Three-Field Potential for Soft-Wall Ads/QCD

University of Minnesota

In collaboration with Joe Kapusta

AdS/CFT Correspondence

Duality between:

4D Conformal Field Theory

5D Gravity theory in AdS Space

Strongly Coupled CFT

Weakly coupled Gravity

Operators

Fields

Global Symmetries

Gauged Symmetries

AdS/QCD

- Study non-perturbative QCD
 - Hadron structure

Strongly Coupled QCD

Weakly coupled Gravity Dual in 5 Dimensions

- QCD not scale-invariant
 - Dilaton cutoff

 — Soft-wall Model

Full Action

String Frame:

$$\mathcal{S}_{string} = \int d^5 x \sqrt{-g} \left[e^{-2\Phi} \left(R + 4 \partial_M \Phi \partial^M \Phi - rac{1}{2} \partial_M \chi \partial^M \chi - V(\Phi, \chi)
ight) + e^{-\Phi} \mathcal{L}_{meson}
ight]$$

$$\mathcal{L}_{meson} \equiv |DX|^2 + m_X^2 |X|^2 - \kappa |X|^4 + \frac{1}{2g_5^2} (F_A^2 + F_V^2)$$

• Einstein Frame: $g_{MN}^{string}=e^{4\Phi/3}g_{MN}^{E}$ $\phi=\sqrt{\frac{8}{3}}\Phi$

$$S = \int d^5x \sqrt{-g_E} \left[R_E - \frac{1}{2} \partial_M \phi \partial^M \phi - \frac{1}{2} \partial_M \chi \partial^M \chi - V_E(\phi, \chi) \right]$$

Boundary Conditions

• IR:
$$\phi = \lambda z^2$$

Slope of Meson Trajectory

Chiral Field

• UV:
$$\chi = \sigma z^3$$

Chiral Condensate

IR:
$$\chi = \Gamma z$$

Axial-Vector Mass Splitting

Background Equations

$$\sqrt{6}\phi''(z) - [\chi'(z)]^2 + \frac{2\sqrt{6}\phi'(z)}{z} = 0$$

$$2 \quad 3e^{2\phi(z)/\sqrt{6}} \frac{z^2}{L^2} \left[\frac{1}{\sqrt{6}} \phi''(z) - \frac{1}{2} [\phi'(z)]^2 - \frac{\sqrt{6}}{z} \phi'(z) - \frac{4}{z^2} \right] = V(\phi(z), \chi(z))$$

$$3 \qquad e^{2\phi(z)/\sqrt{6}} \frac{z^2}{L^2} \left[\chi''(z) - 3\chi'(z) \left(\phi'(z)/\sqrt{6} + \frac{1}{z} \right) \right] = \left. \frac{\partial V}{\partial \chi} \right|_{\phi = \phi(z), \chi = \chi(z)}$$

