Tests of Symmetries with η Decays at WASA-at-COSY

Daniel Coderre
Chiral Dynamics Workshop
2012

Introduction: the $\boldsymbol{\eta}$ Meson

Properties of the $\boldsymbol{\eta}$

- Light pseudoscalar, mass $\mathbf{m}_{\mathrm{n}}=\mathbf{5 4 7 . 8 5 3} \pm \mathbf{0 . 0 2 4} \mathbf{M e V} / \mathbf{c}^{2[1]}$
- Simple quantum numbers $\mathbf{J}^{\mathrm{PC}}=\mathbf{0}^{-+}$
- All strong and EM decays forbidden on the first order
- Rare processes experimentally accessible

Decay Studies

- Test fundamental symmetries
- C-symmetry in $\eta \rightarrow \pi^{0} \mathrm{e}^{+} \mathrm{e}^{-}$
- CP-symmetry in $\eta \rightarrow \pi^{+} \pi^{-} \mathrm{e}^{+} \mathrm{e}^{-}$
- Study structure of the η meson
- EM transition form factor measurements $\eta \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \gamma, \eta \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mathrm{e}^{+} \mathrm{e}^{-}$
- Provide precise tests of theoretical predictions (ChPT)
- $\eta \rightarrow \pi^{+} \pi^{*} \pi^{0}, \eta \rightarrow \pi^{0} \pi^{0} \pi^{0}$
- $\eta \rightarrow \pi^{0} \gamma \gamma$
- $\eta \rightarrow \pi^{+} \pi^{-} \gamma$
- Search for new physics outside standard model
- $\eta \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

Introduction: the $\boldsymbol{\eta}$ Meson

Properties of the $\boldsymbol{\eta}$

- Light pseudoscalar, mass $\mathbf{m}_{\mathrm{n}}=\mathbf{5 4 7 . 8 5 3} \pm \mathbf{0 . 0 2 4} \mathbf{M e V} / \mathbf{c}^{2[1]}$
- Simple quantum numbers $\mathbf{J}^{\mathrm{PC}}=\mathbf{0}^{-+}$
- All strong and EM decays forbidden on the first order
- Rare processes experimentally accessible

Decay Studies

- Test fundamental symmetries
- C-symmetry in $\eta \longrightarrow \pi^{0} \AA^{+} \imath^{-}$
- CP-symmetry in $\eta \rightarrow \pi^{+} \pi^{-} \mathrm{e}^{+} \mathrm{e}^{-}$

This Talk

- Study structure of tíe $\boldsymbol{\Perp}$ шeson
- EM transition form factor measurements $\eta \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \gamma, \eta \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mathrm{e}^{+} \mathrm{e}^{-}$
- Provide precise tests of theoretical predictions (ChPT)
- $\eta \rightarrow \pi^{+} \pi^{*} \pi^{0}, r \rightarrow \pi^{0} \pi^{0} \pi^{0}$
- $\eta \longrightarrow \pi^{n} \gamma \gamma$
- $\eta \rightarrow \pi^{+} \pi^{+} \gamma$
- Search for new physics outside standard model
- $\eta \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

The WASA-at-COSY Experiment

- Meson production via. $\mathrm{pd} \rightarrow{ }^{3} \mathrm{He} \eta$

$$
\mathrm{pp} \rightarrow \mathrm{pp} \eta
$$

- Measurement of recoil particles in forward detector
- Tagging of η-mesons via missing mass

$$
\text { Missing Mass }=\sqrt{\left(E_{\text {in }}-E_{\text {out }}\right)^{2}-\left(P_{\text {in }}-P_{\text {out }}\right)^{2}}
$$

The WASA-at-COSY Experiment

- Selection of a final state \rightarrow measurement of decay products of the η in central detector
- Full reconstruction of charged and neutral particles
- Total $\sim 4 \pi$ acceptance

proton-deuteron
- Analysis of main channels
- Train analyses of rare decays
- 30 Million η on disk

