A Dispersive Treatment of $K_{\ell 4}$ Decays

Peter Stoffer

stoffer@itp.unibe.ch
Work in collaboration with G. Colangelo and E. Passemar

Albert Einstein Center for Fundamental Physics Institute for Theoretical Physics
University of Bern

7th August 2012

The 7th International Workshop on Chiral Dynamics Jefferson Lab, Newport News, VA

Outline

(1) Motivation

(2) Dispersion Relation for $K_{\ell 4}$ Decays
(3) Results

(4) Outlook

Overview

(1) Motivation
Why $K_{\ell 4}$?
Why Dispersion Relations?

(2) Dispersion Relation for $K_{\ell 4}$ Decays
(3) Results
(4) Outlook

Why $K_{\ell 4}$?

Importance of $K_{\ell 4}$ decays

Unique information about some low energy constants of ChPT:

- $L_{1}^{r}, L_{2}^{r}, L_{3}^{r}$ multiply operators with four derivatives \Rightarrow We need a four-"particle" process
- $K_{\ell 4}$ like a $2 \rightarrow 2$ scattering
- Happens at low energy, where ChPT is expected to converge better

Why $K_{\ell 4}$?

Importance of $K_{\ell 4}$ decays

- Provides information on $\pi \pi$ scattering lengths a_{0}^{0}, a_{0}^{2}
- Very precisely measured \Rightarrow Test of ChPT
\rightarrow Geneva-Saclay, E865, NA48/2
- Kaon physics: High precision at low energy as a key to new physics?
\rightarrow NA62

Why Dispersion Relations?

Advantages of dispersion relations

- Summation of rescattering
- Connects different energy regions
- Based on analyticity and unitarity \Rightarrow Model independence
- $\mathcal{O}\left(p^{6}\right)$ result available, but only useful if LECs are known

Overview

(1) Motivation

(2) Dispersion Relation for $K_{\ell 4}$ Decays

Kinematics and Matrix Element
Decomposing the Amplitude Integral Equations
(3) Results
(4) Outlook

Kinematics and Matrix Element

$K_{\ell 4}$ decays

Decay of a kaon in two pions and a lepton pair:

$$
K^{+}(p) \rightarrow \pi^{+}\left(p_{1}\right) \pi^{-}\left(p_{2}\right) \ell^{+}\left(p_{\ell}\right) \nu_{\ell}\left(p_{\nu}\right)
$$

$\ell \in\{e, \mu\}$ is either an electron or a muon.

Kinematics and Matrix Element

SM tree-level

Kinematics and Matrix Element

Hadronic part of $K_{\ell 4}$ as $2 \rightarrow 2$ scattering

Kinematics and Matrix Element

Form factors

- Lorentz structure allows four form factors in the hadronic matrix element.

$$
\begin{aligned}
\left\langle\pi^{+}\left(p_{1}\right) \pi^{-}\left(p_{2}\right)\right| V_{\mu}(0)\left|K^{+}(p)\right\rangle & =-\frac{H}{M_{K}^{3}} \epsilon_{\mu \nu \rho \sigma} L^{\nu} P^{\rho} Q^{\sigma} \\
\left\langle\pi^{+}\left(p_{1}\right) \pi^{-}\left(p_{2}\right)\right| A_{\mu}(0)\left|K^{+}(p)\right\rangle & =-i \frac{1}{M_{K}}\left(P_{\mu} F+Q_{\mu} G+L_{\mu} R\right)
\end{aligned}
$$

- In experiments, just $K_{e 4}$ decays are measured, yet.

There, mainly one specific linear combination $F_{1}(s, t, u)$ of the form factors F and G is accessible.

Decomposing the Amplitude

Analytic properties

- $F_{1}(s, t, u)$ has a right-hand branch cut in the complex s-plane, starting at the $\pi \pi$-threshold.
- Left-hand cut present due to crossing.
- Analogous situation in t - and u-channel.

Decomposing the Amplitude

Decomposition into functions of a single

 variableDecomposition has been done first for the $\pi \pi$ scattering amplitude.
\rightarrow Stern, Sazdjian, Fuchs (1993)

Define a function that has just the right-hand cut of the partial wave f_{0} :

$$
M_{0}(s):=P(s)+\frac{s^{4}}{\pi} \int_{4 M_{\pi}^{2}}^{\Lambda^{2}} \frac{\operatorname{Im} f_{0}\left(s^{\prime}\right)}{\left(s^{\prime}-s-i \epsilon\right) s^{\prime 4}} d s^{\prime}
$$

Decomposing the Amplitude

Decomposition into functions of a single
variable
Define similar functions that take care of the right-hand cuts of f_{1} and the S - and P-waves in the crossed channels.

All the discontinuities are split up into functions of a single variable. \Rightarrow Major simplification!

Decomposing the Amplitude

Decomposition into functions of a single variable

We neglect:

- Imaginary parts of D - and higher waves,
- High energy tail of dispersion integral from Λ^{2} to ∞.

