ChPT studies at NA62 T. Spadaro, LNF INFN on behalf of the NA62 collaboration

The 7th International Workshop on Chiral Dynamics August 6-10, 2012, Jefferson Lab, Newport News, VA

Kaon physics – the landscape

Kaon is the lightest strange particle, studied since 60's to test fundamental properties of nature

SM @ E ~ M_{K} appears remarkably simple:

$$L_{SM} = L_{QCD}(m_u = m_d, m_s) + L_{QED} + L_{IB}(m_u - m_d) + L_{ew}$$

only 2 parameters in L_{QCD} : m_s and m_d ~m_u ~ (m_d+m_u)/2

 L_{OED} and L_{IB} isospin-breaking: often neglected, but add 3^{rd} parameter

breaks many symmetries: P, CP, flavor

Kaons reach the highest sensitivity to CPT violation, QM tests

Competitive with B decays to test NP in LFV or CPV transitions

T. Spadaro - ChPT studies at NA62 - Chiral 2012 - JLab, VA, USA
 8/7/12

K physics – past, present, future: study L_{QCD}

Precise study of low-energy realization of L_{QCD}, including L_{QED}, L_{IB} Benefit of soft momenta wrt scale of chiral symmetry breaking Only involve pseudoscalar mesons, photons, and leptons

Non-leptonic decays, comparison of strong $\pi\pi$ phase shifts from K decays with data from $\pi\pi$ scattering at few percent

 $K \rightarrow \pi\pi(\gamma)$ (ΔI=1/2 rule), KI4 decays, $K \rightarrow \pi\pi\pi$ cusp

Radiative decays, non-trivial contribution from NLO ChPT, e.g.:

 $K \rightarrow \pi\pi\gamma/\pi\pi ee, \pi\pi\mu\mu$, SD O(p⁴): Strong and Weak, WZW

 $K \rightarrow ev\gamma$ (SD), NA62 \rightarrow this talk

K⁺ $\rightarrow \pi^+ \gamma \gamma$, NA48/2 and NA62 \rightarrow this talk

K_s → γγ, starting from O(p⁶), long-standing KLOE vs NA48 discrepancy
 T. Spadaro - ChPT studies at NA62 - Chiral 2012 - JLab, VA, USA 8/7/12

K physics – past and present: deep study of $\rm L_{ew}$

K⁰-K⁰ system, 2nd order weak transitions allowing CPV, CPTV tests

30 years of high intensity/precision expts: NA31/48, E731/KTeV, KLOE, CPLEAR

 $|\varepsilon_{K}| = (2.221 \pm 0.006) 10^{-3}$, significant CKM constraint (w progress on B_{K})

 $R(\epsilon'/\epsilon) = (16.8 \pm 1.4)10^{-4}$, reaching status of NP test, w lattice progress to beat uncertainty from cancellations btw e.m. and strong penguins

Flavor physics (CKM unitarity) @ < 10⁻³ level from main K decays

Vud²+Vus²-I@ 6×I0⁻⁴, model independent exclusion Λ_{NP} > I I TeV, 90% CL

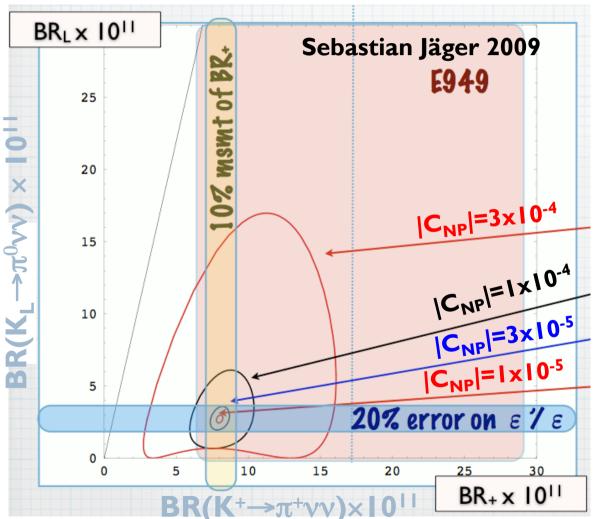
Synergy with lattice QCD, complemented with ChPT: $f^+(0)$, f_K/f_{π}

LFV search (test H⁺ exchange), Ke2/Kµ2 at NA62, this talk

T. Spadaro - ChPT studies at NA62 - Chiral 2012 - JLab, VA, USA
 8/7/12

K physics – future directions: deep study of $\rm L_{ew}$

Future dominated by the high-intensity approach


Ultra-rare K decays due to FCNC, precisely predicted in the SM, sensitive to NP contributions

K⁺->πνν: NA62 experiment, this talk

K⁰->π⁰νν, KoTo experiment at J-Parc

More players to come: Project X, Orka

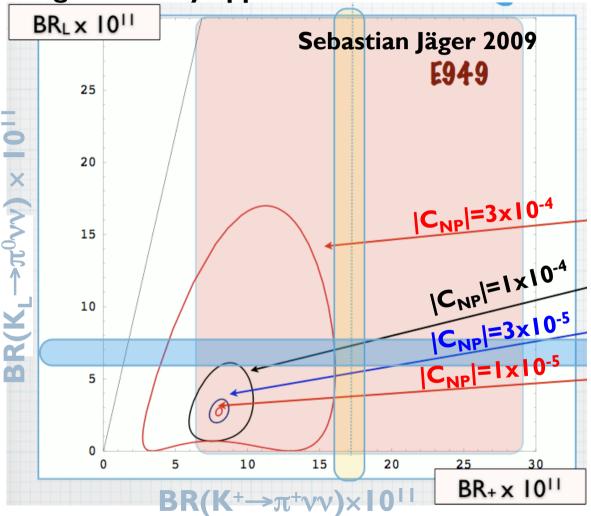
Combine above mmts to perform a SM test from kaon inputs only

8/7/12

5 T. Spadaro - ChPT studies at NA62 - Chiral 2012 - JLab, VA, USA

K physics – future directions: deep study of $\rm L_{ew}$

The future is dominated by the high-intensity approach:


Ultra-rare K decays due to FCNC, precisely predicted in the SM, sensitive to NP contributions

K⁺->πνν: NA62 experiment, this talk

K⁰->π⁰νν, KoTo experiment at J-Parc

More players to come: Project X, Orka

Combine above mmts to perform a SM test from kaon inputs only

6 T. Spadaro - ChPT studies at NA62 - Chiral 2012 - JLab, VA, USA 8/7/12

Motivations for a precise measurement of RK SM prediction w 0.04% precision, benefits of cancellation of hadronic uncertainties (no f_{K}): $R_{K} = 2.477(1) \times 10^{-5}$ [Cirigliano Rosell arXiv:0707:4464]

Helicity suppression can boost NP [Masiero-Paradisi-Petronzio PRD74 (2006) 011701, JHEP 0811 (2008) 042]

In R-parity MSSM, LFV can give 1% deviations from SM [Girrbach, Nierste, arXiv:1202.4906]: $R_{K}^{LFV} \simeq R_{K}^{SM} \left[1 + \left(\frac{m_{K}^{4}}{M_{H}^{4}} \right) \left(\frac{m_{\tau}^{2}}{m_{e}^{2}} \right) |\Delta_{R}^{31}|^{2} \tan^{6}\beta \right]$ NP dominated by contribution of ev_{τ} final state, with effective coupling $lH^{\pm}\nu_{\tau} \rightarrow \frac{g_{2}}{\sqrt{2}} \frac{m_{\tau}}{M_{W}} \Delta_{13}$, from loop Exp. accuracy was $\delta R_{K} \sim 1.3\%$ (KLOE) New measurement of R_{K} interesting, if error is pushed @ few per mil

7T. Spadaro - ChPT studies at NA62 - Chiral 2012 - JLab, VA, USA8/7/12

RK in the NA48/2 experiment

NA48/2: unseparated, simultaneous K[±] highly collimated beams, designed to precisely measure K[±] $\rightarrow \pi^{+,0}\pi^{-,0}\pi^{\pm}$ dalitz-plot density

