Photoproduction and Decay of Light Meson in CLAS

Moskov Amaryan

Old Dominion University Norfolk, Virginia, USA

On behalf of the CLAS Collaboration

7th International Workshop on Chiral Dynamics August 9, 2012, JLAB

Outline

Pseudoscalar, Vector, Axial Vector Mesons

1. Dalitz Decays

- 2. Radiative Decays
- 3. Hadronic Decays

Light Mesons in CLAS

π0	e⁺e⁻γ				
η	e⁺e⁻γ	π⁺π⁻γ	π⁺π⁻π ⁰		
η'	e⁺e⁻γ	π ⁺ π⁻γ	π ⁺ π ⁻ π ⁰	π ⁺ π⁻η	
ρ		π⁺π⁻γ			
ω	e ⁺ e ⁻ π ⁰	π⁺π⁻γ	π ⁺ π ⁻ π ⁰		
φ			π⁺π⁻π ⁰	π⁺π⁻η	
f1(1285)				π⁺π⁻η	

 $a_{\pi} = 0.0309 \pm 0.0008 \pm 0.0009 \text{ (CLEO)} \quad Q^2 > 0.5 \text{GeV}^2$

Time-Like Form Factor $\pi^0 \rightarrow e + e - \gamma$

Slope is measured with very large errors:

 $a_{\pi} = -0.11 \pm 0.03 \pm 0.08$ [2]

$$a_{\pi} = +0.026 \pm 0.024 \pm 0.0048$$
 [3]

$$a_{\pi} = +0.025 \pm 0.014 \pm 0.026$$
 [4]

[2] H. Fonvieille, N. Bensayah, J. Berthot, P. Bertin, M. Crouau, et al., Phys.Lett. **B233**, 65 (1989).

- [3] F. Farzanpay, P. Gumplinger, A. Stetz, J. Poutissou, I. Blevis, et al., Phys.Lett. B278, 413 (1992).
- [4] R. Meijer Drees et al. (SINDRUM-I Collaboration), Phys.Rev. **D45**, 1439 (1992).

CLAS g12 Data

Transition Form Factor

KLOE-2 Proposal

CLAS g12 Data

CLAS provides unprecedented statistics for precision measurement of the TFF slope!

Also Important for LbyL radiative corrections to g-2

CLAS g12 Data

Time-Like Form Factor of η

CLAS Preliminary

Accepted Correct Spectrum

First measurement of Dalitz Decay of eta' from CLAS

Radiative Decay $\eta, \eta' \rightarrow \pi^+\pi^-\gamma$

Why is radiative decay interesting?

It gives an access to the box anomaly term of Wess-Zumino-Witten Lagrangian !

~2M events

Dalitz plot projections
$$\eta \rightarrow \pi^+ \pi^- \pi^0$$

$$M^2 = A(1 + aY + bY^2 + cX + dX^2)$$

(Decay Matrix element expansion)

g11 Data

CLAS g11 Data (7 times more η' than in BESIII) 3 times more on tape

Dalitz plot $\eta' \rightarrow \pi \pi \eta$

Dalitz plot projections η' $\rightarrow \pi \pi \eta$ CLAS Preliminary uncorrected

arXiV:1012.1117

Dalitz decay $\omega \rightarrow e^+e^-\pi^0$

CLAS g12 Data

Transition Form Factor $\omega \rightarrow e^+e^-\pi^0$

Summary

We expect to release at least the following results:

- 1. Transition form factor of π^0 in the time-like region from Dalitz decay $e^+e^-\gamma$ with unprecedented accuracy
- 2. Transition form factor of η in the time-like region from Dalitz decay $e^+e^-\gamma$ with unprecedented accuracy
- 3. Branching ratio $\eta' \to e^+ e^- \gamma$ for the first time
- 4. Measurement of E_{γ} distribution in radiative decay $\eta \to \pi^+ \pi^- \gamma$ with highest statistical accuracy achieved so far
- 5. Measurement of E_{γ} distribution in radiative decay $\eta' \to \pi^+ \pi^- \gamma$ with highest statistical accuracy achieved so far
- 6. Transition form factor of ω in time-like region from Dalitz decay $\omega \to e^+e^-\pi^0$ with the highest statistical accuracy up to date
- 7. Dalitz plot analysis of hadronic decay $\eta \to \pi^+ \pi^- \pi^0$ with statistical precision comparable to that obtained at other facilities
- 8. Dalitz plot analysis of hadronic decay $\eta' \to \pi^+\pi^-\eta$ with almost an order of magnitude improvement in statistics compared to the best measurement achieved at BES
- 9. First observation of G-parity violating decay $\phi \to \pi^+\pi^-\eta$
- 10. Search of heavy η 's with partial wave analysis in photoproduction reaction $\gamma + p \rightarrow p\pi^+\pi^-\eta$

Photoproduction and Decay of Light Mesons in CLAS

CLAS Analysis Proposal

M.J. Amaryan (spokesperson),^{1,*} Ya. Azimov,² M. Battaglieri,³ W.J. Briscoe,⁴ V. Crede,⁵

R. De Vita,³ C. Djalali,⁶ M. Dugger,⁷ G. Gavalian,¹ L. Guo,^{8,9} H. Haberzettl,⁴ C.E. Hyde,¹

D.G. Ireland,¹⁰ F. Klein,¹¹ A. Kubarovsky,^{12,13} V. Kubarovsky,⁹ M.C. Kunkel,¹ K. Nakayama,¹⁴

C. Nepali (spokesperson),¹ E. Pasyuk,⁹ M.V. Polyakov,^{15, 2} B.G. Ritchie,⁷ J. Ritman,^{16, 17, 18} C. Salgado,¹⁹

S. Schadmand (spokesperson),^{16,17} I. Strakovsky,⁴ D. Weygand,⁹ U. Wiedner,¹⁸ and A. Wirzba^{16,17,20}

¹Old Dominion University, Norfolk, Virginia 23529 ²Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300, Russia ³INFN, Sezione di Genova, 16146 Genova, Italy ⁴ The George Washington University, Washington, DC 20052 ⁵Florida State University. Tallahassee. Florida 32306 ⁶University of South Carolina. Columbia, South Carolina 29208 ⁷Arizona State University, Tempe, Arizona 85287-1504 ⁸Florida International University, Miami, Florida 33199 ⁹Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 ¹⁰ University of Glasgow, Glasgow G12 8QQ, United Kingdom ¹¹Catholic University of America, Washington, DC 20064 ¹²Rensselaer Polytechnic Institute, Troy, New York 12180-3590 ¹³Skobeltsyn Nuclear Physics Institute, 119899 Moscow, Russia ¹⁴Department of Physics and Astronomy, University of Georgia, Athens, GA 30602, USA ¹⁵Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum, Germany ¹⁶Institut für Kernphysik, Forschungszentrum, Jüelich, Germany ¹⁷ Jülich Center for Hadron Physics, Forschungszentrum Jülich, 52425 Jüich, Germany ¹⁸Institut für Experimentalphysik I, Ruhr Universität Bochum, 44780 Bochum, Germany

itut jur Experimentalphysik I, Runr Universitat Bochum, 44780 Bochum, German ¹⁹Norfolk State University, Norfolk, VA 23504, USA

²⁰Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany

You are welcome to join!