Both effects are of $\mathcal{O}\left(p^{8}\right)$.

Decomposing the Amplitude

Decomposition into functions of a single

 variableRespecting isospin properties, we end up with the following decomposition:

$$
\begin{aligned}
F_{1}(s, t, u) & =M_{0}(s)+\frac{2}{3} N_{0}(t)+\frac{1}{3} R_{0}(t)+R_{0}(u) \\
& +(u-t) M_{1}(s)-\frac{2}{3}\left[t(u-s)-\Delta_{K \pi} \Delta_{\ell \pi}\right] N_{1}(t) \\
& +\mathcal{O}\left(p^{8}\right)
\end{aligned}
$$

Integral Equations

Dispersion relation

Solution of the Omnès problem:

$$
M_{0}(s)=\Omega_{0}^{0}(s)\left\{P(s)+\frac{s^{3}}{\pi} \int_{4 M_{\pi}^{2}}^{\Lambda^{2}} \frac{\hat{M}_{0}\left(s^{\prime}\right) \sin \delta_{0}^{0}\left(s^{\prime}\right)}{\left|\Omega_{0}^{0}\left(s^{\prime}\right)\right|\left(s^{\prime}-s-i \epsilon\right) s^{\prime^{3}}} d s^{\prime}\right\}
$$

with the Omnès function

$$
\Omega_{0}^{0}(s):=\exp \left\{\frac{s}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{\delta_{0}^{0}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s-i \epsilon\right)} d s^{\prime}\right\} .
$$

Similar relations for the other functions.

Integral Equations

Phase inputs

We need the following phase shifts:

- $\delta_{0}^{0}, \delta_{1}^{1}: \pi \pi$ scattering
- $\delta_{0}^{1 / 2}, \delta_{1}^{1 / 2}, \delta_{0}^{3 / 2}: K \pi$ scattering
($\delta_{l}^{I}: l$ - angular momentum, I - isospin)

Integral Equations

Hat functions

- The left-hand cut is contained in $\hat{M}_{0}(s)$.
- $\hat{M}_{0}(s)$ is given as angular averages of N_{0}, N_{1}, \ldots

Integral Equations

Intermediate summary

- Problem parametrised by five subtraction constants.
- Elastic scattering phase shifts as inputs.
- Energy dependence fully determined by the dispersion relation.

Integral Equations

Intermediate summary

- Set of coupled integral equations:
$\Rightarrow M_{0}(s), M_{1}(s), \ldots$: DR involving $\hat{M}_{0}(s), \hat{M}_{1}(s), \ldots$
$\Rightarrow \hat{M}_{0}(s), \hat{M}_{1}(s), \ldots$: Angular integrals over $M_{0}(s), M_{1}(s), \ldots$
- System solved by iteration
- Problem linear in subtraction constants \Rightarrow Fit data with a linear combination of five basic solutions

Overview

(1) Motivation

(2) Dispersion Relation for $K_{\ell 4}$ Decays

(3) Results

Fit to Data
Matching to ChPT
Preliminary Values for LECs

(4) Outlook

Fit to Data

Fit of the S-wave

Fit to Data

Fit of the S-wave

Fit to Data

Fit of the S-wave

Matching to ChPT

Determination of LECs

- Matching the dispersive result to ChPT at $s=t-u=0$: Below threshold, where ChPT converges better
- L_{1}^{r}, L_{2}^{r} and L_{3}^{r} can be determined

Preliminary Values for LECs

Determination of LECs - preliminary!

Results of the matching to $\mathcal{O}\left(p^{4}\right) \mathrm{ChPT}(\mu=770 \mathrm{MeV})$

$$
10^{3} L_{1}^{r} \quad 10^{3} L_{2}^{r} \quad 10^{3} L_{3}^{r}
$$

DR, E865 $\quad 0.44 \pm 0.41 \quad 0.42 \pm 0.34 \quad-2.22 \pm 1.41$
$\begin{array}{llll}\text { DR, NA48/2 } & 0.60 \pm 0.29 & 0.63 \pm 0.28 & -3.16 \pm 1.19\end{array}$
$\begin{array}{llll}\left.\text { 'fit All' }{ }^{*}\right] & 0.88 \pm 0.09 & 0.61 \pm 0.20 & -3.04 \pm 0.43\end{array}$
[*] J. Bijnens, I. Jemos, 'fit All': \rightarrow arXiv:1103.5945 [hep-ph]

Overview

(1) Motivation

(2) Dispersion Relation for $K_{\ell 4}$ Decays
(3) Results
(4) Outlook

Outlook

Work in progress

- Isospin corrections
- Matching to $\mathcal{O}\left(p^{6}\right)$ ChPT

Outlook

Summary

- Parametrisation valid up to and including $\mathcal{O}\left(p^{6}\right)$
- Model independence
- Full summation of rescattering effects
- Very precise data available
- Advantage over pure ChPT: Matching below threshold, where ChPT converges better \Rightarrow LECs