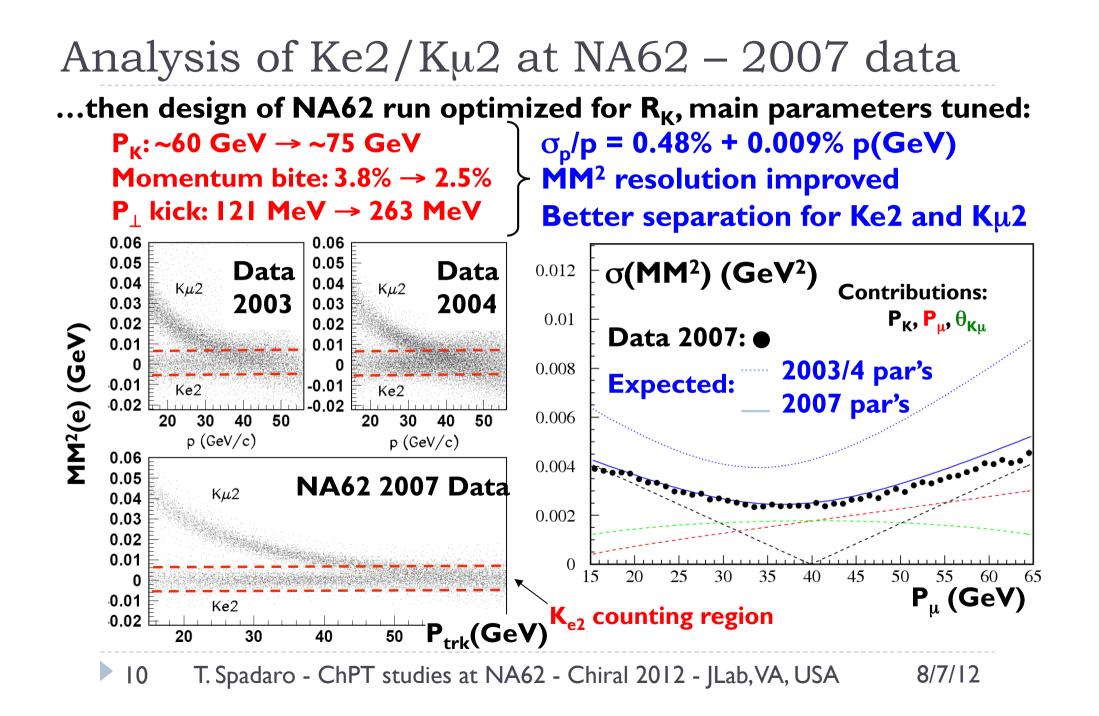
y_{DCHI} (cm) • p_K ~ 60 GeV, σ_p ~ 3 GeV (3.8% p-bite) • spot of ~ 5 mm width @ DCHI entrance K-2.5 TAX 17. 18 Magnet DCH 1 T DCH 4 Final collimator FDFD Defining 0 Protecting collimator collimato Cleaning collimato Κ -2.5 KABES 1 Decay volume KABES 3 -5 5 Target focused beams **K**⁺ KABES 2 2.5 Kevlar ĸ 0 2nd DFDF FRONT-END ACHROMAT Quadrupole 10 cm Vacuum He tank + ACHROMAT -2.5 Quadruplet 1 cm tank Spectrometer 250 m -5 Track decay products with 4 DCH's: -2.5 0 -5 2.5 x_{DCHI} (cm) • P₁ kick of 121 MeV after DCH2 • σ_p/p ~ Ι.02% ⊕ 0.044% p [GeV] T. Spadaro - ChPT studies at NA62 - Chiral 2012 - JLab, VA, USA 8 8/7/12

Analysis of Ke2/Kµ2 at NAxx

Scintillator hodoscope:

• establish event time (σ ~150 ps), initiate trigger

LKr calorimeter: efficient vetoing, e.m. energy resolution

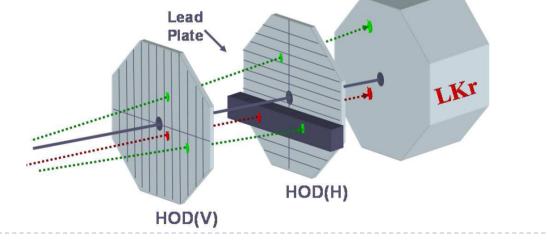

- $\sigma_{\rm E}/{\rm E}$ = 3.2%/ $\sqrt{{\rm E}[{\rm GeV}]}$ \oplus 9%/E[GeV] \oplus 0.42%
- $\sigma_{x,y}$ = 4.2mm/ $\sqrt{E[GeV]} \oplus$ 0.6 mm, granularity of ~13,000 2×2 cm² cells Hadron calorimeter, Muon veto system

Analysis starting samples:

K_{e2} trigger: I trk (hodoscope) & I-trk activity in DCH's & E_{LKr}>10 GeV

 $K_{\mu 2}$ trigger: I trk (hodoscope), downscaled

First useful data in 2003-4 NA48/2 runs, two preliminary results ...


Analysis of Ke2/Kμ2 at NA62: μ background e PID by LKr: (0.90 to 0.95)<E_{cl}/P_{trk}<1.10 gives μ rejection by ~10⁶! electron ID efficiency: 99.28(5)%

But check probability for μ's to fake e's [~3×10⁻⁶, due to the so-called muon "catastrophic" energy loss] by direct mmt:

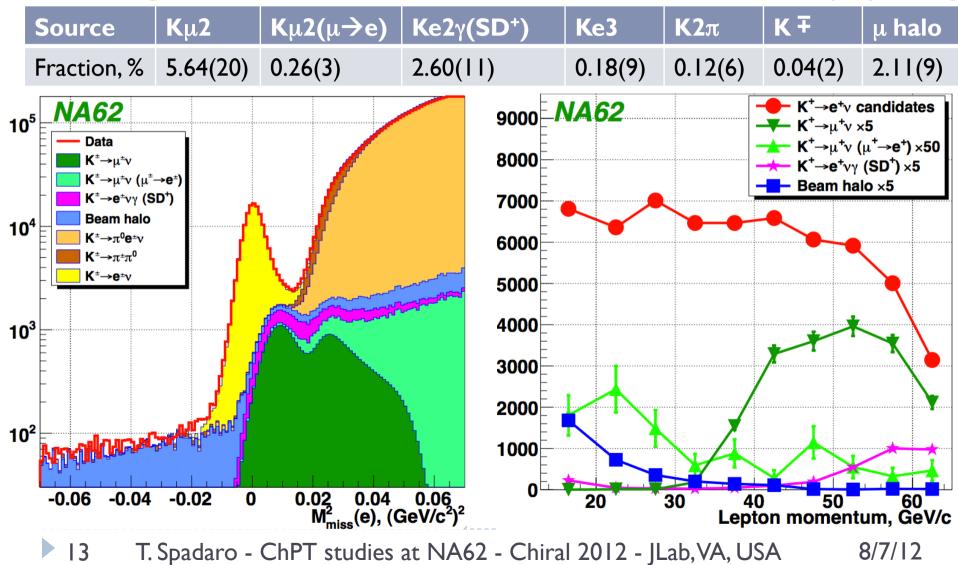
Subsample of data taken with a 9.2-X₀ Pb bar between HOD's

Select μ 's (pure @<10⁻⁸) with MIP energy loss in Pb

Correct method bias (ionization loss @ low P, brems. @ high P) w GEANT4

II T. Spadaro - ChPT studies at NA62 - Chiral 2012 - JLab, VA, USA 8/7/12

Analysis of Ke2/K μ 2 at NA62: μ background


Evaluate 5.64(20)% Kµ2 bkg to Ke2, error dominated by statistics NA62 **NA62** MC E/p>0.95 0.95 0.9 Data 0.85 0.8 E/p>0.90 0.75 2.5 0.7⊑ 10 10 20 30 60 50 70 40 20 30 50 60 70 40 Muon momentum, GeV/c Muon momentum, GeV/c

