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m! dependence of the nucleon and ! masses is included
and when it is not. Accounting for the m! dependence in
MN and M!, shown in Fig. 12, apparently changes the
result for G!M quite significantly. The "EFT calculation,
with the m! dependence of MN and M! included, is in a
qualitatively good agreement with the lattice data shown in
the figure. The "EFT result also follows an approximately
linear behavior in m2

!, although it falls about 10%–15%
below the lattice data. This is just within the uncertainty of
the NLO results. One should also keep in mind that the
present lattice simulations are not done in full QCD, but are
quenched, so discrepancies are not unexpected.

In Fig. 14, we show them! dependence of the ratios REM
and RSM and compare them to lattice-QCD calculations.
The recent state-of-the-art lattice calculations of REM and
RSM [25] use a linear, in the quark mass (mq / m2

!),
extrapolation to the physical point, thus assuming that
the nonanalytic mq dependencies are negligible. The thus
obtained value for RSM at the physical m! value displays a

large discrepancy with the experimental result, as seen in
Fig. 14. Our calculation, on the other hand, shows that the
nonanalytic dependencies are not negligible. While at
larger values of m!, where the ! is stable, the ratios dis-
play a smooth m! dependence, at m! " ! there is an
inflection point, and for m! # ! the nonanalytic effects
are crucial, as was also observed for the !-resonance
magnetic moment [24,40].

One also sees from Fig. 14 that, unlike the result forG!M,
there is only little difference between the "EFT calcula-
tions with the m! dependence of MN and M! accounted
for, and our earlier calculation [23], where the ratios were
evaluated neglecting the m! dependence of the masses.
This is easily understood, as the main effect due to the
m! dependence of MN and M! arises due to a common
factor in the evaluation of the #N! form factors, which
drops out of the ratios. One can speculate that the quench-
ing effects drop out, at least partially, from the ratios as
well.

In Fig. 14 we also show the m! dependence of the #N!
transition ratios, with the theoretical uncertainty estimated
according to Eq. (55), for the case LO " 0, and with the
average taken over the range of m2

! from 0 to 0:15 GeV2.
The m! dependence obtained here from "EFT clearly
shows that the lattice results for RSM may in fact be
consistent with experiment.

VII. CONCLUSION

Let us briefly go over the main points and results pre-
sented in this paper, which is the first one in a series
devoted to "EFT in the !$1232%-resonance region.

(i) We develop an extension of chiral perturbation
theory to the !$1232%-resonance energy region,
based on the $ expansion of Ref. [22]. In this
"EFT framework the expansion is done in the
small parameter $ equal to the excitation energy
of the resonance over the chiral symmetry-
breaking scale. The other low-energy scale of the
theory, the pion mass, counts as $2, which is a
crucial point for an adequate counting of the
!-resonance contributions in both the low-energy
and the resonance energy regions.

(ii) This framework has been applied here to the pro-
cess of pion electroproduction. This is a first "EFT
study of this reaction in the !$1232%-resonance
region. We have performed a complete calculation
of this process in the resonance region up to, and
including, next-to-leading order in the $ ex-
pansion. The power counting in $ has only been
used to establish which graphs contribute at the
leading and next-to-leading order, no actual expan-
sion of the diagrams themselves is being done.
Therefore, some higher order in $ effects, required
by relativity and analyticity, are automatically in-
cluded. Such effects are known to improve the

FIG. 14 (color online). m! dependence of the NLO results at
Q2 " 0:1 GeV2 for REM (upper panel) and RSM (lower panel).
The blue circle is a data point from MAMI [43], the green
squares are data points from BATES [3]. The three filled black
diamonds at larger m! are lattice calculations [25], whereas the
open diamond near m! ’ 0 represents their extrapolation assum-
ing linear dependence in m2

!. Red solid curves: NLO result when
accounting for the m! dependence in MN and M!; green dashed
curves: NLO result of Ref. [23], where the m! dependence of
MN and M! was not accounted for.
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[39]: REM ! 1, for Q2 ! 1. This is achieved by the
choice: !2

E !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
"gM#0$=gE#0$

p
0:71 GeV2. The dashed

curves in Fig. 11 show the resulting effect of the replace-
ment (60), as imposed on the complete NLO result shown
by the solid curves with error bands. The fact that the
dashed curves go out of the error bands at some point
indicates that our error estimate is not designed for such
high Q2 values.

C. Chiral behavior and chiral extrapolations

Since the low-energy constants gM, gE, and gC have
been fixed, our calculation can provide a prediction for the
m! dependence of the "N" transition form factors. The
study of the m! dependence is crucial to connect to lattice-
QCD results, which at present can only be obtained for
larger pion masses (typically m! * 300 MeV).