Channel Selection, p-p

proton-proton

- Analysis of rare channels

- $10^{9} \eta$ produced
- Isospin-violating process, proceeds due to difference in masses of the light quarks
- Measurement of this channel sensitive to quark mass ratio

$$
\Gamma=\left(\frac{Q_{D}}{Q}\right)^{4} \bar{\Gamma} \quad \text { where } \quad Q^{2}=\frac{m_{s}^{2}-\frac{1}{4}\left(m_{u}+m_{d}\right)^{2}}{m_{d}^{2}-m_{u}^{2}} \quad Q_{D}=24.2
$$

- Current challenge: investigate theoretical predictions including pion final state interactions
- Expand decay rate around $\mathrm{X}=\mathrm{Y}=0$ in Dalitz plot

$$
\begin{aligned}
& \frac{d \Gamma}{d X d Y} \propto\left|A(X, Y)^{2}\right| \propto 1+a Y+b Y^{2}+d X^{2}+f Y^{3}+\ldots \\
& X=\sqrt{3} \frac{T_{+}-T_{-}}{Q_{\eta}} \quad Y=\frac{3 T_{0}}{Q_{\eta}}-1 \quad Q_{\eta}=T_{+}+T_{-}+T_{0}
\end{aligned}
$$

Recent Experimental Results from KLOE

- Dalitz plot based on 1.34 million events
- b and f parameters difficult to reproduce theoretically
- Important to produce an independent Dalitz plot measurement

- Analysis of $10 \times 10^{6} \eta$ mesons from pd $\rightarrow{ }^{3} \mathrm{He} \eta$
- 200,000 events in Dalitz plot
- Dalitz plot parameters pending
- Final thesis writing currently in progress

- Rare decays are also analyzed at WASA-at-COSY
- Example: $\eta \rightarrow \pi^{+} \pi^{-} \mathrm{e}^{+} \mathrm{e}^{-} \quad \mathbf{B R}\left(\boldsymbol{\eta} \rightarrow \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \mathbf{e}^{+} \mathbf{e}^{-}\right)=(\mathbf{2} . \mathbf{6 8} \pm \mathbf{0 . 1 1}) \times 10^{-4}$
- Special analysis procedures necessary for rare channels
J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012).

Particle Identification

- Energy bands separate electrons from pions
- Momentum vs. energy deposit

- Neural networks trained with simulated electron/pion signals
- Information from all particles used
- Reduces ambiguities
- High efficiency: $\sim 95 \%$ correct identifications for signal channel

Photon Conversion Pair Rejection

- Signal $\eta \rightarrow \pi^{+} \pi^{-} \mathrm{e}^{+} \mathrm{e}^{-}$mimicked by channels with photon converting to $\mathrm{e}^{+}{ }^{-}$pairs
- $\eta \rightarrow \pi^{+} \pi^{-} \gamma \rightarrow \pi^{+} \pi^{-} \mathrm{e}^{+} \mathrm{e}^{-}$
- $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0} \rightarrow \pi^{+} \pi^{-} \gamma \gamma \rightarrow \pi^{+} \pi^{-} \mathrm{e}^{+} \mathrm{e}^{-} \gamma$
- Contribution minimized by beryllium beam pipe to $\sim 1 \%$
- Still significant for rare processes
- Reconstruct $\mathrm{e}^{+} \mathrm{e}^{-}$vertex

