A Dispersive Treatment of $K_{\ell 4}$ Decays

Peter Stoffer

stoffer@itp.unibe.ch

Work in collaboration with G. Colangelo and E. Passemar

Albert Einstein Center for Fundamental Physics Institute for Theoretical Physics University of Bern

7th August 2012

The 7th International Workshop on Chiral Dynamics Jefferson Lab, Newport News, VA

1

2 Dispersion Relation for $K_{\ell 4}$ Decays

3 Results

2 Dispersion Relation for $K_{\ell 4}$ Decays

3 Results

4 Outlook

Importance of $K_{\ell 4}$ decays

Unique information about some low energy constants of ChPT:

- L^r₁, L^r₂, L^r₃ multiply operators with four derivatives ⇒
 We need a four-"particle" process
- $K_{\ell 4}$ like a $2 \rightarrow 2$ scattering
- Happens at low energy, where ChPT is expected to converge better

Importance of $K_{\ell 4}$ decays

- Provides information on $\pi\pi$ scattering lengths a_0^0 , a_0^2
- Very precisely measured \Rightarrow Test of ChPT
 - \rightarrow Geneva-Saclay, E865, NA48/2
- Kaon physics: High precision at low energy as a key to new physics?

 $\rightarrow NA62$

Advantages of dispersion relations

- Summation of rescattering
- Connects different energy regions
- Based on analyticity and unitarity ⇒ Model independence
- $\mathcal{O}(p^6)$ result available, but only useful if LECs are known

Motivation

2 Dispersion Relation for $K_{\ell 4}$ Decays

Kinematics and Matrix Element Decomposing the Amplitude Integral Equations

4 Outlook

$K_{\ell 4}$ decays

Decay of a kaon in two pions and a lepton pair:

$$K^+(p) \to \pi^+(p_1)\pi^-(p_2)\ell^+(p_\ell)\nu_\ell(p_\nu)$$

 $\ell \in \{e, \mu\}$ is either an electron or a muon.

SM tree-level

Hadronic part of $K_{\ell 4}$ as $2 \rightarrow 2$ scattering

Form factors

 Lorentz structure allows four form factors in the hadronic matrix element.

$$\langle \pi^{+}(p_{1})\pi^{-}(p_{2})|V_{\mu}(0)|K^{+}(p)\rangle = -\frac{H}{M_{K}^{3}}\epsilon_{\mu\nu\rho\sigma}L^{\nu}P^{\rho}Q^{\sigma} \langle \pi^{+}(p_{1})\pi^{-}(p_{2})|A_{\mu}(0)|K^{+}(p)\rangle = -i\frac{1}{M_{K}}(P_{\mu}F + Q_{\mu}G + L_{\mu}R)$$

In experiments, just K_{e4} decays are measured, yet.
 There, mainly one specific linear combination
 F₁(s, t, u) of the form factors F and G is accessible.

Analytic properties

- $F_1(s,t,u)$ has a right-hand branch cut in the complex *s*-plane, starting at the $\pi\pi$ -threshold.
- Left-hand cut present due to crossing.
- Analogous situation in *t* and *u*-channel.

Decomposition has been done first for the $\pi\pi$ scattering amplitude.

 \rightarrow Stern, Sazdjian, Fuchs (1993)

Define a function that has just the right-hand cut of the partial wave f_0 :

$$M_0(s) := P(s) + \frac{s^4}{\pi} \int_{4M_\pi^2}^{\Lambda^2} \frac{\mathrm{Im}f_0(s')}{(s' - s - i\epsilon)s'^4} ds'$$

Define similar functions that take care of the right-hand cuts of f_1 and the *S*- and *P*-waves in the crossed channels.

All the discontinuities are split up into functions of a single variable. \Rightarrow Major simplification!

We neglect:

- Imaginary parts of *D* and higher waves,
- High energy tail of dispersion integral from Λ^2 to ∞ . Both effects are of $\mathcal{O}(p^8)$.