The m! dependence of the nucleon and "-resonance
masses, given above by Eqs. (19) and (26), are compared
with lattice results in Fig. 12. We constrain one of the two
parameters in Eq. (19) by the physical nucleon mass value
at m! ! 0:139 GeV, while the other parameter is fit to the
lattice data shown in the figure. This yields M#0$N !
0:883 GeV and c1N ! "0:87 GeV"1. As is seen from
the figure, with this two-parameter form for MN , a good
description of lattice results is obtained up to m2

! ’
0:5 GeV2.

Analogously to the nucleon case, we fix one parameter
in Eq. (26) from the physical value of the " mass, while the
second parameter is fit to the lattice data shown in Fig. 12,
yielding M#0$" ! 1:20 GeV and c1" ! "0:40 GeV"1. As

well as for the nucleon, this two-parameter form for M"
yields a fairly good description of the lattice results up to
m2
! ’ 0:5 GeV2.
In Fig. 13 we examine the m! dependence of the mag-

netic "N"-transition form factor G%M, in the convention of
Jones and Scadron, see Eq. (37). At the physical pion mass,
this form factor can be obtained from the imaginary part of
the M3=2

1& multipole at W ! M" (where the real part is zero
by Watson’s theorem) as

ReG%M#Q2$ !
"
32!M2

Njp%!j#"

3e2jq%j2
#

1=2
ImM3=2

1& ; (61)

where jp%!j (jq%!j) denote the pion (virtual photon) c.m. 3-
momenta, respectively, at the resonance position, i.e. for
W ! M". Recall that the value of G%M at Q2 ! 0 is deter-
mined by the low-energy constant gM. The Q2 dependence
then follows as a prediction of the NLO result, and Fig. 13
shows that this prediction is consistent with the experimen-
tal value at Q2 ! 0:127 GeV2 and physical pion mass.

The m! dependence of G%M is also completely fixed at
NLO, no new parameters appear. In Fig. 13, the result for
G%M at Q2 ! 0:127 GeV2 is shown both when the

FIG. 13 (color online). The m! dependence of the real part of
the Jones-Scadron "N" form factor G%M for Q2 ! 0 and Q2 !
0:127 GeV2. The solid (dashed) curves are the NLO results for
Q2 ! 0:127 GeV2 (Q2 ! 0), respectively, including the m!
dependence of MN and M". The green dotted curve is the
corresponding result for Q2 ! 0:127 GeV2 where the m! de-
pendence of MN and M" is not included. The blue circle for
Q2 ! 0 is a data point from MAMI [1] , and the green square for
Q2 ! 0:127 GeV2 is a data point from BATES [3]. The three
filled black diamonds at larger m! are lattice calculations [25]
for Q2 values of 0.125, 0.137, and 0:144 GeV2 respectively,
whereas the open diamond near m! ’ 0 represents their extrapo-
lation assuming linear dependence in m2

!.
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FIG. 12 (color online). Pion-mass dependence of the nucleon
and "#1232$ masses. The curves are two-parameter expressions
for the !N loop contributions to MN and M" according to
Eqs. (19) and (25) respectively, using M#0$N ! 0:883 GeV, c1N !
"0:87 GeV"1, and M#0$" ! 1:20 GeV, c1" ! "0:40 GeV"1 re-
spectively. The red squares are lattice results from the MILC
Collaboration [45]. The stars represent the physical mass values.
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!" ! 1
2 "1# r2 # !Q2$. The multipole ratios E2=M1 and

C2=M1 at the "-resonance position can be expressed in
terms of these form factors as

REM ! #
G%E
G%M

; RSM ! #
Q&Q#
4M2

"

G%C
G%M

: (38)

Alternatively, the on-shell "N" vertex is also often
expressed in the following form:

!u #"p0$##$"N"u"p$ !
!!!
2
3

s
!u#"p0$f""$q# # " ' qg#$$g1"Q2$

& "q ' p0g#$ # q#p0$$g2"Q2$
& "q#q$ # q2g#$$g3"Q2$gi"5u"p$;

(39)

which is defined for the p! "& transition, yielding the
isospin factor

!!!!!!!!
2=3

p
. The form factors gM, gE and gC can

then be expressed in terms of gi"Q2$ "i ! 1; 2; 3$ through
the relations:

gM"Q2$ ! # 2
3

MNQ2
&

M""M" &MN$
g1"Q2$;

gE"Q2$ ! 2
3

MNQ2
&

M""M" &MN$
fg1"Q2$ #M"g2"Q2$g;

gC"Q2$ ! 2
3

MNQ2
&

"M" &MN$
g3"Q2$: (40)

C. Feynman-parameter method

The one-loop corrections to the "N" form factors are
given by the graphs in Figs. 2(e) and 2(f). As they contain
three propagators, we apply the Feynman-parameter trick:

1
ABC

! 2
Z 1

0
dx
Z x

0
dy

1

(Ay& B"x# y$ & C"1# x$)3 :

(41)

For the diagram Fig. 2(e) we have A ! k2 #m2
% & i&, B !