$\eta \rightarrow \pi^{+} \pi^{-} \mathrm{e}^{+} \mathrm{e}^{-}$at WASA-at-COSY

Branching Ratio Extraction

- Recent measurements of $\operatorname{BR}\left(\eta \rightarrow \pi^{+} \pi \gamma\right)$ disagree with older experiments [1,2]
- Measure branching ratios in $\eta \rightarrow \pi^{+} \pi^{-} \gamma$ and $\eta \rightarrow \pi^{+} \pi^{-} \mathrm{e}^{+} \mathrm{e}^{-}$at WASA-at-COSY
- Analysis in proton-deuteron reactions
- $\left(263 \pm 24_{\text {stat }}\right)$ event candidates
- Several new sources of systematic error investigated and corrected
- Reproduced branching ratios for several known channels within same analysis
$\operatorname{BR}\left(\boldsymbol{\eta} \rightarrow \pi^{+} \pi \mathrm{e}^{+} \mathbf{e}^{-}\right)=\left(\mathbf{3 . 1 0} \pm \mathbf{0 . 2 7 _ { \text { stat } } \pm 0 . 2 2 _ { \text { sys } }) \times 1 0 ^ { - 4 } , ~ (1) ~}\right.$
- Result in agreement with theoretical and experimental values
- Higher precision necessary to confirm compatibility with KLOE measurement

WASA-at-COSY

- In some unconventional cases, amplitude could include a CP-violating component [1,2]
- No CP-violation expected in this decay by Standard Model

- Would cause an asymmetry in the electron/pion decay planes of up to 1% [2]

1. Mod. Phys. Lett. A 17 (2002) 1489.
$A_{\Phi}=\frac{\operatorname{Count}(\sin \Phi \cos \Phi>0)-\operatorname{Count}(\sin \Phi \cos \Phi<0)}{\operatorname{Count}(\sin \Phi \cos \Phi>0)+\operatorname{Count}(\sin \Phi \cos \Phi<0)}$

$$
\mathrm{A}_{\Phi}=\left(0.4 \pm 9.0_{\text {stat }} \pm 2.8_{\text {sys }}\right) \times 10^{-2} \text { preliminary }
$$

KLOE value: $\mathrm{A}_{\Phi}=\left(-0.6 \pm 2.5_{\text {stat }} \pm 1.8_{\text {sys }}\right) \times 10^{-2}$
2. Mod. Phys. Lett. A 17 (2002) 1583.

Outlook: pp \rightarrow pp η Data

- 17 weeks of $\mathrm{pp} \rightarrow \mathrm{pp} \eta$ data on disk
- Preliminary analysis performed on a portion of the data
- Several channels identified via kinematic fit of various hypotheses
- 20 times higher η production cross section than pd
- But higher beam energy, larger Lorentz boost, lower acceptance
- In practice 5 times higher statistics available than p-d
- Extrapolation to full data set predicts competitive statistics available

4 weeks $\mathrm{p}+\mathrm{p}$ data, (222 ± 22) events
Scales to $(1,117 \pm 49)$ events in full data

Summary

- Analysis of $\boldsymbol{\eta} \rightarrow \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{0}$ is nearly completed in pd with 200,000 events in the Dalitz plot
- The rare decay $\boldsymbol{\eta} \rightarrow \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \mathbf{e}^{+} \mathbf{e}^{-}$has been analyzed and the branching ratio and dihedral asymmetry have been measured

Decay Plane Asymmetry: $\quad A_{\Phi}=\left(\mathbf{0 . 4} \pm \mathbf{9 . 0}_{\text {stat }} \pm \mathbf{2 . 8}_{\text {sys }}\right) \times \mathbf{1 0}^{-2}$ preliminary

- Analysis of higher statistics in proton-proton data is in progress
- This is just a part of an extensive light meson decay program at WASA-at-COSY

Outlook: pp \rightarrow pp η Data

- Preliminary analysis performed on a portion of the data
- Several channels identified via kinematic fit of various hypotheses
- 10 times higher η production cross section
- But higher beam energy, larger Lorentz boost, lower acceptance
- In practice 5 times higher statistics available than $\mathrm{p}-\mathrm{d}$
- Extrapolation to full data set predicts competitive statistics available