Analysis of R_K for the 4 configurations: K⁺/K⁻ Lead bar/No lead bar

Analysis performed in lepton momentum bins, to check reliability of μ mis-ID evaluation and of bkg subtraction, acceptance correction

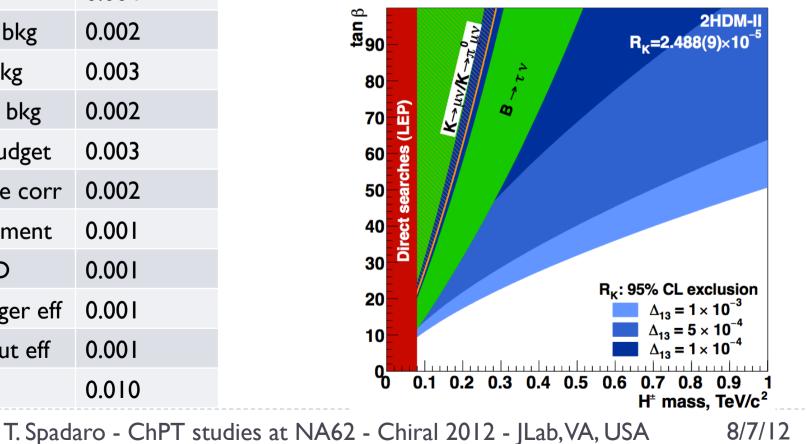
I2 T. Spadaro - ChPT studies at NA62 - Chiral 2012 - JLab, VA, USA 8/7/12

Analysis of Ke2/Kµ2 at NA62: other backgrounds World largest Ke2 data set, 145958 K⁺e2 candidates, 10.95(27)% bkg

2012 RK preliminary result, impact for NP search Entire data set: $R_{K} = 2.488(7)_{stat}(7)_{syst} 10^{-5}$, close to submission

Source	δR _K (Ι0 ⁻⁵)	° ^{2.6} ×2.58 NA62 NA62
Statistics	0.007	
Kµ2 bkg	0.004	£2.54
Ke2y SD+ bkg	0.002	2.52 2.5 2.48
Ke3, pp0 bkg	0.003	
Beam halo bkg	0.002	2.46 2.44
Material budget	0.003	2.42
Acceptance corr	0.002	2.4 20 30 40 50 60 Data sample Lepton momentum Lepton momentum, GeV/c
DCH alignment	0.001	Fit over 40 independent mmts, 10 lepton
Electron ID	0.001	momentum bin × 4 configurations:
I TRK trigger eff	0.001	χ^2 / Nd.o.f. = 47/39
LKr readout eff	0.001	
Total	0.010	

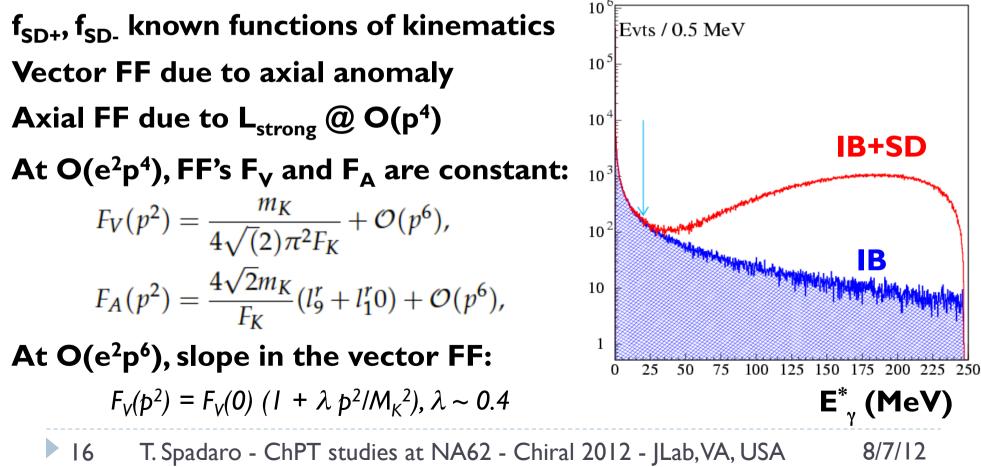
I4 T. Spadaro - ChPT studies at NA62 - Chiral 2012 - JLab, VA, USA 8/7/12


2012 RK preliminary result, impact for NP search Entire data set: $R_{K} = 2.488(7)_{stat}(7)_{syst} | 0^{-5}$, close to submission

Source	δR _K (Ι0 ⁻⁵)	
Statistics	0.007	
Kµ2 bkg	0.004	
Ke2γ SD+ bkg	0.002	
Ke3, pp0 bkg	0.003	
Beam halo bkg	0.002	
Material budget	0.003	
Acceptance corr	0.002	
DCH alignment	0.001	
Electron ID	0.001	
I TRK trigger eff	0.001	
LKr readout eff	0.001	
Total	0.010	

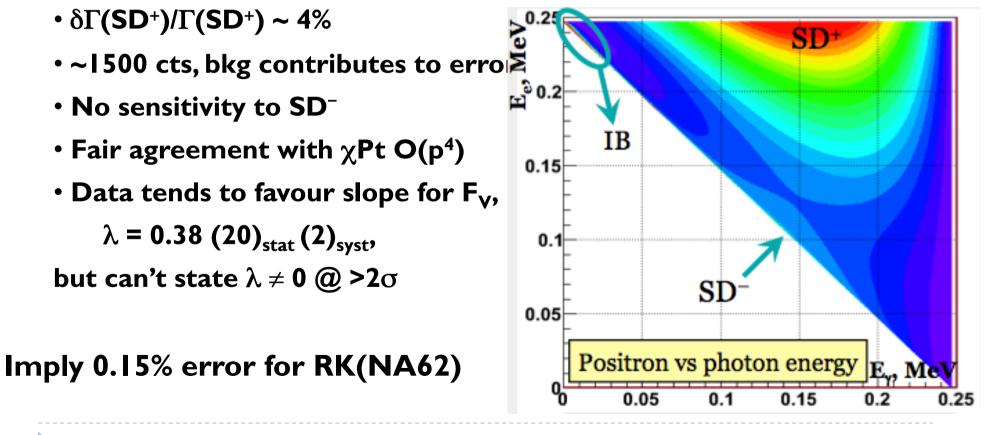
15

Compare with $R_{\kappa}(SM) = 2.477(1) \ 10^{-5}$:


$$R_K^{LFV} \simeq R_K^{SM} \left[1 + \left(rac{m_K^4}{M_H^4}
ight) \left(rac{m_ au^2}{m_e^2}
ight) |\Delta_R^{31}|^2 \ an^6 eta
ight]$$

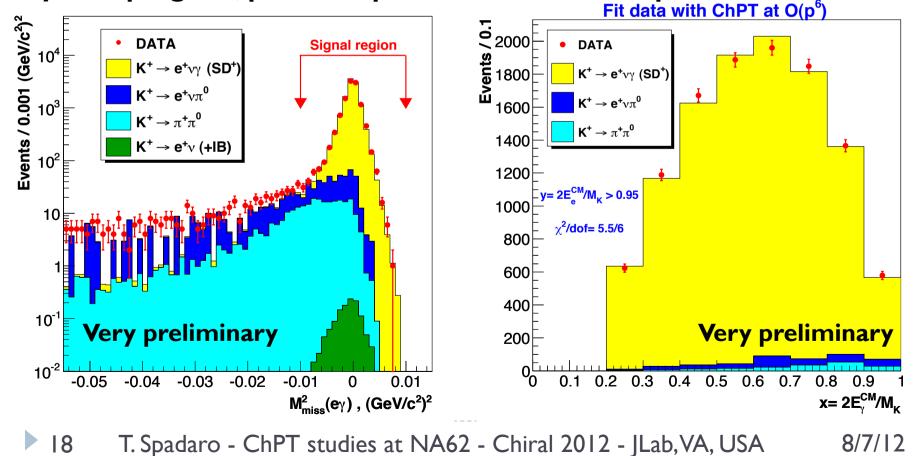
 $K^+ \rightarrow e^+ \nu \gamma$ SD contribution