"k& q$2 #m2
% & i&,C ! "p# k$2 #M2

N & i&, where k is
the integration 4-momentum. After the shift of the integra-
tion momentum, k! k# "x# y$q& "1# x$p, we obtain
Ay& B"x# y$ & C"1# x$! k2 #M2, where

M 2"x; y$ ! m2
%x& "M2

N # p2x$"1# x$ # 2p ' q"1# x$
* "x# y$ # q2"x# y$"1# x# y$ # i&:

(42)

For the case of the N ! " transition we may use
p2 ! M2

N , p02 ! "p& q$2 ! M2
", and hence 2p ' q !

M2
" #M2

N # q2, and

M2"x; y$ ! m2
%x& (M2

N # xM2
" & "M2

" #M2
N$y)"1# x$

& q2y"x# y$ # i&: (43)

The next step is to perform the integration over 4-
momentum which can be done by using the following
rules:

Z d4k
"2%$4

1

"k2 #m2$n + Jn"m2$

! i
"#1$n
"4%$2

#"n# 2$
#"n$ m#2"n#2$; (44a)

Z d4k
"2%$4

k$k'
"k2 #m2$n !

1
2"n# 1$ Jn#1"m2$g$': (44b)

Integrals with an odd number of 4-vectors k in the numera-
tor vanish. The integral Jn diverges for n ! 1 and 2, but
can be defined via dimensional regularization as

J1"m2$ ! #im
2

"4%$2
"
# 2

4# d& "E # 1& ln
m2

4%

#
; (45a)

J2"m2$ ! #i
"4%$2

"
# 2

4# d& "E & ln
m2

4%

#
; (45b)

where d! 4# is the number of dimensions and "E !
##0"1$ ’ 0:5772 is the Euler constant.

Then, the (MS-subtracted) result for the graph of
Fig. 2(e), where the photon couples to the charged pion
in the loop, can be decomposed into the three Lorentz
covariants Eq. (36) and cast in the form:

g"e$M ! #CN"

Z 1

0
dyy

Z 1#y

0
dx lnM2

e; (46a)

g"e$E ! &CN"

Z 1

0
dyy

Z 1#y

0
dxflnM2

e

# 2x("1# y$"1& r$ # x)M#2
e g; (46b)

g"e$C ! #CN"

Z 1

0
dyy"2y# 1$

*
Z 1#y

0
dx("1# y$"1& r$ # x)M#2

e ; (46c)

with

M 2
e + "x# !$2 # (2 & 2!"xy& !Q2y"1# y$ # i";

(46d)

while the analogous contribution of the graph Fig. 2(f),
where the photon couples to the electric charge of the
nucleon in the loop, is given by
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γ NΔ∆ form factors: chiral behavior at low Q

data points : MAMI, MIT-Bates, 
lattice QCD [Nicosia group]

W=1.232 GeV, Q2 = 0.1 GeV2

[V.P. & Vanderhaeghen, PRL 95 (2005); PRD 73 (2006)]
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Example - Nucleon Mass      
[Gasser, Sainio & Svarc, NPB (1988);  ... ]

V. Pascalutsa, M. Vanderhaeghen / Physics Letters B 636 (2006) 31–39 33

Fig. 1. The nucleon and ∆ self-energy contributions considered in this Letter. Double lines represent the ∆ propagators.

Point (ii), in particular, allows us to use simpler forms for the spin-3/2 propagator. Indeed, as can be read off Eq. (1), the
propagator of the massive spin-3/2 field is the inverse of the free-field operator:

(4)
(
S−1)

αβ
(p) = γαβµpµ − mγαβ ,

where p = i∂ , and m denotes the mass. However, using the gauge symmetry under (3) and hence the spin-3/2 constraints: ∂ · ψ =
0 = γ · ψ , one can obtain other, equivalent, forms of the propagator [22]. One can, for example, derive the following gauge-fixing
term:

(5)Lg.f. = −iζ(∂ · ψ̄γ · ψ − ψ̄ · γ ∂ · ψ),

with the gauge-fixing parameter ζ , a real number. Upon adding this term, the free-field operator Eq. (4) becomes:

(6)
(
S−1)

αβ
(p) = (/p − m)γαβ + (1 + ζ )(γαpβ − γβpα) = γαβ(/p − m) − (1 − ζ )(γαpβ − γβpα),

and it is not difficult to find its inverse:

(7)Sαβ(p) = /p + m

m2 − p2

[
gαβ − 1

3
γ αγ β + (1 − ζ )(ζ/p + m)

3(ζ 2p2 − m2)

(
γ αpβ − γ βpα

)
+ 2(1 − ζ 2)pαpβ

3(ζ 2p2 − m2)

]
.