Channel	Events	Data Analyzed	Expected in Full Data Sample
$\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$	$(43,871 \pm 254)$	1 Week	$(883,184 \pm 1,140)$
$\eta \rightarrow \pi^{+} \pi^{-} \gamma$	$(14,406 \pm 336)$	1 Week	$(290,013 \pm 1,508)$
$\eta \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \gamma$	$(2,973 \pm 72)$	1 Week	$(59,850 \pm 323)$
$\eta \rightarrow \pi^{+} \pi^{-} \mathrm{e}^{+} \mathrm{e}^{-}$	(222 ± 22)	4 Weeks	$(1,117 \pm 49)$

Current PhD theses focus on this data. Shown here \rightarrow results from a preliminary analysis

Outlook: Next Steps

$\eta \rightarrow \pi^{+} \pi^{-} \mathrm{e}^{+} \mathrm{e}^{-}$in proton-proton Reactions

- Expect >1100 events in complete data set
- Analysis steps from pd successfully applied

- Exploratory analysis to measure Dalitz plot parameters
- Dedicated PhD topic in pd and pp

$\eta \rightarrow \pi^{+} \pi \pi^{0}$ in

 proton-proton Reactions- Expect ~ 1 Million events in final Dalitz plot
- Topic of two dedicated PhD theses
- Build on methods learned from proton-deuteron analysis

Analysis: M. Zielinski, W. Bardan

Study of Anomalous QCD

- At chiral limit, proceeds via QCD box-anomaly
- In reality, signal obscured by resonant contributions
- Two experimental observables
- Kinematic spectra

Adlarson et al. Phys. Lett. B707 (2012) 243-249.

- Branching ratio

Branching Ratio

- CLEO measured BR($\left.\eta \rightarrow \pi^{+} \pi^{-} \gamma\right)$ about 10% lower than PDG value
Lopez et. al. Phys. Rev. Lett. 99 (2007) 122001.
- Discrepancy later confirmed by KLOE

Ambrosino et. al. arXiv:1107.5733v1 (2011)

- Dedicated PhD thesis topic at WASA-at-COSY
- Also investigating closely-related process $\eta \rightarrow \pi^{+} \pi^{-} \mathrm{e}^{+} \mathrm{e}^{-}$
Reproduced from: Lopez et. al. Phys. Rev. Lett. 99 (2007) 122001.

η Production at WASA-at-COSY

$\mathrm{pd} \rightarrow{ }^{3} \mathrm{He} \eta \quad \mathrm{E}_{\text {kin }}=1.0 \mathrm{GeV}$

- $\sigma_{\eta}=0.4 \mu \mathrm{~b} \rightarrow \sim 10 \eta / \mathrm{s}$ produced
- Trigger just on ${ }^{3} \mathrm{He}$ unbiased w.r.t. η decay
- Low direct-pion cross section
- 30 million η on disk

Well suited for measurement of common channels

$$
\mathrm{pp} \rightarrow \mathrm{pp} \eta \quad \mathrm{E}_{\text {kin }}=1.4 \mathrm{GeV}
$$

- $\sigma_{\eta}=9.8 \mu \mathrm{~b} \rightarrow>100 \mathrm{\eta} /$ s produced
- Selective trigger required
- High cross-section of multi pion production
- $1 \times 10^{9} \eta$ produced