To match theory for R_{K} have to count IB only, but SD ~ IB:


 $\frac{d^{2}\Gamma}{dxdy}(SD) = \frac{m_{K}^{5}\alpha G_{F}^{2}|V_{us}|^{2}}{64\pi^{2}} \times \left[(F_{V}+F_{A})^{2}f_{SD+}(x,y) + (F_{V}-F_{A})^{2}f_{SD-}(x,y)\right]$ x = 2E^{*}(\gamma)/M_K, y = 2E^{*}(e)/M_K

 $K^+ \rightarrow e^+ \nu \gamma$ SD contribution: present status

 $\frac{d^2\Gamma}{dxdy}(SD) = \frac{m_K^5 \alpha G_F^2 |V_{us}|^2}{64\pi^2} \times \left[(F_V + F_A)^2 f_{SD+}(x, y) + (F_V - F_A)^2 f_{SD-}(x, y) \right]$


KLOE 2009 measurement for $E^*\gamma > 10$ MeV and $p^*e > 200$ MeV:

I7 T. Spadaro - ChPT studies at NA62 - Chiral 2012 - JLab, VA, USA 8/7/12

$\mathrm{K}^{\scriptscriptstyle +} \xrightarrow{} \mathrm{e}^{\scriptscriptstyle +} \, \nu \, \gamma$ SD analysis at NA62

Selection of SD component, many steps common to the R_K analysis $\pi\pi^0$, Ke3 backgrounds \rightarrow photon explicitly detected + tighter e PID Will count ~10 k events w $P_e^* > 234$ MeV, 10% acceptance, few % bkg Analysis in progress, plan is to perform a model-independent FF mmt

 $K^+ \rightarrow \pi^+ \gamma \gamma$ decay at ChPt O(p⁴)

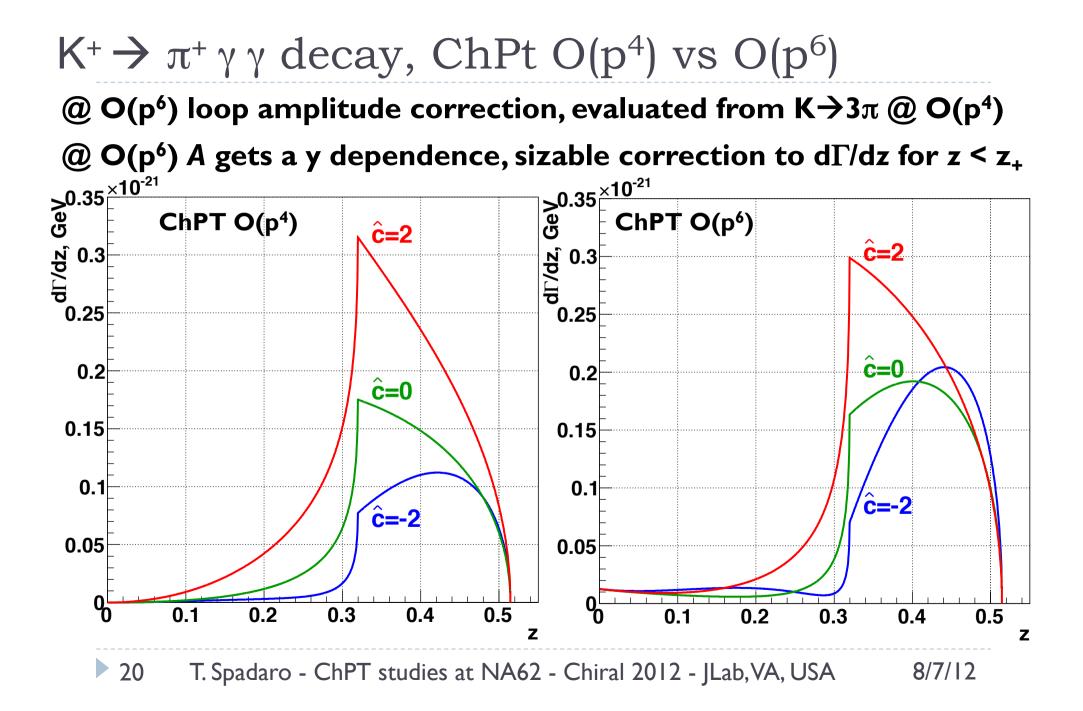
Contributions to amplitude $M(K^+(p) \rightarrow \pi^+(p')\gamma(q_1, \epsilon_1)\gamma(q_2, \epsilon_2))$ from **O(p⁴)**

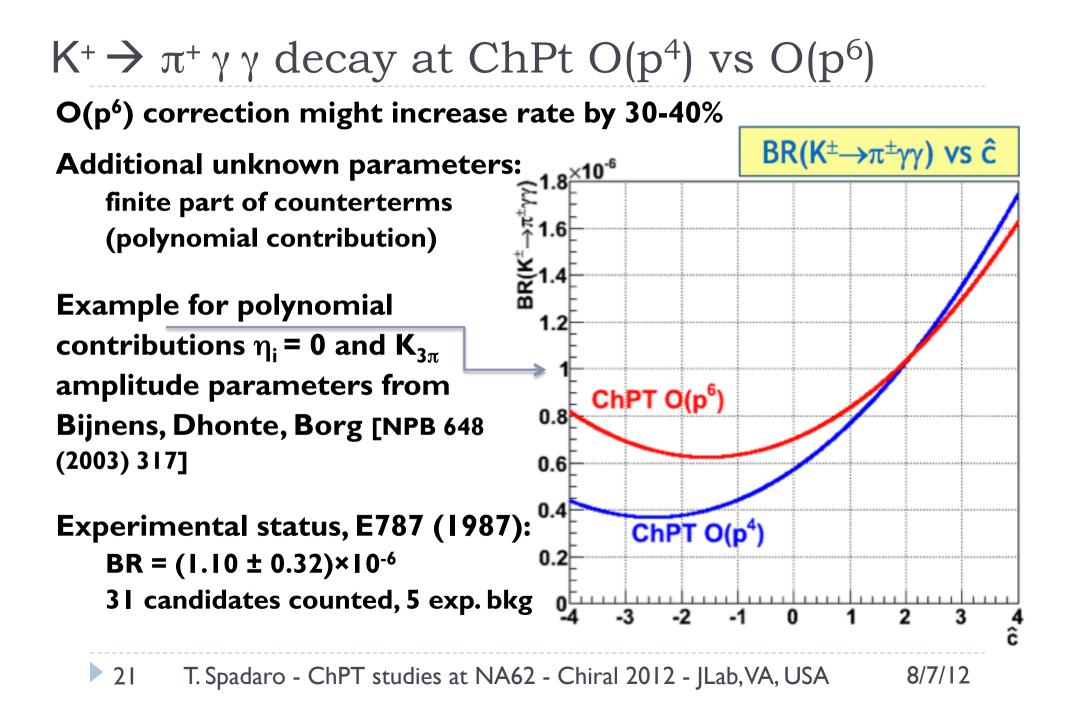
$$\epsilon_{\mu}(q_1)\epsilon_{\nu}(q_2)\left[A(y,z)\frac{(q_2^{\mu}q_1^{\nu}-q_1\cdot q_2g^{\mu\nu})}{M_K^2} + \underbrace{C(y,z)\varepsilon^{\mu\nu\alpha\beta}\frac{q_{1\alpha}q_{2\beta}}{M_K^2}}_{\bigstar}\right]$$

where $y = p \cdot (q_1 - q_2) / M_K^2$ and $z = (q_1 + q_2)^2 / M_K^2$

A from $L_{ew}L_{QDC}$ loops + L_{QDC} O(p⁴) counter terms + L_{weak} O(p⁴):

$$A(z) = \frac{G_8 M_K^2 \alpha}{2\pi z} \left[(r_\pi^2 - 1 - z) F\left(\frac{z}{r_\pi^2}\right) + (1 - r_\pi^2 - z) F(z) + \hat{c}z \right]$$
$$\hat{c} = \frac{128\pi^2}{3} [3(L_9 + L_{10}) + N_{14} - N_{15} - 2N_{18}]$$