Some simple gauges are:

(8)ζ = 1 : Sαβ(p) = /p + m

m2 − p2

(
gαβ − 1

3
γ αγ β

)
,

(9)ζ = −1 : Sαβ(p) =
(

gαβ − 1
3
γ αγ β

)
/p + m

m2 − p2 ,

(10)ζ = ∞ : Sαβ(p) = /p + m

m2 − p2P
(3/2)αβ(p),

where

(11)P(3/2)αβ(p) = 2
3

(
gαβ − pαpβ

p2

)
+ /p

3p2 γ αβµpµ

is the covariant spin-3/2 projection operator. Obviously, ζ = 0 corresponds with the usual Rarita–Schwinger propagator. It is
interesting to observe that for ζ #= 0 the propagator has a smooth massless limit. We would like to stress that our results are
independent of the gauge-fixing parameter, because all the spin-3/2 couplings used here are symmetric with respect to the gauge
transformation (3).

It is unlikely that one can construct a theory where the chiral and the spin-3/2 symmetries would be manifest in a closed form.
However, the procedure where the chiral Lagrangian with no spin-3/2 gauge symmetry at a given order is replaced by an equivalent,
to that order, Lagrangian with spin-3/2 gauge symmetry is feasible [21]. Thus, both symmetries can be realized in the effective-field
theory sense.

In the ζ = ∞ gauge, the ∆ self-energy takes a simple form:

(12)Σαβ(p) = Σ(/p)P(3/2)
αβ (p),

where Σ(/p) has the spin-1/2 Lorentz structure. Thus, both nucleon and ∆-isobar self-energies can be expressed in the same Lorentz
form, without complications of the lower-spin sector of the spin-3/2 theory considered in [23,24].

Furthermore, in explicit calculations we find that this form for the nucleon and the ∆ can be written in a universal expression.
Namely, the one-pion-loop contribution of a baryon B ′ to the self-energy of a baryon B , see Fig. 1, can generically be written as:

(13)ΣB(/p) = CBB ′

3(2fπMB)2

1
i

∫
d4k

(2π)4

1
k2 − m2

π

/p − /k + MB ′

(p − k)2 − M2
B ′

[
p2k2 − (p · k)2],

L =

X

k

L(k), k = # of pion derivatives and masses

L(1)
�N =

¯N(iD/ �
�

MN +

�
gA aµ�µ�5)N

=

¯N
⇣
i⇤/ �

�
MN +

�
gA

2f�
(⇤µ⇥)�µ�5

⌘
N + O(⇥2

)

L(2)
�N = 4

�
c1N m2

�
¯N N + . . .

Power-counting: 

MN =
�

MN � 4
�
c1N m2

� �

Vk # of vertices from L(k)

L # of Loops

N� # of internal pions

NN # of internal nucleons

pn

O(p3)
+  ...

LECs
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theory sense.

In the ζ = ∞ gauge, the ∆ self-energy takes a simple form:

(12)Σαβ(p) = Σ(/p)P(3/2)
αβ (p),

where Σ(/p) has the spin-1/2 Lorentz structure. Thus, both nucleon and ∆-isobar self-energies can be expressed in the same Lorentz
form, without complications of the lower-spin sector of the spin-3/2 theory considered in [23,24].

Furthermore, in explicit calculations we find that this form for the nucleon and the ∆ can be written in a universal expression.
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Fig. 1. The nucleon and ∆ self-energy contributions considered in this Letter. Double lines represent the ∆ propagators.

Point (ii), in particular, allows us to use simpler forms for the spin-3/2 propagator. Indeed, as can be read off Eq. (1), the
propagator of the massive spin-3/2 field is the inverse of the free-field operator:

(4)
(
S−1)

αβ
(p) = γαβµpµ − mγαβ ,

where p = i∂ , and m denotes the mass. However, using the gauge symmetry under (3) and hence the spin-3/2 constraints: ∂ · ψ =
0 = γ · ψ , one can obtain other, equivalent, forms of the propagator [22]. One can, for example, derive the following gauge-fixing
term:

(5)Lg.f. = −iζ(∂ · ψ̄γ · ψ − ψ̄ · γ ∂ · ψ),

with the gauge-fixing parameter ζ , a real number. Upon adding this term, the free-field operator Eq. (4) becomes:

(6)
(
S−1)

αβ
(p) = (/p − m)γαβ + (1 + ζ )(γαpβ − γβpα) = γαβ(/p − m) − (1 − ζ )(γαpβ − γβpα),

and it is not difficult to find its inverse:

(7)Sαβ(p) = /p + m

m2 − p2

[
gαβ − 1

3
γ αγ β + (1 − ζ )(ζ/p + m)

3(ζ 2p2 − m2)

(
γ αpβ − γ βpα

)
+ 2(1 − ζ 2)pαpβ

3(ζ 2p2 − m2)

]
.