The WASA-at-COSY Experiment

Forward Detector

Electromagnetic Calorimeter

Mini Drift Chamber

The WASA-at-COSY Experiment

J) JÜLICH

Decay mode	Fraction $\Gamma_{i} / \Gamma_{\text {total }}^{*}$	Issue
$\eta \rightarrow \Pi^{0} \pi^{0} \pi^{0}$	$(32.57 \pm 0.23) \times 10^{-2}$	G-parity, Dalitz plot parameter,
$\eta \rightarrow \Pi^{+} \Pi \Pi^{0}$	$(22.74 \pm 0.28) \times 10^{-2}$	Quark masses
$\eta \rightarrow \Pi^{+} \Pi \cdot \gamma$	$(4.60 \pm 0.16) \times 10^{-2}$	Box anomaly
$\eta \rightarrow \mathrm{Ve}^{+} \mathrm{e}^{-}$	$(6.9 \pm 0.4) \times 10^{-3}$	Transition form factor
$\eta \rightarrow \Pi^{0} \gamma \gamma$	$(2.7 \pm 0.5) \times 10^{-4}$	ChPT
$\eta \rightarrow \Pi^{+} \Pi^{-} e^{+} e^{-}$	$(2.68 \pm 0.11) \times 10^{-4}$	CP-Violation
$\eta \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mathrm{e}^{+} \mathrm{e}^{-}$	$(2.40 \pm 0.22) \times 10^{-5}$	Transition form factor
$\eta \rightarrow \Pi^{0} e^{+} e^{-}$	$<4 \times 10^{-5}$	C-Violation
$\eta \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$	$<5.6 \times 10^{-6}$	New physics?

The η meson:

- Is a light pseudoscalar with mass:

$$
\mathrm{m}=547.853 \pm 0.024 \mathrm{MeV} / \mathrm{c}^{2[1]}
$$

- Quantum numbers:

$$
\mathbf{J}^{\mathrm{PC}}=\mathbf{0}^{-+}
$$

- All strong and electromagnetic decays suppressed in first order
- Rare processes experimentally accessible

Branching Ratios for a Few $\boldsymbol{\eta}$ Decays ${ }^{[1]}$

```
\eta \rightarrow \gamma \gamma
. }393
```



```
\eta->\mp@subsup{\pi}{}{+}\mp@subsup{\pi}{}{-}\mp@subsup{\pi}{}{0}\quad.2274
\eta->\mp@subsup{\pi}{}{+}\mp@subsup{\pi}{}{-}\gamma
\eta \rightarrow \mathrm { e } ^ { + } \mathrm { e } ^ { - } \gamma
.007
\eta \rightarrow \pi ^ { + } \pi ^ { - } \mathrm { e } ^ { + } \mathrm { e } ^ { - }
(2.68\pm0.11)\times 10-4 [1]
```


$(2.68 \pm 0.11) \times 10-4{ }^{[1]}$

Brancing Ratio of $\boldsymbol{\eta} \rightarrow \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \mathbf{e}^{+} \mathbf{e}^{-}$

- Closely related to $\eta \rightarrow \pi^{+} \pi \gamma$
- Based on same underlying, anomalous processes
- Relative branching ratios well-established
- Possible experimental discrepancy in absolute branching ratio of both channels
- Recent measurements of $\eta \rightarrow \pi^{+} \pi \gamma$ find a value about 10% lower than previous
- Both final states can be investigated at WASA-at-COSY

[1] J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012).

CP-Violation in the Standard Model

- In Weak Interactions
- Well-established in kaon and B-meson decays
- Quantified via a single phase in flavor-changing reactions
- Relatively small effect, considering cosmological expectations
- In Strong Interactions
- QCD naturally contains a CP-violating component
- Highly constrained by experimental measurements

CP-Violation in $\boldsymbol{\eta} \rightarrow \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \mathrm{e}^{+} \mathrm{e}^{-}$

- No CP-violation predicted for this channel by Standard Model
- CP-violation would cause an asymmetry in the angle between electron and pion decay planes ${ }^{[2]}$:
- Theoretical upper limit $\mathrm{A}_{\Phi} \sim 2 \%{ }^{[2]}$
- Measurement requires high statistics

Experiment (Detector)

Experimental Conditions

Beam: Protons with $p=1.7 \mathrm{GeV} / \mathrm{c}$
Target: Deuterium pellets $(6-8 \mathrm{kHz})$
Luminosity: Average $3.1 \times 10^{31} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ $\boldsymbol{\sigma}_{\boldsymbol{\eta}}=(0.413 \pm 0.015) \mu b^{[3]}$
$\sim 10 \eta /$ s produced
Production Reaction: $\mathrm{pd} \rightarrow{ }^{3} \mathrm{He} \eta$ Reconstructed $\boldsymbol{\eta}$-mesons: 30×10^{6} in 12 weeks of data tagged via missing mass technique

