Matrix elements from lattice QCD

Dru Renner JLab

reviewing work from many groups

presented at Chiral Dynamics 2012

High-precision calculations of f_{π} ,... in the last decade

Precision calculations of $m_N,\ldots\,$ in the last few years

Well-controlled pion matrix elements are possible now

Intense work on much harder nucleon matrix elements

Lattice QCD can do high-precision calculations

first precision calculations were completed in 2003 there is a notable absence of any baryonic properties

averages of results from arXiv:1110.0016 and http://latticeaverages.org/

2/15

Precision baryon physics is just recently feasible

first calculation in 2009 due to challenge of baryons example of computational thresholds in lattice QCD

BMW collaboration, Science, arXiv:0906.3599, see ETMC and CP-PACS too 3/15

space-like form factor is calculable in Euclidean space

$$\langle \pi, p | V^{\mathsf{em}}_{\mu} | \pi, p'
angle = K_{\mu} F(Q^2) \qquad K_{\mu} = p_{\mu} + p'_{\mu}$$

F(0) = 1, so focus on the slope or the charge radius

$$\langle r^2 \rangle_{\pi} \equiv 6 \left. \frac{dF(Q^2)}{dQ^2} \right|_{Q^2 \to 0}$$

no renormalization is required but $Q^2 \neq 0$ is needed

Precision calculations are essential

good example matrix element to illustrate the need ...

to carefully and precisely control all uncertainties

Pion charge radius

computational thresholds were not met in early results

Pion charge radius

could now calculate pion charge radius to about 5%

Chiral extrapolation of pion charge radius

illustrates the $\chi PT/LQCD$ extrapolation strategy

Pion form factor

lattice calculation is comparable to the measurements

Proton form factors are more challenging

proton leads to two vector form factors, F_1 and F_2

$$\langle N, p | V_{\mu} | N, p' \rangle = K^{1}_{\mu} F_{1}(Q^{2}) + K^{2}_{\mu} F_{2}(Q^{2})$$

now, charge radius and anomalous magnetic moment

$$\langle r^2 \rangle_p \equiv 6 \left. \frac{dF_1(Q^2)}{dQ^2} \right|_{Q^2 \to 0} \qquad \kappa = \lim_{Q^2 \to 0} F_2(Q^2)$$

no renormalization is required but $Q^2 \neq 0$ is needed

no reliable extrapolation, examine raw lattice results

calculations nearly to the physical \mathbf{m}_{π} a major triumph

but well-controlled calculations needed to resolve this

divergence suggests possibly large finite-size effects

finite-size effects at small \mathbf{m}_{π} may resolve this puzzle

Proton axial coupling should be easier

proton requires two axial form factors, $g_{\rm A}$ and $g_{\rm P}$

$$\langle N, p | A^{u-d}_{\mu} | N, p' \rangle = K^A_{\mu} g_A(Q^2) + K^P_{\mu} g_P(Q^2)$$

now both form factors have non-trivial forward limits

$$g_A = g_A(Q^2 = 0)$$
 $g_P = \lim_{Q^2 \to 0} g_P(Q^2)$

 $Q^2 \neq 0$ is not needed for g_A , but a finite Z_A is required

axial coupling has persistently been flat and too low

results approaching the physical point are still too low

but apparent discrepancy is not too large to start with

rule-of-thumb $m_{\pi}L > 4$ is known to be insufficient here

it is known that $m_{\pi}L > 6$ may even be necessary here

Proton parton distributions

GPDs related to generalized form factors $A_{ni}\text{, }B_{ni}\text{, }C_{n}$

$$\langle N, p | O_{\mu\nu} | N, k \rangle = K^A_{\mu\nu} A_{20}(Q^2) + K^B_{\mu\nu} B_{20}(Q^2) + K^C_{\mu\nu} C_2(Q^2)$$

like F_1 or g_A , only A_{n0} has an accessible forward limit

$$\int_{-1}^{1} dx \, x \, q(x) = \langle x \rangle = A_{20}(Q^2 = 0)$$

scale-dep. renormalization is needed but $Q^2 \neq 0$ is not

long standing trend for $\langle x \rangle^{u-d}$ to be quite flat in m_π

will return shortly to this result close to physical limit

again, well-controlled calculations needed here too

corrections by LHPC/ETMC may resolve this puzzle

possible curvature but lightest point has $m_{\pi}L = 2.7$

Well-controlled calculations for the pion are feasible

Intense progress for the nucleon is being made

Apparent conflicts with measurements not justified

Apparent conflicts with χPT not compelling either