Some simple gauges are:

(8)ζ = 1 : Sαβ(p) = /p + m

m2 − p2

(
gαβ − 1

3
γ αγ β

)
,

(9)ζ = −1 : Sαβ(p) =
(

gαβ − 1
3
γ αγ β

)
/p + m

m2 − p2 ,

(10)ζ = ∞ : Sαβ(p) = /p + m

m2 − p2P
(3/2)αβ(p),

where

(11)P(3/2)αβ(p) = 2
3

(
gαβ − pαpβ

p2

)
+ /p

3p2 γ αβµpµ

is the covariant spin-3/2 projection operator. Obviously, ζ = 0 corresponds with the usual Rarita–Schwinger propagator. It is
interesting to observe that for ζ #= 0 the propagator has a smooth massless limit. We would like to stress that our results are
independent of the gauge-fixing parameter, because all the spin-3/2 couplings used here are symmetric with respect to the gauge
transformation (3).

It is unlikely that one can construct a theory where the chiral and the spin-3/2 symmetries would be manifest in a closed form.
However, the procedure where the chiral Lagrangian with no spin-3/2 gauge symmetry at a given order is replaced by an equivalent,
to that order, Lagrangian with spin-3/2 gauge symmetry is feasible [21]. Thus, both symmetries can be realized in the effective-field
theory sense.

In the ζ = ∞ gauge, the ∆ self-energy takes a simple form:

(12)Σαβ(p) = Σ(/p)P(3/2)
αβ (p),

where Σ(/p) has the spin-1/2 Lorentz structure. Thus, both nucleon and ∆-isobar self-energies can be expressed in the same Lorentz
form, without complications of the lower-spin sector of the spin-3/2 theory considered in [23,24].

Furthermore, in explicit calculations we find that this form for the nucleon and the ∆ can be written in a universal expression.
Namely, the one-pion-loop contribution of a baryon B ′ to the self-energy of a baryon B , see Fig. 1, can generically be written as:

(13)ΣB(/p) = CBB ′

3(2fπMB)2

1
i

∫
d4k

(2π)4

1
k2 − m2

π

/p − /k + MB ′

(p − k)2 − M2
B ′

[
p2k2 − (p · k)2],

LECs
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1

✏
+ . . .
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Abstract

We present a dispersion relation in the pion-mass squared, which static quantities (nucleon mass, magnetic moment,
etc.) obey under the assumption of analyticity in the entire complex m2

π plane modulo a cut at negative m2
π associated

with pion production. The relation is verified here in a number of examples of nucleon and ∆-isobar properties
computed in chiral perturbation theory up to order p3. We outline a method to obtain relations for other mass-
dependencies, and illustrate it on a two-loop example.

Keywords: chiral behavior, analyticity, nucleon mass, magnetic moment, polarizability, Delta(1232), sunset diagram
PACS: 11.55.Fv, 12.39.Fe, 14.20.Dh, 14.20.Gk

1. Introduction

Present lattice QCD calculations are still limited to larger than physical values of light quark masses, mq > mu,d !
5 − 10 MeV, but the chiral perturbation theory (χPT) [1, 2] can, in many cases, be applied to bridge the gap between
the lattice and the real world (see e.g., [3–8]). χPT can predict at least some of the ‘non-analytic’ dependencies of
static quantities (masses, magnetic moments, etc.) on pion-mass squared, or the quark mass (m2

π ∼ mq). The rest of
the contributions contain the a priory unknown low-energy constants (LECs). In this paper we examine the origins of
non-analytic dependencies arising in χPT, by considering analytic properties of the chiral expansion in the complex
m2
π plane.

t

Figure 1: The cut and the contour in the complex
t = m2

π plane, which go into the derivation of the
dispersion relation in Eq. (1).

The basic observation is that chiral loops exhibit a cut along the
negative m2

π axis. The cut is associated with pion production which can
occur without any excess of energy for m2

π ≤ 0. Assuming analyticity in
the rest of the m2

π-plane (see Fig. 1), one arrives at a dispersion relation
of the type:

f (m2
π) = −

1
π

0
∫

−∞

dt
Im f (t)

t − m2
π + i0+

, (1)

where f is a static quantity, 0+ is an infinitesimally small positive num-
ber. In what follows, we explicitly verify this type of dispersion relation
on a few examples of the nucleon and ∆(1232)-isobar properties and
discuss its field of application. In particular, we consider a two-loop ex-
ample (a sunset graph) for which the absorptive part can relatively easy
be extracted. We conclude by comparing this dispersion relation with a
similar “mass-dispersion” relation long-known in the literature.
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(b) (c) (d)(a)

Figure 2: Graphs representing chiral-loop corrections to the nucleon mass. Nucleon (pion) propagators are denoted by solid (dashed) lines.