Electromagnetic Calorimeter

Mini Drift Chamber

Forward Detector

Analysis Steps/Highlights

$\underset{\text { Four-vector }}{\text { Feconstruction }} \rightarrow$| Particle |
| :---: |
| Selection |\rightarrow| Particle |
| :---: |
| Identification |\rightarrow| Kinematic |
| :---: |
| Fitting |\longrightarrow| Final Selection |
| :---: |
| Criteria |

Particle Identification

- Energy bands separate electrons from pions
- Momentum from Mini Drift Chamber
- Energy from plastic scintillators and calorimeter

- Neural networks trained with simulated electron/pion signals
- Information from all particles used
- Reduces ambiguities
- High efficiency: $\sim 95 \%$ correct identifications for signal channel

Photon Conversion Pair Rejection

- Signal $\eta \rightarrow \pi^{+} \pi^{*} \mathrm{e}^{+} \mathrm{e}^{-}$mimicked by channels with photon converting to ete pairs
- $\eta \rightarrow \pi^{+} \pi^{-} \gamma \rightarrow \pi^{+} \pi^{-}$
- $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0} \rightarrow \pi^{+} \pi^{+} \gamma \gamma \rightarrow \pi^{+} \pi^{-} \quad \gamma$
- Contribution minimized by beryllium beam pipe to $\sim 1 \%$
- Still significant for rare processes
- Suppression based on reconstruction of primary vertex, $\sim 90 \%$ effective

Systematics

Rest Gas

- Evaporated gas from pellets interacts with beam particles
- Rest Gas events look similar to beam-pellet events
- Different reconstruction efficiency
- Certain information relies on primary vertex, will be incorrectly reconstructed
- Quantify rest gas via $\pi^{+} \pi^{-}$vertex position
- Include rest gas in simulations

Luminosity Effects

- Yield of all channels decreases with luminosity
- Inefficiency to number of photons in event to first order
- Photon efficiency correction derived using two independent channels
- Function used to correct efficiencies for other channels
- Cross-check: measure relative branching ratios between several different channels with different numbers of photons in final state

Channel	Branching Ratio*	Tests
$\eta \rightarrow \gamma \gamma$	$(39.31 \pm 0.20) \times 10^{-2}$	• Photon reconstruction
efficiency		

*2012 Review of Particle Physics. J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012)

Branching Ratio

$$
\operatorname{BR}\left(\eta \rightarrow \pi^{+} \pi^{-} \mathbf{e}^{+} \mathbf{e}^{-}\right)=\left(\mathbf{3 . 1 0} \pm 0.27_{\text {stat }} \pm \mathbf{0 . 2 2 _ { \text { sys } }}\right) \times \mathbf{1 0}^{-4}
$$

- Agreement with theoretical calculations
- Compatible with other experimental results
- Higher precision required to clarify discrepancy between theory and KLOE result
- Compare to measurements of $\eta \rightarrow \pi^{+} \pi^{-} \gamma$ branching ratio

CP-Violating Asymmetry

- $\left(263 \pm 24_{\text {stat }}\right)$ signal event candidates

$$
A_{\Phi}=\left(0.4 \pm 9.0_{\text {stat }} \pm 2.8_{\text {sys }}\right) \times 10^{-2}
$$

Conclusion

Summary

- $\left(263 \pm 24_{\text {stat }}\right)$ event candidates for the channel $\eta \rightarrow \pi^{+} \pi^{-} \mathrm{e}^{+} \mathrm{e}^{-}$have been identified in p-d data and the branching ratio and possible CP-violating observable have been measured
- Several analysis techniques used at WASA-at-COSY for the first time
- Particle identification with neural networks
- Photon conversion suppression using primary vertex reconstruction
- Several systematic effects thoroughly investigated
- Effects of rest-gas (more accurate parameterization using primary vertex)
- Inefficiencies related to luminosity