Power-Law Fields

$$\chi = \chi_o z^n$$

$$1 \sqrt{6}\phi''(z) - [\chi'(z)]^2 + \frac{2\sqrt{6}\phi'(z)}{z} = 0$$

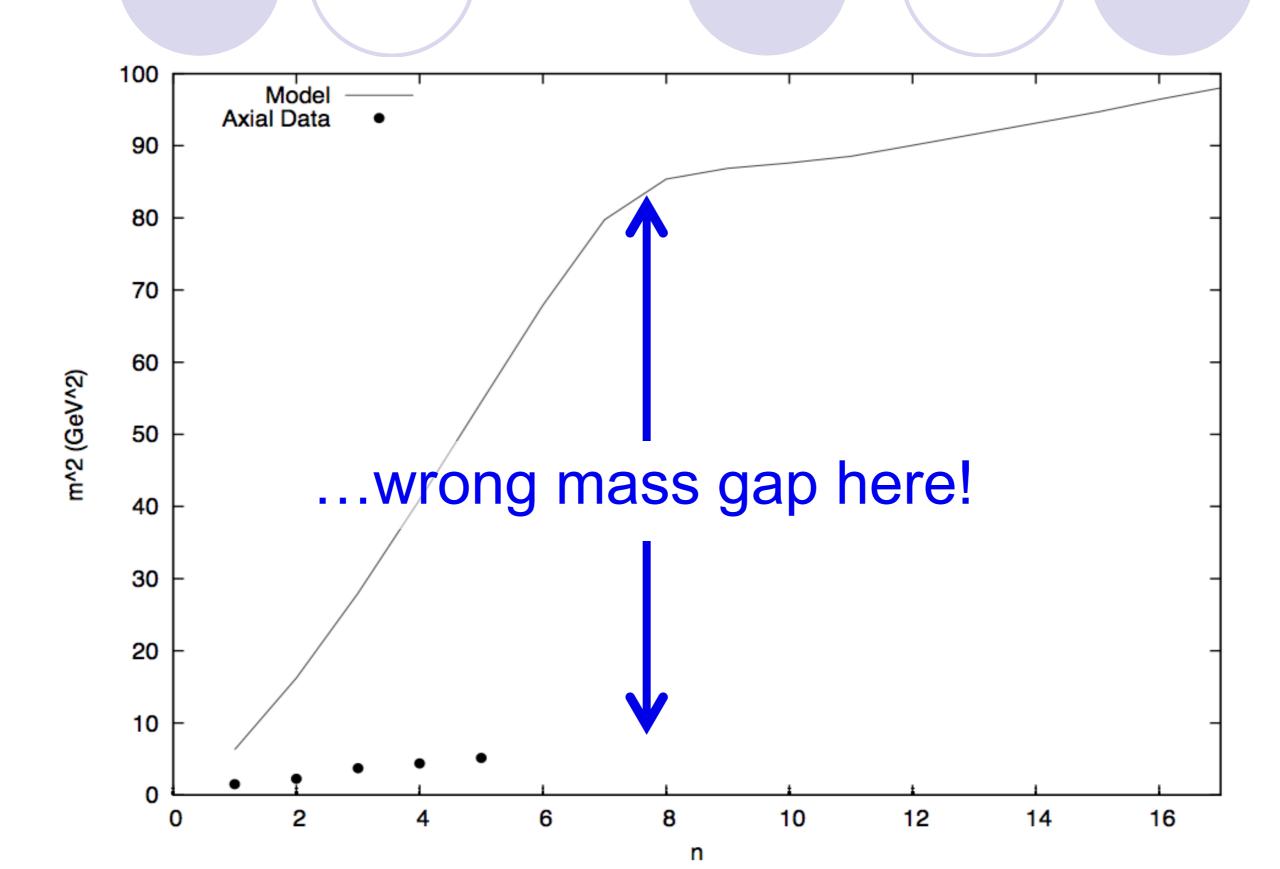
$$\phi = \frac{\sqrt{6}n}{12(2n+1)}\chi^2$$

So... λ and Γ are linked in IR! Problem?

2-Field Results - Vector



2-Field Results - Axial



3-Field Model

Add Glueball Field

$$\left(\frac{d\chi}{dz}\right)^2 + \left(\frac{dG}{dz}\right)^2 = \frac{\sqrt{6}}{z^2} \frac{d}{dz} \left(z^2 \phi'(z)\right)$$

$$\frac{2}{2} \frac{1}{2} z^2 a \phi''(z) - \frac{3}{2} a [z \phi'(z)]^2 - 3z a \phi'(z) = \tilde{V}(\phi(z), \chi(z), G(z)) + 12$$

$$\frac{z^2}{L^2} \left[\chi''(z) - 3\chi'(z) \left(a\phi'(z) + \frac{1}{z} \right) \right] = \frac{\partial V}{\partial \chi}$$

$$\frac{z^2}{L^2} \left[G''(z) - 3G'(z) \left(a\phi'(z) + \frac{1}{z} \right) \right] = \frac{\partial V}{\partial G}$$

Power-Law Potential

Chiral and Glueball fields are power laws

$$\chi(z) = \chi_o z^n, \quad G(z) = g_o z^m$$

- Insert into 1 to find dilaton
- Ansatz:

$$\tilde{V} = c_o + c_1 \phi + \frac{1}{2} m_{\chi}^2 \chi^2 + c_2 \phi^2 + c_3 G^2 + c_4 \chi^4 + c_5 \phi \chi^2 + c_6 G^4 + c_7 \phi G^2 + c_8 G^2 \chi^2$$