2. Nucleon mass

We begin right away by considering the nucleon properties as a function of t = m2π. For example, the pion-mass
dependence of the nucleon mass, computed to the nth order in the chiral expansion, can be written as:

MN =

n
∑

even "
a" t

"
2 +

n
∑

"

Σ
(")
N (t) , (2)

where a’s are some linear combinations of LECs, Σ(")N (t) is the "th order nucleon self-energy given by the graphs of
the type shown in Fig. 2. According to the power counting rules [9], a graph with L loops, Nπ pion and NN nucleon
lines, Vk vertices from the Lagrangian of order k, contributes at order pn, with p being the generic light scale and

n =
∑

k

kVk + 4L − 2Nπ − NN . (3)

The leading order pion-nucleon Lagrangian is of order k = 1, and, to the first order in the pion-field πa(x) (with index
a = 1, 2, 3), is written as [10]:

L(1)πN = N̄(x)
(

i∂/−
◦
MN +

◦gA

2
◦
f π
(∂/ πa)τaγ5

)

N(x) + c.t. + O(π2), (4)

where N(x) is the isospin-doublet nucleon field, τa are Pauli matrices,
◦
MN ,

◦gA, and
◦
f π are respectively: the nucleon

mass, axial-coupling and pion-decay constants, in the chiral limit (mπ → 0); “c.t.” stands for counter-term contribu-
tions, which are required for the renormalization of the nucleon mass, field, and so on.

The self-energy receives its leading contribution at order p3, which is given by the graph Fig. 2(a) and the following
expression:

Σ
(3)
N (t) =

3g2A
4 f 2π

i
∫

d4k
(2π)4

k · γ γ5(p · γ − k · γ + MN)k · γ γ5
(k2 − t + i0+)[(p − k)2 − M2

N + i0+]

∣

∣

∣

∣

∣

∣

p·γ=MN

(5a)

dimreg
= −

3g2A
4 f 2π

M3
N

(4π)2

∫ 1

0
dx
{

[x2 + (1 − x)τ]
(

Lε + ln[x2 + (1 − x)τ − i0+]
)

+ [2x2 − (2 + x)τ]
(

Lε + 1 + ln[x2 + (1 − x)τ − i0+]
)

− 3Lε
}

, (5b)

where τ = t/M2
N , Lε = −1/ε−1+γE− ln(4πΛ/MN) exhibits the ultraviolet (UV) divergence as ε = (4−d)/2→ 0, with

d being the number of space-time dimensions, Λ the scale of dimensional regularization, and γE $ 0.5772 the Euler’s
constant. Note that for simplicity we assume the physical values for the parameters: MN $ 939 MeV, gA $ 1.267,
fπ $ 92.4 MeV; the difference with the chiral-limit values leads to higher order effects.
After integration over the Feynman-parameter x, this result can be written as:

Σ
(3)
N (t) =

3g2AM
3
N

2(4π fπ)2
{

− Lε + (1 − Lε)
t
M2
N

}

+ Σ
(3)
N , (6a)

with Σ
(3)
N (t) = −

3g2AM
3
N

(4π fπ)2
(

τ3/2
√

1 − 1
4τ arccos(

1
2

√
τ ) + 1

4τ
2 ln τ

)

. (6b)
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negative m2

π axis. The cut is associated with pion production which can
occur without any excess of energy for m2

π ≤ 0. Assuming analyticity in
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π-plane (see Fig. 1), one arrives at a dispersion relation
of the type:

f (m2
π) = −
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∫
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Im f (t)
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π + i0+

, (1)

where f is a static quantity, 0+ is an infinitesimally small positive num-
ber. In what follows, we explicitly verify this type of dispersion relation
on a few examples of the nucleon and ∆(1232)-isobar properties and
discuss its field of application. In particular, we consider a two-loop ex-
ample (a sunset graph) for which the absorptive part can relatively easy
be extracted. We conclude by comparing this dispersion relation with a
similar “mass-dispersion” relation long-known in the literature.
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2. Nucleon mass

We begin right away by considering the nucleon properties as a function of t = m2π. For example, the pion-mass
dependence of the nucleon mass, computed to the nth order in the chiral expansion, can be written as:
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where a’s are some linear combinations of LECs, Σ(")N (t) is the "th order nucleon self-energy given by the graphs of
the type shown in Fig. 2. According to the power counting rules [9], a graph with L loops, Nπ pion and NN nucleon
lines, Vk vertices from the Lagrangian of order k, contributes at order pn, with p being the generic light scale and

n =
∑

k

kVk + 4L − 2Nπ − NN . (3)

The leading order pion-nucleon Lagrangian is of order k = 1, and, to the first order in the pion-field πa(x) (with index
a = 1, 2, 3), is written as [10]:
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where N(x) is the isospin-doublet nucleon field, τa are Pauli matrices,
◦
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◦gA, and
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f π are respectively: the nucleon

mass, axial-coupling and pion-decay constants, in the chiral limit (mπ → 0); “c.t.” stands for counter-term contribu-
tions, which are required for the renormalization of the nucleon mass, field, and so on.