Outlook

- 17 weeks of data in available in proton-proton reactions
- Higher cross section \rightarrow over 10^{9} eta mesons produced
- Preliminary analyses of several channels have been completed on a subset of this data as part of this work
- Clear signals are visible from all decay channels previously studied in p-d
- Competitive statistics are available
- Estimated ($1,117 \pm 49$) reconstructed $\eta \rightarrow \pi^{+} \pi^{-} \mathrm{e}^{+} \mathrm{e}^{-}$event candidates available in complete data

Proton-Proton Data

Channel	Events	Data Analyzed	Expected in Full Data Sample
$\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$	$(43,871 \pm 254)$	1 Week	$(883,184 \pm 1,140)$
$\eta \longrightarrow \pi^{+} \pi^{-} \gamma$	$(14,406 \pm 336)$	1 Week	$(290,013 \pm 1,508)$
$\eta \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \gamma$	$(2,973 \pm 72)$	1 Week	$(59,850 \pm 323)$
$\eta \rightarrow \pi^{+} \pi^{-} \mathrm{e}^{+} \mathrm{e}^{-}$	(222 ± 22)	4 Weeks	$(1,117 \pm 49)$

- $\sigma_{\eta} 25$ times higher than in p-d
- Beam momentum 2.14 GeV/c
- $\mathrm{pp} \rightarrow \mathrm{pp} \eta$
- 17 weeks of data available
- $\sim 10^{9}$ produced η-mesons
- Preliminary analysis of a portion of the data
- Clean signals extracted for several channels
- Extrapolation to full data set predicts competitive statistics available

More Signals in pp

Motivation 1 : Introduction

- The $\boldsymbol{\eta}$ meson
- $\mathrm{q}=0, \mathrm{I}=0, \mathrm{~J}^{\mathrm{PC}}=0^{-+}$
- Mass $=547.9 \mathrm{MeV} / \mathrm{c}^{2}$
- Decay studies
» Test fundamental symmetries
» Hadron structure and dynamics
See: P.Wurm HK-54 - Tomorrow
- The decay $\boldsymbol{\eta} \rightarrow \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \mathbf{e}^{+} \mathbf{e}^{-}$
- Low-level diagrams same as $\eta \rightarrow \pi^{+} \pi^{-} \gamma$ See: D.Lersch HK-38
- Experimental observables
» $\boldsymbol{\eta} \rightarrow \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \boldsymbol{\gamma}$
- Kinematic distributions
- Branching ratio
" $\boldsymbol{\eta} \rightarrow \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \mathbf{e}^{+} \mathbf{e}^{-}$
- Branching ratio

Branching Ratios for a few $\boldsymbol{\eta}$ Decays ${ }^{1}$

$$
\begin{array}{ll}
\eta \rightarrow \gamma \gamma & .3931 \\
\eta \rightarrow \pi^{0} \pi^{0} \pi^{0} & .3256 \\
\eta \rightarrow \pi^{+} \pi^{-} \pi^{0} & .2274 \\
\eta \rightarrow \pi^{+} \pi^{-} \gamma & .046 \\
\eta \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \gamma & .007 \\
\cdots & \\
\eta \rightarrow \pi^{+} \pi^{-} \mathrm{e}^{+} \mathrm{e}^{-} & 2.68 \times 10^{-4}
\end{array}
$$

Motivation 2 : Observables

Branching Ratio

- $\Gamma\left(\eta \rightarrow \pi^{+} \pi^{-} \mathrm{e}^{+} \mathrm{e}^{-}\right) / \Gamma\left(\eta \rightarrow \pi^{+} \pi^{-} \gamma\right)$ well established theoretically
- Recent measurements of absolute branching ratio in both channels lower than expected

CP-Violating Observable

- Possible CP-violation outside of Standard Model See: D.N. Gao, Mod. Phys. Lett. A 17 (2002) 1583.
- Would produce asymmetry in angle between electron and pion decay planes
- Theoretical upper limit $\rightarrow \sim 1 \times 10^{-2}$
- High statistics needed!