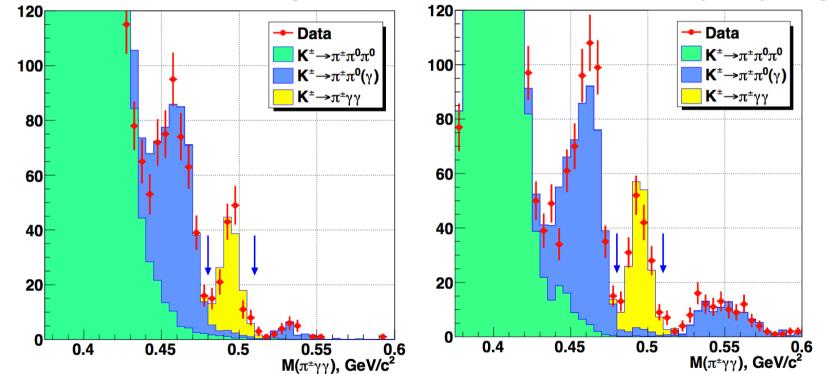

C from anomaly (WZW), accounts for ~10% of width


Both A and C independent of y $@ O(p^4)$

 $\Gamma = \Gamma_{\text{loops}} + \Gamma_{\text{WZW}} = (2.80 + 0.87 \,\hat{c} + 0.17 \,\hat{c}^2 + 0.26) \,10^{-23} \,\text{GeV}$ Expect \hat{c}_{vl} wate dominated by π loop with even ϖ $\pi = \pi - \pi - (2M)$

Expect $\hat{c} \sim I$, rate dominated by π loop with cusp @ z = z₊ = $(2M_{\pi^+}/M_K)^2$

I9 T. Spadaro - ChPT studies at NA62 - Chiral 2012 - JLab, VA, USA 8/7/12

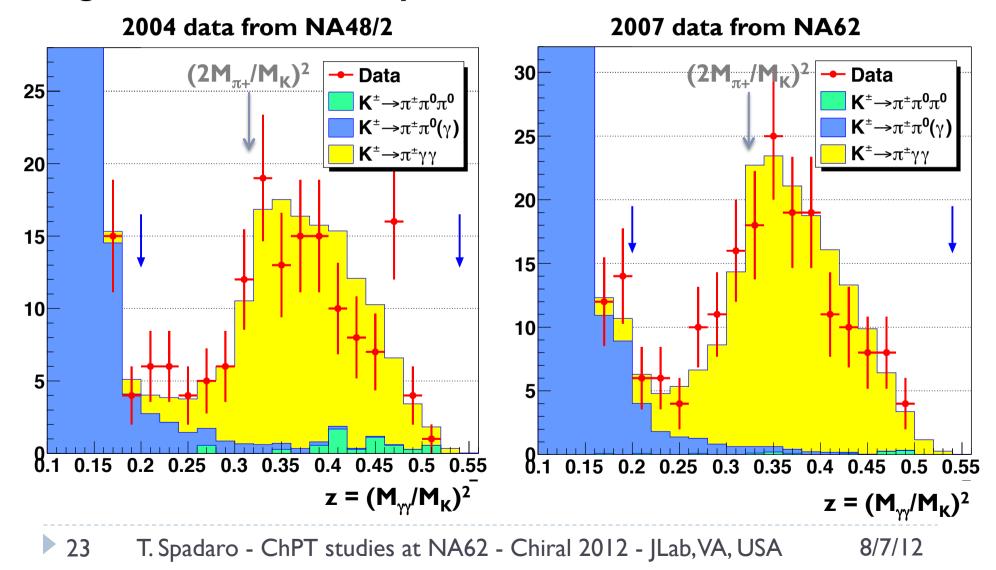


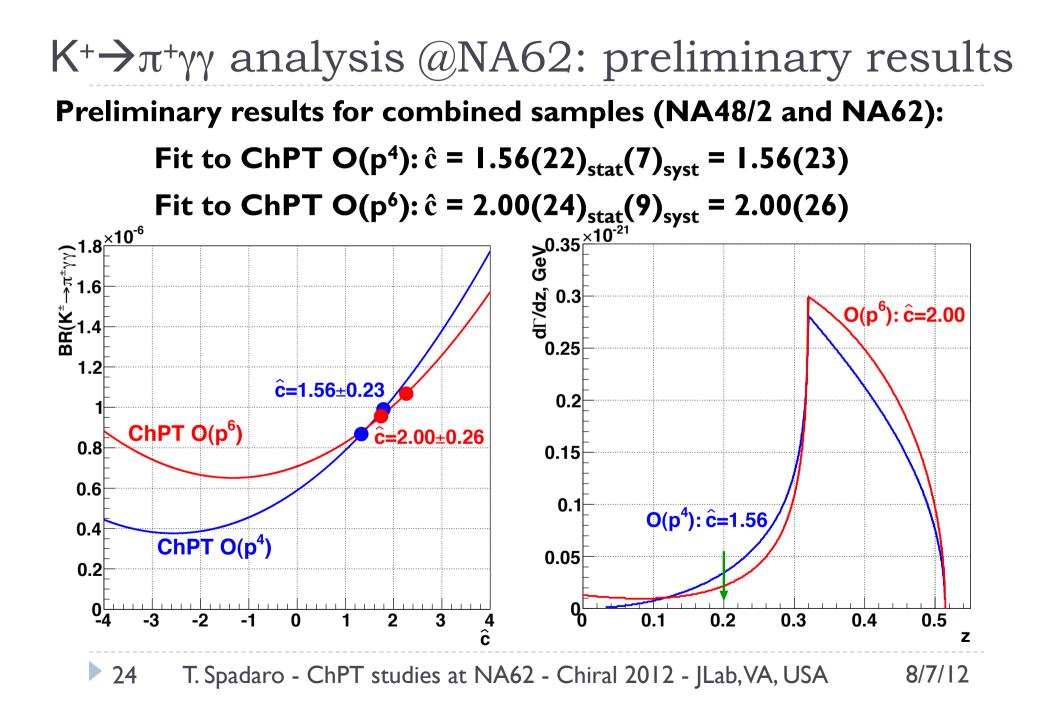
$K^+ \rightarrow \pi^+ \gamma \gamma$ analysis at NA62

Mmt starts from data acquired w no $K \rightarrow \pi \gamma \gamma$ -specific trigger

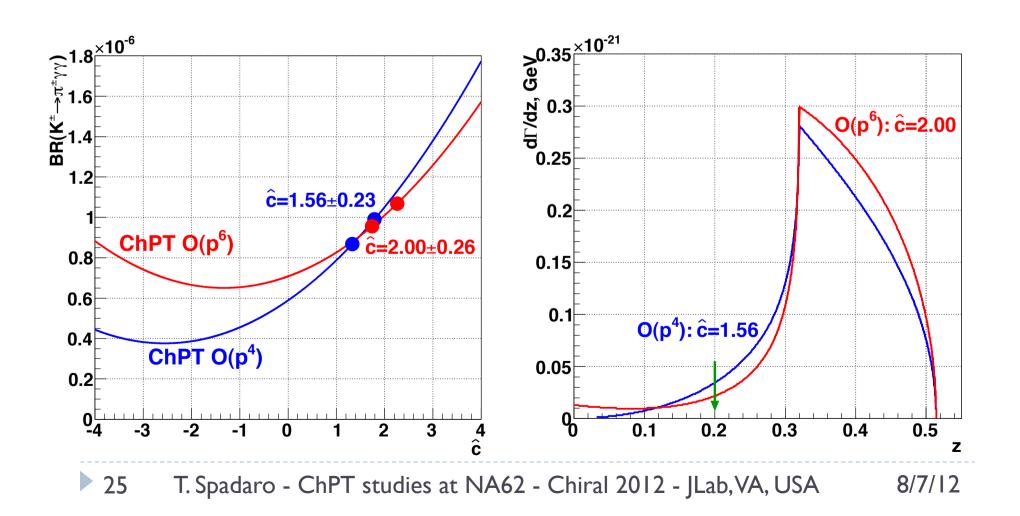
For NA48/2 (NA62) data dominated by $K \rightarrow 3\pi$ (K \rightarrow ev) trigger data set