Respecting isospin properties, we end up with the following decomposition:

$$F_1(s,t,u) = M_0(s) + \frac{2}{3}N_0(t) + \frac{1}{3}R_0(t) + R_0(u) + (u-t)M_1(s) - \frac{2}{3}\Big[t(u-s) - \Delta_{K\pi}\Delta_{\ell\pi}\Big]N_1(t) + \mathcal{O}(p^8).$$

Dispersion relation

Solution of the Omnès problem:

$$M_0(s) = \Omega_0^0(s) \left\{ P(s) + \frac{s^3}{\pi} \int_{4M_\pi^2}^{\Lambda^2} \frac{\hat{M}_0(s') \sin \delta_0^0(s')}{|\Omega_0^0(s')| (s' - s - i\epsilon) {s'}^3} ds' \right\},$$

with the Omnès function

$$\Omega_0^0(s) := \exp\left\{\frac{s}{\pi} \int_{4M_\pi^2}^\infty \frac{\delta_0^0(s')}{s'(s'-s-i\epsilon)} \, ds'\right\}.$$

Similar relations for the other functions.

Phase inputs

We need the following phase shifts:

- δ_0^0 , δ_1^1 : $\pi\pi$ scattering
- $\delta_0^{1/2}$, $\delta_1^{1/2}$, $\delta_0^{3/2}$: $K\pi$ scattering

 $(\delta_l^I: l - \text{angular momentum}, I - \text{isospin})$

Hat functions

- The left-hand cut is contained in $\hat{M}_0(s)$.
- $\hat{M}_0(s)$ is given as angular averages of N_0, N_1, \ldots

Intermediate summary

- Problem parametrised by five subtraction constants.
- Elastic scattering phase shifts as inputs.
- Energy dependence fully determined by the dispersion relation.

Intermediate summary

• Set of coupled integral equations: $\Rightarrow M_0(s), M_1(s), \ldots$: DR involving $\hat{M}_0(s), \hat{M}_1(s), \ldots$

 $\Rightarrow \hat{M}_0(s), \hat{M}_1(s), \ldots$: Angular integrals over $M_0(s), M_1(s), \ldots$

- System solved by iteration
- Problem linear in subtraction constants ⇒ Fit data with a linear combination of five basic solutions

Motivation

2 Dispersion Relation for $K_{\ell 4}$ Decays

3 Results

Fit to Data Matching to ChPT Preliminary Values for LECs

4 Outlook

Fit of the S-wave

Fit to Data

Fit of the S-wave

Fit to Data

Fit of the S-wave

Determination of LECs

- Matching the dispersive result to ChPT at s = t - u = 0: Below threshold, where ChPT converges better
- L_1^r , L_2^r and L_3^r can be determined

Determination of LECs - preliminary!

Results of the matching to $\mathcal{O}(p^4)$ ChPT ($\mu = 770$ MeV)

	$10^{3}L_{1}^{r}$	$10^{3}L_{2}^{r}$	$10^{3}L_{3}^{r}$
DR, E865	0.44 ± 0.41	0.42 ± 0.34	-2.22 ± 1.41
DR, NA48/2	0.60 ± 0.29	0.63 ± 0.28	-3.16 ± 1.19
'fit All' [*]	0.88 ± 0.09	0.61 ± 0.20	-3.04 ± 0.43

[*] J. Bijnens, I. Jemos, 'fit All': \rightarrow arXiv:1103.5945 [hep-ph]

1 Motivation

2 Dispersion Relation for $K_{\ell 4}$ Decays

3 Results

Work in progress

- Isospin corrections
- Matching to $\mathcal{O}(p^6)$ ChPT

Summary

- Parametrisation valid up to and including $\mathcal{O}(p^6)$
- Model independence
- Full summation of rescattering effects
- Very precise data available
- Advantage over pure ChPT: Matching below threshold, where ChPT converges better ⇒ LECs