Experimental upper limit from KLOE:

$$
\mathrm{A}_{\Phi}=\left(-0.6 \pm 2.5_{\text {stat }} \pm 1.8_{\text {syst }}\right) \times 10^{-2}
$$

Experiment: WASA Detector

Charged Particle Track Reconstruction

Photon Reconstruction

Forward Range for PID and Reconstruction

η Production

$$
\mathrm{pd} \rightarrow{ }^{3} \mathrm{He} \eta \quad \mathrm{E}_{\mathrm{kin}}=1.0 \mathrm{GeV}
$$

- $\sigma_{\eta}=0.4 \mu \mathrm{~b} \rightarrow \sim 10 \eta / \mathrm{s}$ produced
- Trigger just on ${ }^{3} \mathrm{He}$ unbiased w.r.t. η decay
- Low direct-pion cross section
- 30 million η on disk

Well suited for measurement of common channels

$$
\mathrm{pp} \rightarrow \mathrm{pp} \eta \quad \mathrm{E}_{\text {kin }}=1.4 \mathrm{GeV}
$$

- $\sigma_{\eta}=9.8 \mu b \rightarrow>100 \eta /$ s produced
- Selective trigger required
- High cross-section of multi pion production
- $5 \times 10^{8} \eta$ produced

Well suited for measurement of rare decays

Particle Identification

- In $\eta \rightarrow \pi^{+} \pi^{-} \mathrm{e}^{+} \mathrm{e}^{-}$, PID necessary for mass assignment
- Large pion background makes PID important for clean selection of channels with $\mathrm{e}^{+} \mathrm{e}^{-}$
- Energy bands separate electrons and pions \rightarrow trained into neural networks

Suppression of Photon Conversion

- Background from $\mathrm{e}^{+} \mathrm{e}^{-}$pairs from external conversion important when analyzing rare decays
- Tracking from drift chamber allows determination of primary vertex
- 90% of conversion pairs can be reliably rejected

Branching Ratio

- $263 \pm 24_{\text {stat }}$ signal event candidates
- Signal:Background ratio 2:1
- Final systematical checks in progress

Decay Plane Asymmetry

- Check asymmetry around 0 of $\sin \Phi \cos \Phi$
- $\mathrm{A}_{\Phi}=0.3 \pm 9.0_{\text {stat }}$ Preliminary

Extend analysis to proton-proton data

- Higher rate of η production
- Reduce statistical error to $\sim 4 \%$ assuming no other changes
- The decay $\eta \rightarrow \pi^{+} \pi^{-} \mathrm{e}^{+} \mathrm{e}^{-}$has been measured in proton-deuteron reactions at WASA-at-COSY
$-263 \pm 24_{\text {stat }}$ signal events identified
$-\mathbf{A}_{\boldsymbol{\Phi}}$ compatible with zero (9×10^{-2} statistical error)
- Meson decay program at WASA-at-COSY
-Dedicated beam times for η, ω, and π^{0} decays
-7 weeks of data taking in $\mathrm{pp} \rightarrow \mathrm{pp} \mathrm{\eta}$ successfully concluded last week
- Higher backgrounds than in pd
- Analysis techniques developed in protondeuteron allow clean signals from η decays to be seen
- Particle identification
- Conversion suppression
- Kinematic fitting

* a portion of the total statistics is shownB7

Outlook: Next Steps

$\eta \rightarrow \pi^{+} \pi^{*} \mathrm{e}^{+} \mathrm{e}^{-}$in proton-proton Reactions

- Expect >1100 events in complete data set
- Analysis steps from pd successfully applied

Data Analyz

1 Wee

1 Wee

1 Wee

4 Wee