From minimum-bias samples, ~300 candidates with O(10%) bkg




Background dominated by K⁺ $\rightarrow \pi + \pi^0(\pi^0)(\gamma)$ with $\gamma - \gamma$ cluster merging

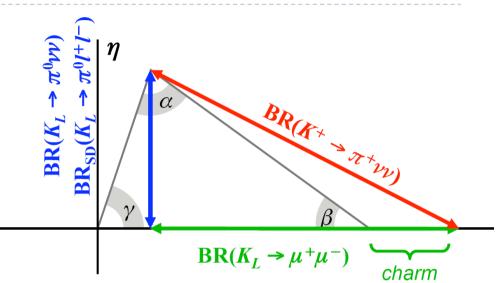
22 T. Spadaro - ChPT studies at NA62 - Chiral 2012 - JLab, VA, USA 8/7/12


$K^+ \rightarrow \pi^+ \gamma \gamma$ analysis at NA62: ChPT fits

Background limits sensitivity to $z > \sim 0.2$

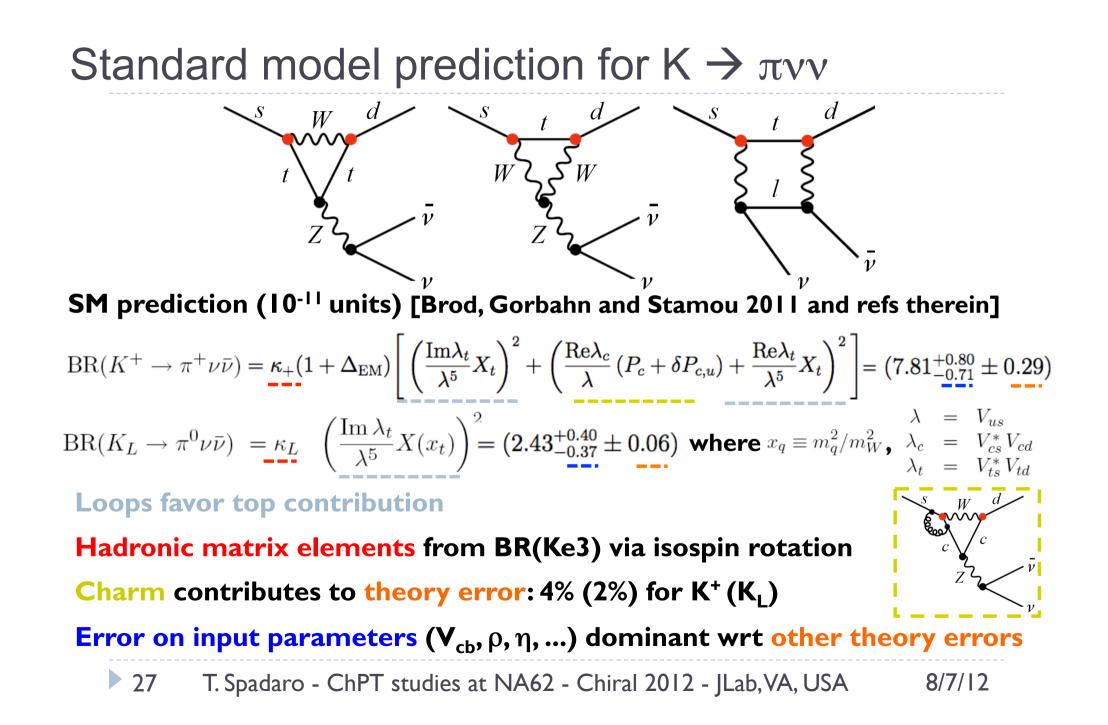
K⁺ $\rightarrow \pi^+\gamma\gamma$ analysis @NA62: preliminary results Fits yield $\hat{c}\sim 2$, can't distinguish btw O(p⁴) and O(p⁶) BR = 1.01(6)×10⁻⁶, improves by ~×5 on present knowledge

Golden K modes for new-physics search

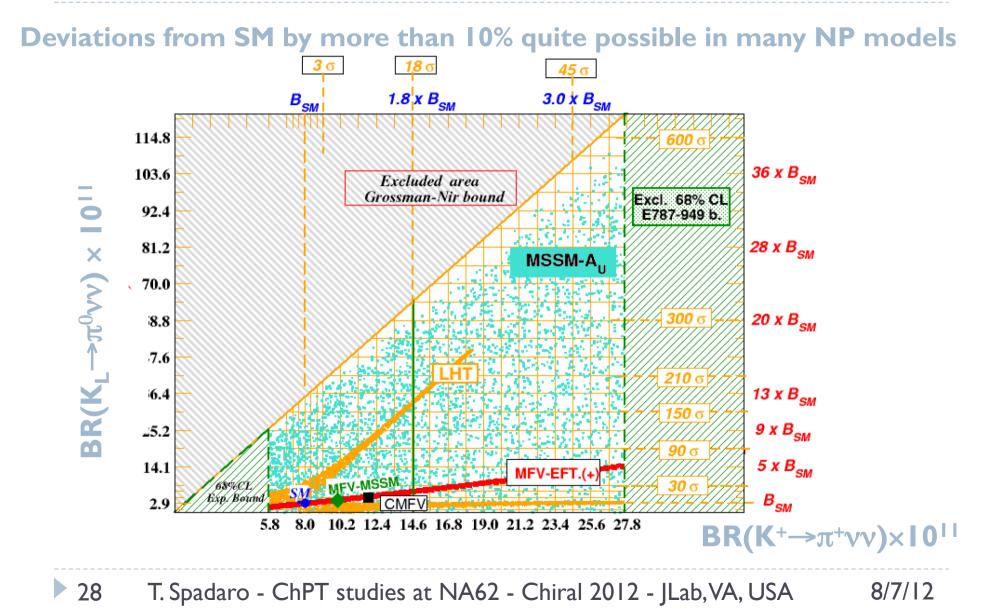

FCNC processes dominated by Z-penguin and box diagrams

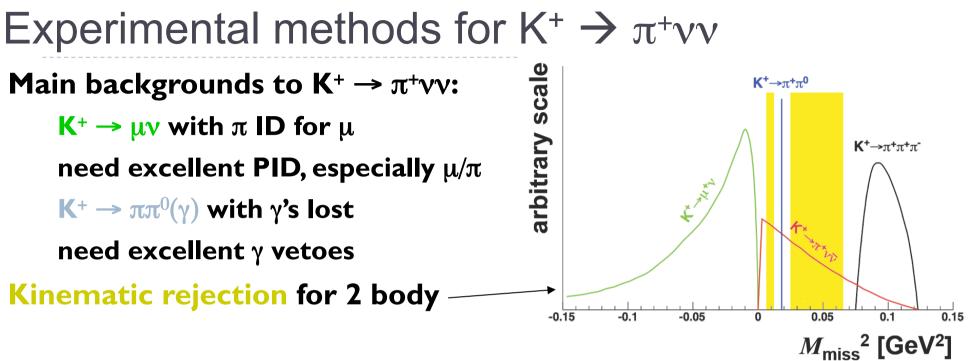
Can give direct information on CKM matrix elements:

No long distance contributions from processes with intermediate $\gamma\mbox{'s}$


