iff0(t) is known for some spacelike

values of momenta corresponding toz = xi, i = 1, 2, 3, ...
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Improvement of the bound arises iff0(t) is known for some spacelike

values of momenta corresponding toz = xi, i = 1, 2, 3, ...

Improve the bound by using imposing constraints using Lagrange

multipliers.
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Improving the bounds

Improvement of the bound arises iff0(t) is known for some spacelike

values of momenta corresponding toz = xi, i = 1, 2, 3, ...

Improve the bound by using imposing constraints using Lagrange

multipliers.

Can also be improved by imposing phase of the form factor for timelike

moment in a continuous region,a ≤ t ≤ b.
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Spacelike constraints

Can be extended to arbitrary number of such constraints, andmixed

constraints (Meiman problem). The problem solved in generality by A.

Raina and V. Singh, Journal of Physics G3 (1977) 315.
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Spacelike constraints

Can be extended to arbitrary number of such constraints, andmixed

constraints (Meiman problem). The problem solved in generality by A.

Raina and V. Singh, Journal of Physics G3 (1977) 315.

The case of two spacelike constraints is one where we solve:

I a0 a1 a2 J1 J2

a0 1 0 0 1 1

a1 0 1 0 x1 x2

a2 0 0 1 x2
1 x2

2

J1 1 x1 x2
1 (1 − x2

1)
−1 (1 − x1x2)

−1

J2 1 x2 x2
2 (1 − x2

1)
−1 (1 − x2

2)
−1

= 0

to obtain the bound, ifai andJi are known. HereI andJi are known, and

hence we can bound theai!
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Inclusion of phase and modulus

In the elastic regiont+ ≤ t ≤ tin, the phase of the form factor is the

scattering phase (Watson’s theorem). Can be included usingLagrange

multipliers to obtain improved optimal constraints.
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even more stringent constraints by adapting the formalism given earlier.
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scattering phase (Watson’s theorem). Can be included usingLagrange

multipliers to obtain improved optimal constraints.

Availability of phase of the form factor and modulus can be used to find

even more stringent constraints by adapting the formalism given earlier.

Idea is to defer the onset of the branch point totin

Adaptation of method first proposed by Caprini in 1999 in the context of the

pion electromagnetic form factor (I. Caprini, European Physical Journal C

13 (2000) 471).
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Inclusion of phase and modulus

In the elastic regiont+ ≤ t ≤ tin, the phase of the form factor is the

scattering phase (Watson’s theorem). Can be included usingLagrange

multipliers to obtain improved optimal constraints.

Availability of phase of the form factor and modulus can be used to find

even more stringent constraints by adapting the formalism given earlier.

Idea is to defer the onset of the branch point totin

Adaptation of method first proposed by Caprini in 1999 in the context of the

pion electromagnetic form factor (I. Caprini, European Physical Journal C

13 (2000) 471).

The present work is the only other known application of this powerful

technique which is described in the following.
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Omnès function

Consider the definition

O(t) = exp

(

t

π

∫ ∞

t+

dt
δ(t′)

t′(t′ − t)

)

,

whereδ(t) is theI = 1/2 elastic S-waveKπ scattering phase, in the elastic

region and arbitrary Lipschitz continuous abovetin (viz., the phase and its

first derivative are continuous).
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Omnès function

Consider the definition

O(t) = exp

(

t

π

∫ ∞

t+

dt
δ(t′)

t′(t′ − t)

)

,

whereδ(t) is theI = 1/2 elastic S-waveKπ scattering phase, in the elastic

region and arbitrary Lipschitz continuous abovetin (viz., the phase and its

first derivative are continuous).

Since the Omnès functionO(t) fully accounts for the second Riemann

sheet of the form factor, the functionh(t), defined by

f0(t) = h(t)O(t),

is real analytic in thet-plane with a cut only fort ≥ tin.
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Omnès function

Consider the definition

O(t) = exp

(

t

π

∫ ∞

t+

dt
δ(t′)

t′(t′ − t)

)

,

whereδ(t) is theI = 1/2 elastic S-waveKπ scattering phase, in the elastic

region and arbitrary Lipschitz continuous abovetin (viz., the phase and its

first derivative are continuous).

Since the Omnès functionO(t) fully accounts for the second Riemann

sheet of the form factor, the functionh(t), defined by

f0(t) = h(t)O(t),

is real analytic in thet-plane with a cut only fort ≥ tin.