The self-energy receives its leading contribution at order p3, which is given by the graph Fig. 2(a) and the following
expression:
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{
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(
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)
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Lε + 1 + ln[x2 + (1 − x)τ − i0+]
)

− 3Lε
}

, (5b)

where τ = t/M2
N , Lε = −1/ε−1+γE− ln(4πΛ/MN) exhibits the ultraviolet (UV) divergence as ε = (4−d)/2→ 0, with

d being the number of space-time dimensions, Λ the scale of dimensional regularization, and γE $ 0.5772 the Euler’s
constant. Note that for simplicity we assume the physical values for the parameters: MN $ 939 MeV, gA $ 1.267,
fπ $ 92.4 MeV; the difference with the chiral-limit values leads to higher order effects.
After integration over the Feynman-parameter x, this result can be written as:

Σ
(3)
N (t) =

3g2AM
3
N

2(4π fπ)2
{

− Lε + (1 − Lε)
t
M2
N

}

+ Σ
(3)
N , (6a)

with Σ
(3)
N (t) = −

3g2AM
3
N

(4π fπ)2
(

τ3/2
√

1 − 1
4τ arccos(

1
2

√
τ ) + 1

4τ
2 ln τ

)

. (6b)

2

holds order by order in the chiral expansion,
with # of subtractions = # of LECs 

Thursday, August 9, 12



Analyticity in pion-mass squared
ar

X
iv

:1
00

4.
34

49
v1

  [
he

p-
ph

]  
20

 A
pr

 2
01

0

Preprint MKPH-T-10-02

A dispersion relation for the pion-mass dependence of hadron properties
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Abstract

We present a dispersion relation in the pion-mass squared, which static quantities (nucleon mass, magnetic moment,
etc.) obey under the assumption of analyticity in the entire complex m2

π plane modulo a cut at negative m2
π associated

with pion production. The relation is verified here in a number of examples of nucleon and ∆-isobar properties
computed in chiral perturbation theory up to order p3. We outline a method to obtain relations for other mass-
dependencies, and illustrate it on a two-loop example.

Keywords: chiral behavior, analyticity, nucleon mass, magnetic moment, polarizability, Delta(1232), sunset diagram
PACS: 11.55.Fv, 12.39.Fe, 14.20.Dh, 14.20.Gk

1. Introduction

Present lattice QCD calculations are still limited to larger than physical values of light quark masses, mq > mu,d !
5 − 10 MeV, but the chiral perturbation theory (χPT) [1, 2] can, in many cases, be applied to bridge the gap between
the lattice and the real world (see e.g., [3–8]). χPT can predict at least some of the ‘non-analytic’ dependencies of
static quantities (masses, magnetic moments, etc.) on pion-mass squared, or the quark mass (m2

π ∼ mq). The rest of
the contributions contain the a priory unknown low-energy constants (LECs). In this paper we examine the origins of
non-analytic dependencies arising in χPT, by considering analytic properties of the chiral expansion in the complex
m2
π plane.

t

Figure 1: The cut and the contour in the complex
t = m2

π plane, which go into the derivation of the
dispersion relation in Eq. (1).

The basic observation is that chiral loops exhibit a cut along the
negative m2

π axis. The cut is associated with pion production which can
occur without any excess of energy for m2

π ≤ 0. Assuming analyticity in
the rest of the m2

π-plane (see Fig. 1), one arrives at a dispersion relation
of the type:

f (m2
π) = −

1
π

0
∫

−∞

dt
Im f (t)

t − m2
π + i0+

, (1)

where f is a static quantity, 0+ is an infinitesimally small positive num-
ber. In what follows, we explicitly verify this type of dispersion relation
on a few examples of the nucleon and ∆(1232)-isobar properties and
discuss its field of application. In particular, we consider a two-loop ex-
ample (a sunset graph) for which the absorptive part can relatively easy
be extracted. We conclude by comparing this dispersion relation with a
similar “mass-dispersion” relation long-known in the literature.
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⇡
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Verified for nucleon mass, a.m.m.,  
polarizabilities at order p^3.

(b) (c) (d)(a)

Figure 2: Graphs representing chiral-loop corrections to the nucleon mass. Nucleon (pion) propagators are denoted by solid (dashed) lines.

2. Nucleon mass

We begin right away by considering the nucleon properties as a function of t = m2π. For example, the pion-mass
dependence of the nucleon mass, computed to the nth order in the chiral expansion, can be written as:

MN =

n
∑

even "
a" t

"
2 +

n
∑

"

Σ
(")
N (t) , (2)

where a’s are some linear combinations of LECs, Σ(")N (t) is the "th order nucleon self-energy given by the graphs of
the type shown in Fig. 2. According to the power counting rules [9], a graph with L loops, Nπ pion and NN nucleon
lines, Vk vertices from the Lagrangian of order k, contributes at order pn, with p being the generic light scale and

n =
∑

k

kVk + 4L − 2Nπ − NN . (3)

The leading order pion-nucleon Lagrangian is of order k = 1, and, to the first order in the pion-field πa(x) (with index
a = 1, 2, 3), is written as [10]:

L(1)πN = N̄(x)
(

i∂/−
◦
MN +

◦gA

2
◦
f π
(∂/ πa)τaγ5

)

N(x) + c.t. + O(π2), (4)

where N(x) is the isospin-doublet nucleon field, τa are Pauli matrices,
◦
MN ,

◦gA, and
◦
f π are respectively: the nucleon

mass, axial-coupling and pion-decay constants, in the chiral limit (mπ → 0); “c.t.” stands for counter-term contribu-
tions, which are required for the renormalization of the nucleon mass, field, and so on.