- Insert into 2, 3, 4. Match powers to find c_i
- Cosmological Constant $c_0 = -12$
- Glueball mass term in IR
- c₂ set by dilaton mass

Parametrization

Set Chiral, Glueball derivatives:

$$\chi' = \frac{\alpha}{\beta^2} (1 - e^{-\beta z})^2$$
 $G' = \frac{A}{B^3} (1 - e^{-Bz})^3$

Dilaton is complicated, but no special functions

Setting Parameters

Least-squares fit to meson spectra

$$\sigma = (0.375 \, \mathrm{GeV})^3$$

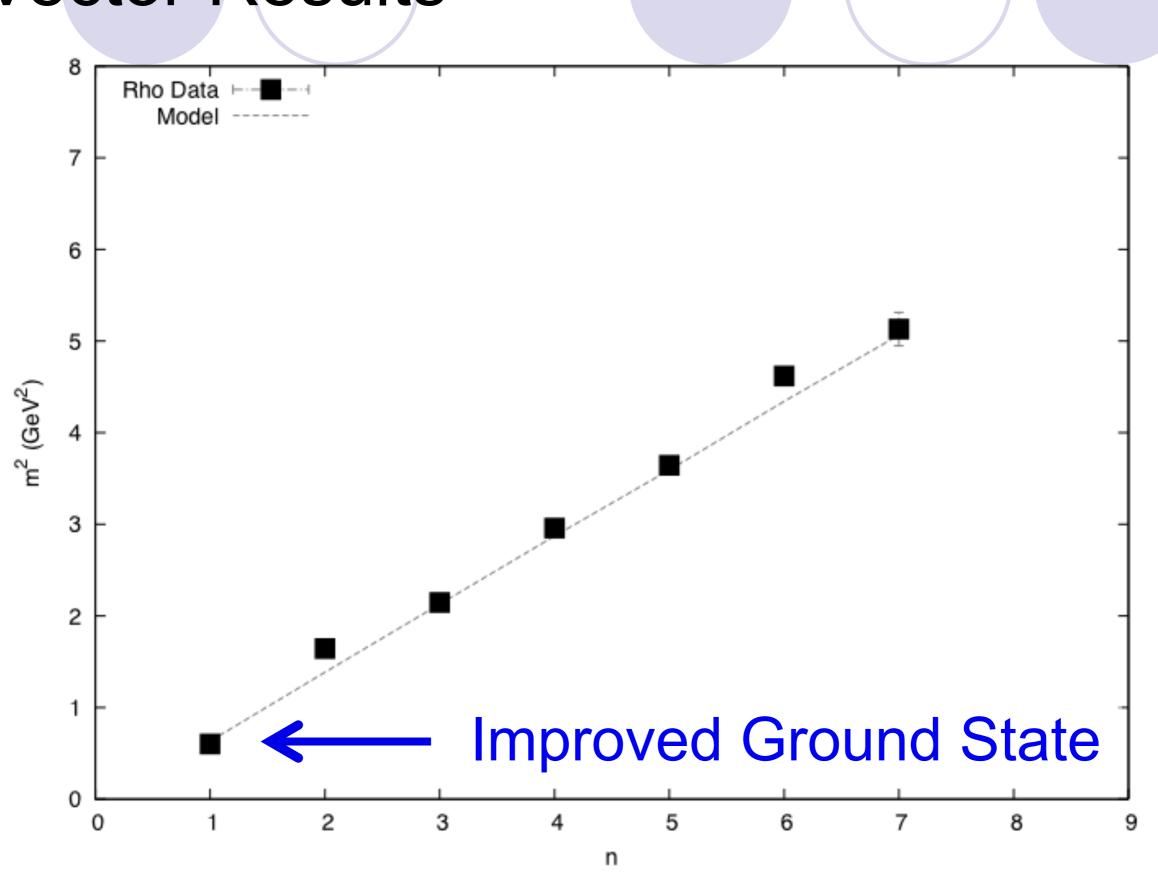
$$G_o = (1.5 \,\mathrm{GeV})^4$$

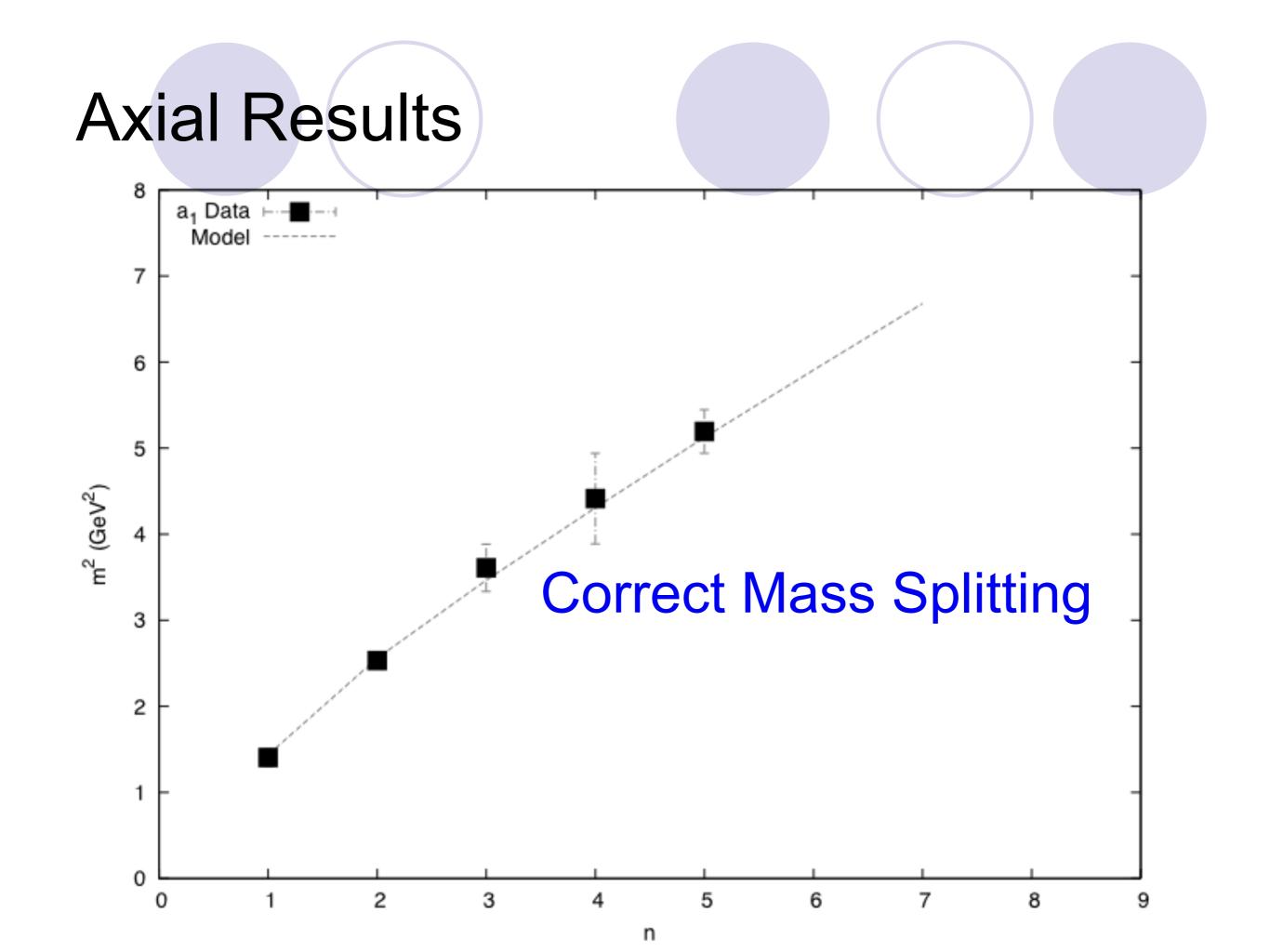
$$\lambda = (0.428 \, \mathrm{GeV})^2$$

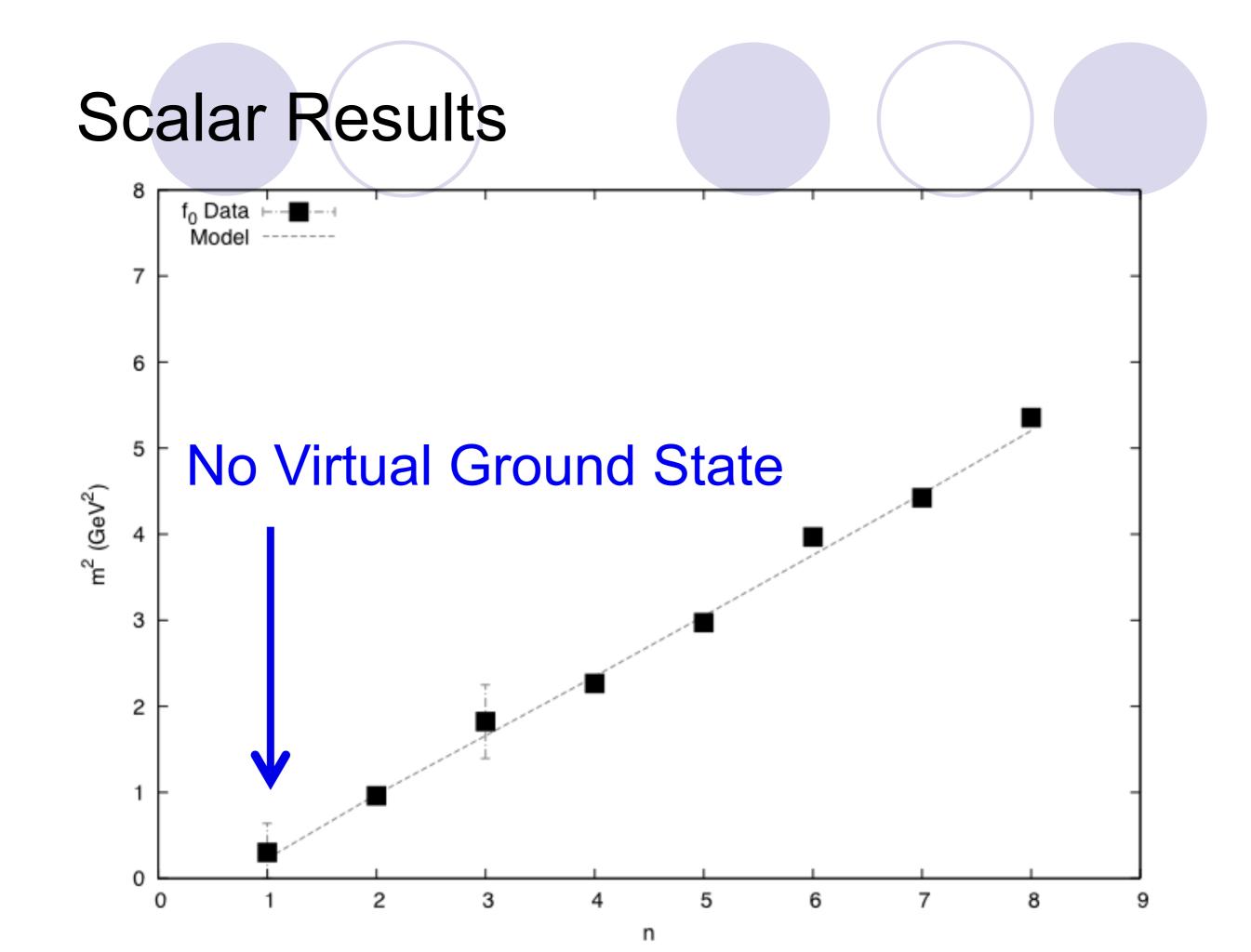
$$\kappa = -12.4$$

$$\Gamma = 0.25 \, \mathrm{GeV}$$

Vector Results







Pion Results Pion Data Model 7 Improved Large-N 6 $m^2 (\text{GeV}^2)$ 3 2 Massless Ground State 0 2 n

Next Steps

Use Potential for Finite Temperature

Summary

Three-field model allows flexibility

Can parametrization come from potential?

Acknowledgements

 This research is supported in part by the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under contract no. DE-AC05-06OR23100