Hadronic matrix elements can be obtained from BR's of leading K decays

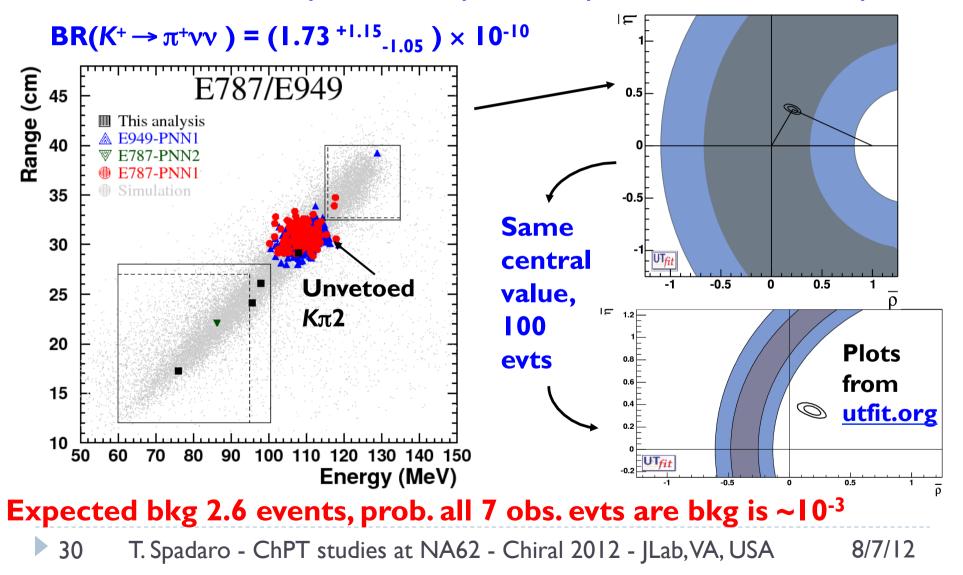
 $K_L \rightarrow \pi^0 v v$ is nearly pure due to direct CPV (1% contribution from mixing CPV)



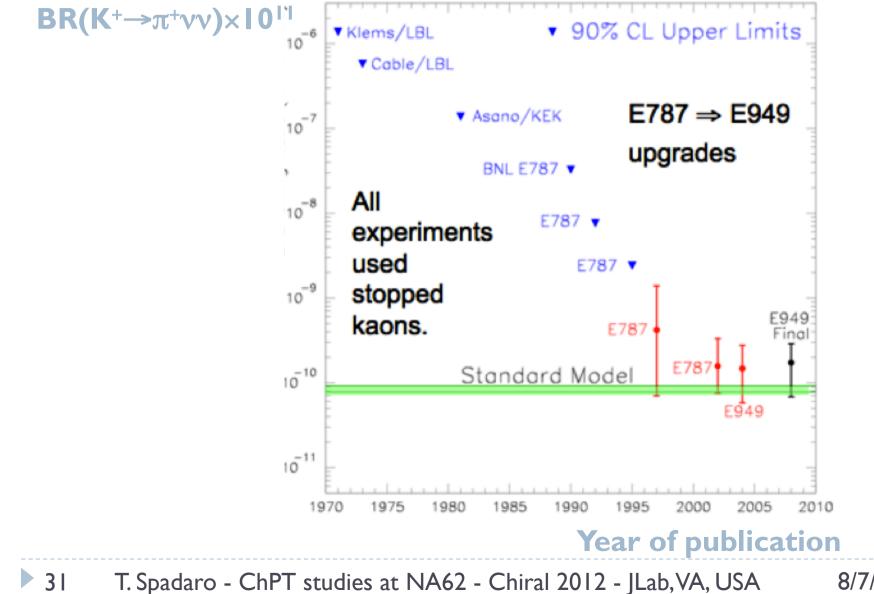

	$\Gamma_{ m SD}/\Gamma$	Irreducible theory err. (amp)	SM BR
$K_L \rightarrow \pi^0 \nu \nu$	>99%	2%	3 × 10 ⁻¹¹
$K^+ \rightarrow \pi^+ \nu \nu$	88%	4%	8 × 10 ⁻¹¹
$K_L \rightarrow \pi^0 e^+ e^-$	38%	15%	3.5 × 10 ⁻¹¹
$K_L \rightarrow \pi^0 \mu^+ \mu^-$	28%	30%	1.5 × 10 ⁻¹¹

26 T. Spadaro - ChPT studies at NA62 - Chiral 2012 - JLab, VA, USA 8/7/12

Beyond standard model prediction for K $\rightarrow \pi \nu \nu$

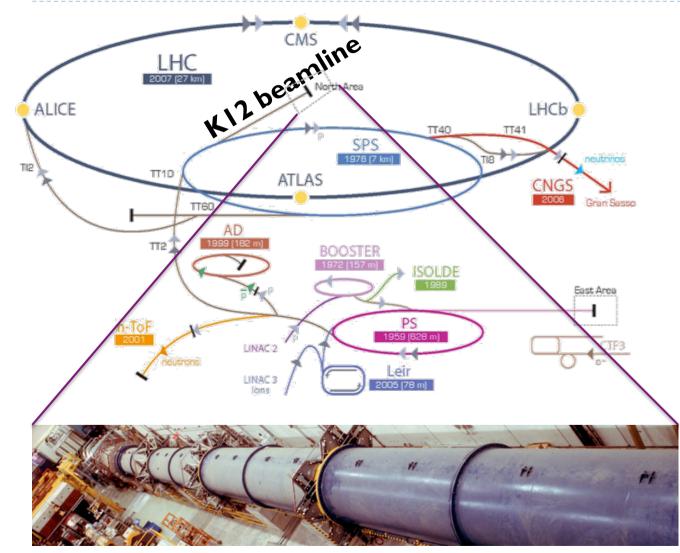


To reach 10⁻¹², PID & vetoes also reject unclosed bkg (K₁₃, K₁₄, ...)


	Stopped K ⁺	Decay in flight		
Kinematics K^+ at restMust track K^+				
Photon vetoes	Low-energy photons	High-energy photons Advanced Cerenkov counter Muon detectors		
PID	Range π - μ - e decay chain			
T. Spadaro - C	hPT studies at NA62 - Chira	al 2012 - ILab,VA, USA	8/7/1	

Experimental status for $K^+ \rightarrow \pi^+ \nu \nu$

In 2008, combine E787 (1995-8 runs) & E949 (12-weeks run in 2001) results



Hopefully not the end of a long story...

T. Spadaro - ChPT studies at NA62 - Chiral 2012 - JLab, VA, USA 8/7/12

...the in-flight approach, NA62 @ CERN

Improve intensity of existing NA48 beamline by ×50

400 GeV SPS primary proton beam, producing unseparated 75-GeV K⁺ beam:

~800 MHz beam

6% are K⁺, i.e., ~ 50 MHz

~ 5 MHz decay in a 60-m fiducial volume

32 T. Spadaro - ChPT studies at NA62 - Chiral 2012 - JLab, VA, USA
 8/7/12

NA62 guiding principles

Support a high-rate environment

high-resolution timing, charged hodoscope (scintillator), $\sigma_{\rm t}$ < 200 ps

Kinematic rejection of ~10⁴ by cutting on missing mass at decay

- fast tracking of incoming particles: 3 Si-pixel stations, $\delta x \sim 200 \mu$, hit $\epsilon > 99\%$, provide $\delta P/P \sim 0.2\%$, sustain 800 MHz beam flux, $\sigma_t < 200$ ps/station
- tracking of daughter particles: 4 stations of straw tubes in vacuum, hit ϵ > 99%, provide $\delta P/P < 1\%$, sustain 500 kHz in hottest area

Rejection of ~10³ for $K_{\mu 2,3,4}$, ... bkg, PID for all charged particles

positive, non-destructive ID for incoming K:Thr. Č, σ_t~100 ps, >99% K purity,
 50 MHz operation

+ ID for daughter pions, muons, electrons: RICH, reduces μ bkg < 1% up to 35 GeV, σ_t < 100 ps

• ID for outgoing μ 's: iron/scintillator calorimeters, $I - \epsilon < I0^{-5}$ for μ 's