Extremely clever trick which makes the method very useful
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New conformal map

The new conformal variable is now:

z(t) =

√
tin −√

tin − t√
tin +

√
tin − t

,

which maps thet-plane cut fort > tin onto the unit disk|z| < 1, and

h(z) = f0(t(z)) w(z) ω(z) [O(t(z))]−1,
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New conformal map

The new conformal variable is now:

z(t) =

√
tin −√

tin − t√
tin +

√
tin − t

,

which maps thet-plane cut fort > tin onto the unit disk|z| < 1, and

h(z) = f0(t(z)) w(z) ω(z) [O(t(z))]−1,

Note that the Omnès function makes an appearance through its outer
function (ω(z)) and once as an inverse.
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New Outer functions

The new outer function is

w(z) =
3(M2

K − M2
π)

16
√

2πtin

√
1 − z (1 + z)3/2(1 + z(−Q2))2

(1 − z z(−Q2))2

× (1 − z z(t+))1/2 (1 − z z(t−))1/2

(1 + z(t+))1/2 (1 + z(t−))1/2
,
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New Outer functions

The new outer function is

w(z) =
3(M2

K − M2
π)

16
√

2πtin

√
1 − z (1 + z)3/2(1 + z(−Q2))2

(1 − z z(−Q2))2

× (1 − z z(t+))1/2 (1 − z z(t−))1/2

(1 + z(t+))1/2 (1 + z(t−))1/2
,

An additional outer function now enters which is given by

ω(z) = exp

(√
tin − t

π

∫ ∞

tin

dt′
ln |O(t′)|√

t′ − tin(t′ − t)

)

.
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New Outer functions

The new outer function is

w(z) =
3(M2

K − M2
π)

16
√

2πtin

√
1 − z (1 + z)3/2(1 + z(−Q2))2

(1 − z z(−Q2))2

× (1 − z z(t+))1/2 (1 − z z(t−))1/2

(1 + z(t+))1/2 (1 + z(t−))1/2
,

An additional outer function now enters which is given by

ω(z) = exp

(√
tin − t

π

∫ ∞

tin

dt′
ln |O(t′)|√

t′ − tin(t′ − t)

)

.

The input for the bound is now given by

I = χ0(Q
2) − 3

2

t+t−
16π2

∫ tin

t+

dt
[(t − t+)(t − t−)]1/2|f0(t)|2

t2(t + Q2)2
.

Information of the modulus used in the integral. Unitarity and Analyticity Constraints... – p.28/39



Best results

Our best constraints on the shape parameters of the scalar form factor
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Best results

Our best constraints on the shape parameters of the scalar form factor

Comparison for results for vector form factor with no phase information,

phase information, phase and modulus information

Our best constraints on the shape parameters of the vector form factor

Region where zeros of the form factor are excluded
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Best results for scalar shape parameters
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Best results for scalar shape parameters with CT
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Results for vector shape parameters
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Best results for vector shape parameters
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Zeros of form factors

Zeros predicted for, e.g., scattering amplitudes (Adler zeros), partial waves

(zero on first sheet⇐⇒ pole on second sheet)
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No prediction for form factors
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Zeros of form factors

Zeros predicted for, e.g., scattering amplitudes (Adler zeros), partial waves

(zero on first sheet⇐⇒ pole on second sheet)

No prediction for form factors

Influences dispersive representations for form factors (weillustrate with

figures from V. Bernard, M. Oertel, E. Passemar and J. Stern, Physical

Review D 80 (2009) 034034)
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Zeros of form factors

Zeros predicted for, e.g., scattering amplitudes (Adler zeros), partial waves

(zero on first sheet⇐⇒ pole on second sheet)

No prediction for form factors

Influences dispersive representations for form factors (weillustrate with

figures from V. Bernard, M. Oertel, E. Passemar and J. Stern, Physical

Review D 80 (2009) 034034)

Our method allows us search for zeros by using it as a SL constraint for

both real and complex zeros
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Influence of timelike zeros
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Influence of spacelike zeros

0.0 0.5 1.0

t [GeV]
2

0

1

2
|f 

0(t
)|

no zero

T
0
= -0.1 GeV

2

T
0
=  -1 GeV

2

Unitarity and Analyticity Constraints... – p.36/39



Absence of zeros for the vector
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Absence of zeros for the scalar including CT
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Results and conclusion

We have reviewed the status of the vector and scalar form factors which are

of fundamental importance to the standard model.
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We have reviewed the status of the vector and scalar form factors which are

of fundamental importance to the standard model.

We have introduced new methods to find stringent constraintsusing chiral

symmetry, perturbative QCD, dispersion relations and unitarity

The results are very stringent in the scalar form factor case.

Restricts the range of the slope to∼ 0.01 − 0.02, gives a near linear

correlation with the curvature, restricts∆CT to a small range

Eliminated zeros in significant portion of low complex energy plane and

also we have ruled out real zeros for the vector in the region

−0.28GeV2 ≤ t ≤ 0.22GeV2 and for the scalar in the region

−1.81GeV2 ≤ t ≤ 0.93GeV2.
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Results and conclusion

We have reviewed the status of the vector and scalar form factors which are

of fundamental importance to the standard model.

We have introduced new methods to find stringent constraintsusing chiral

symmetry, perturbative QCD, dispersion relations and unitarity

The results are very stringent in the scalar form factor case.

Restricts the range of the slope to∼ 0.01 − 0.02, gives a near linear

correlation with the curvature, restricts∆CT to a small range

Eliminated zeros in significant portion of low complex energy plane and

also we have ruled out real zeros for the vector in the region

−0.28GeV2 ≤ t ≤ 0.22GeV2 and for the scalar in the region

−1.81GeV2 ≤ t ≤ 0.93GeV2.

Tests the consistency of the determinations.
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