Rejection of ~10⁸ for modes with π^0 's and ~10⁴ for single photon

• Hermetic, high-efficiency γ veto, 0--50 mrad: 5×10⁻⁸ rejection for K $\rightarrow \pi\pi^0$

Redundancy of information

The in-flight approach, NA62 @ CERN

34 T. Spadaro - ChPT studies at NA62 - Chiral 2012 - JLab, VA, USA 8/7/12

NA62 expected sensitivity

Decay Mode	Events 55 <i>evt/year</i>	
Signal: $K^+ \rightarrow \pi^+ \nu \nu$ [flux = 4.8×10 ¹² decay/year]		
$K^+ \rightarrow \pi^+ \pi^0 \ [\eta_{\pi 0} = 2 \times 10^{-8} (3.5 \times 10^{-8})]$	4.3%	
$K^+ \rightarrow \mu^+ \nu$	2.2%	
$K^+ \rightarrow e^+ \pi^+ \pi^- \nu$	≤3 %	
Other 3 – track decays	≤1.5%	
$K^+ → π^+ π^0 γ$	~2%	
$K^+ \rightarrow \mu^+ \nu \gamma$	~0.7%	
$K^+ \rightarrow e^+(\mu^+) \pi^0 \nu$, others	negligible	
Expected background	≤13.5%	

Aim to obtain O(~10%) signal acceptance with <10% background

year & running efficiency from NA48 story: ~100 days/year, 60% data taking eff.

35 T. Spadaro - ChPT studies at NA62 - Chiral 2012 - JLab, VA, USA 8/7/12

Conclusions: NA62 past, present, and future

In 2007-2008, NA62 "RK phase":

- Runs with original NA48/2 detector, beam carefully tuned for the measurement of $R_{K} = \Gamma(K_{e2})/\Gamma(K_{\mu 2})$, now (2012) at few per mil
- Data acquired useful for ChPt studies here presented: Ke2 γ , K⁺ $\rightarrow \pi^+\gamma\gamma$
- In parallel, R&D studies for new sub-detectors
- December 2008, approval by CERN research board

In 2009-2010, the new NA62 experiment:

- Collaboration consolidated, presently ~250 participants from 26 institutes
- Main beam tests for advanced prototypes (RICH, GTK) or parts of single sub-detectors (LAV)
- In 2011-2013, construction & commissioning: dry & technical runs

In 2014, first physics run after long shutdown

36 T. Spadaro - ChPT studies at NA62 - Chiral 2012 - JLab, VA, USA
 8/7/12

У

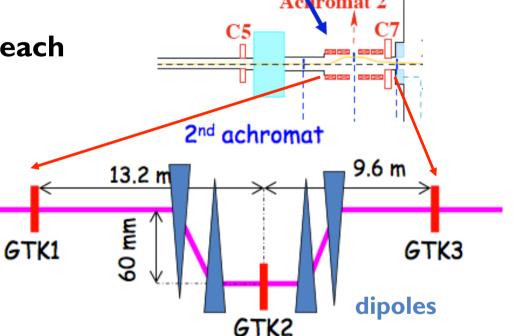
Expt	Primary beam	Intensity (ppp)	SM evts/yr	Start date + run yrs	Total SM evts
NA62	SPS 450 GeV	3 × 10 ¹²	55	2014+2	110
FNAL K [±]	Project X 8 GeV	2 × 10 ¹⁴	250	2018+5	1250
ORKA	Tevatron up <150 GeV	5 × 10 ¹³	120	2018+5	600
E14	JPARC-I 30 GeV	2 × 10 ¹⁴	1-2	2013+3?	3-7
E14	JPARC-II 30 GeV	3×10^{14}	30	2020+3?	100
FNAL K_L	Booster 8 GeV	2 × 10 ¹³	30	2016+2	60
FNAL K _L	Project X 8 GeV	2×10^{14}	300	2018+5	1500

All dates/estimates are speculative, some are more speculative than others

T. Spadaro - ChPT studies at NA62 - Chiral 2012 - JLab, VA, USA
 8/7/12

Spare slides

38T. Spadaro - ChPT studies at NA62 - Chiral 2012 - JLab, VA, USA8/7/12


Fast tracking before decay volume – GTK

Aim to measure time, coordinates, and momentum of individual particles in a 800 MHz beam Advantate 2

3 silicon μ -pixel stations, <0.5% X_0 each

Other demanding constraints:

Ι00 μm space resolution $\delta p/p \sim 0.2\%$, i.e., $\delta p \sim 150$ MeV $\delta \alpha / \alpha \sim 12$ μrad

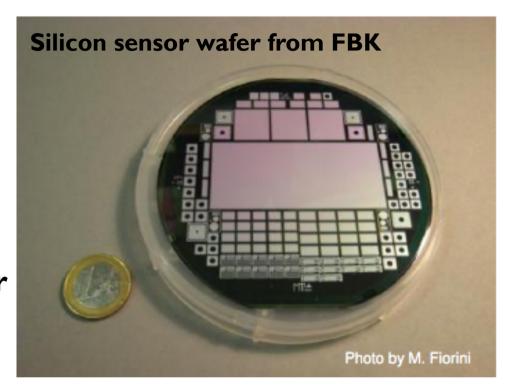
Structure:

18000 300×300 μ m² pixels, sensitive area of 60×27 mm²

Technological challenge:

<1% hit mismatch @ 800 MHz \rightarrow 200 ps time resolution

read out able to sustain rates up to 150 KHz/pixel


GTK technology and read out

Have to read out with dead time <100 ns, with a charge/pixel varying between 0.8 fC (5000 e-) to 10 fC (60000 e-)

have to correct for slewing maintain noise < 200 eoperate with reasonable power

consumption, < 2 W/cm²

R&D completed

2 read out prototypes developed & compared, both with FE circuits in 130-nm IBM CMOS technology

For details, see Report by J. Kaplon et al., IEEE NSS conference, Orlando, FA, USA

Photon vetoing in NA62

Have to reject $K^+ \rightarrow \pi^+ \pi^0$ @ the level of 10⁻¹²

Need π^0 rejection of O(10⁻⁸) for γ 's from K decay in FV (~60 m)

A composite system:

Very small angle, below 2 mrad

A new compact calorimeter

Inefficiency required $< 10^{-6}$ for γ 's above 6 GeV

Small angle, I to ~8 mrad:

Re-use NA48 LKr calor., $\sigma_{E}/E = 0.032/\sqrt{E[GeV]} + 0.09/E[GeV] + 0.0042$

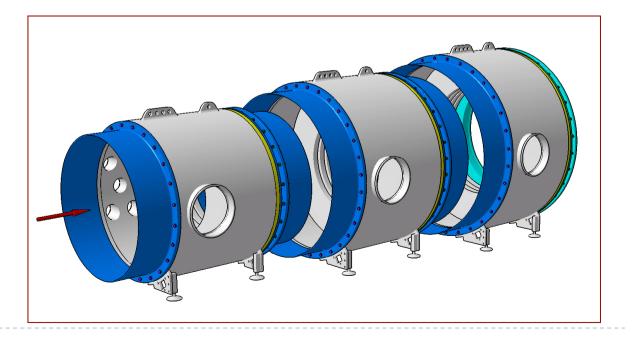
Inefficiency measured $< 10^{-5}$, for γ 's above 6 GeV

Large angle, ~8 to 50 mrad:

A new veto system (LAV system)

Inefficiency required < ~ 10^{-4} for 100 MeV < E_v < 25 GeV

Able to operate in a vacuum of 10⁻⁶ mbar


Large angle veto layout and geometry

Rearrange SF4 lead crystals from OPAL in staggered layers (rings) Install rings inside existing vacuum vessel (so called "blue tube")

12 stations of increasing diameter cover hermetically the range θ = 7–50 mrad 3 different sizes of vacuum vessels (last downstream station operated in air) 4 to 5 layers/station for a total depth of 29 to 37 X₀, particles traverse > 20 X₀

32 to 48 crystals/layer

A total of ~ 2500 blocks