The self-energy receives its leading contribution at order p3, which is given by the graph Fig. 2(a) and the following
expression:

Σ
(3)
N (t) =

3g2A
4 f 2π

i
∫

d4k
(2π)4

k · γ γ5(p · γ − k · γ + MN)k · γ γ5
(k2 − t + i0+)[(p − k)2 − M2

N + i0+]

∣

∣

∣

∣

∣

∣

p·γ=MN

(5a)

dimreg
= −

3g2A
4 f 2π

M3
N

(4π)2

∫ 1

0
dx
{

[x2 + (1 − x)τ]
(

Lε + ln[x2 + (1 − x)τ − i0+]
)

+ [2x2 − (2 + x)τ]
(

Lε + 1 + ln[x2 + (1 − x)τ − i0+]
)

− 3Lε
}

, (5b)

where τ = t/M2
N , Lε = −1/ε−1+γE− ln(4πΛ/MN) exhibits the ultraviolet (UV) divergence as ε = (4−d)/2→ 0, with

d being the number of space-time dimensions, Λ the scale of dimensional regularization, and γE $ 0.5772 the Euler’s
constant. Note that for simplicity we assume the physical values for the parameters: MN $ 939 MeV, gA $ 1.267,
fπ $ 92.4 MeV; the difference with the chiral-limit values leads to higher order effects.
After integration over the Feynman-parameter x, this result can be written as:

Σ
(3)
N (t) =

3g2AM
3
N

2(4π fπ)2
{

− Lε + (1 − Lε)
t
M2
N

}

+ Σ
(3)
N , (6a)

with Σ
(3)
N (t) = −

3g2AM
3
N

(4π fπ)2
(

τ3/2
√

1 − 1
4τ arccos(

1
2

√
τ ) + 1

4τ
2 ln τ

)

. (6b)

2

holds order by order in the chiral expansion,
with # of subtractions = # of LECs 

Thursday, August 9, 12



Example: magnetic moment

For negative t, these functions develop an imaginary part:

Im κ(p
3 loop)

p (t) =
g2AM

2
N

(4π fπ)2
π

2λ
(

1
2τ + λ

)2(
1 − 3

2 ( 12τ + λ)
)

θ(−t) , (11a)

Im κ(p
3 loop)

n (t) = −
g2AM

2
N

(4π fπ)2
π

2λ
(

1
2τ + λ

)2
θ(−t) , (11b)

with τ = t/M2
N and λ =

√

1
4τ
2 − τ. Substituting these expressions into the dispersion relation (1), and performing the

integral, we obtain:

−
1
π

0
∫

−∞

dt′
Im κ(p

3 loop)
p (t′)
t′ − t

=
g2AM

2
N

(4π fπ)2
1
4

{

1 − 4 − 11τ + 3τ
2

√

1 − 1
4τ

√
τ arccos

√
τ

2
− 6τ + τ(−5 + 3τ) ln τ

}

, (12a)

−
1
π

0
∫

−∞

dt′ Im κ
(p3 loop)
n (t′)
t′ − t

= −
g2AM

2
N

(4π fπ)2
1
2

{

2 − 2 − τ
√

1 − 1
4τ

√
τ arccos

√
τ

2
− τ ln τ

}

. (12b)

The exact same result is obtained by integrating over the Feynman-parameter in the loop expressions of Eq. (10). The
dispersion relation proposed in Eq. (1) is thus verified in this example as well. Note that in this case we do not need a
subtraction simply because the integral converges. However, since the complete result to this order is

κ =
◦
κ +κ(p

3 loop)
+ c.t., (13)

the counter-term contribution, which here is just a constant involving the “bare” value of a.m.m., can be put in corre-
spondence with one subtraction at t = 0.

Let us remark that the same expression for the nucleon a.m.m. is obtained as well by two other dispersive methods:
a derivative of the Gerasimov-Drell-Hearn sum rule [12] and a “sideways dispersion relation” [13]. Together with the
present result, we therefore already have three different dispersion relations, which can be applied to the a.m.m.
calculation. One can hope that at least one of them will make the two-loop calculation of the nucleon a.m.m. more
feasible.

We conclude the discussion of the nucleon properties with the example of the scalar nucleon polarizabilities: αN
(electric) and βN (magnetic). The specifics of this example is that the leading order (p3) correction comes entirely
from chiral loops, the counter-terms are absent. In the case of magnetic polarizability of the proton, the result is given
by [14, 15]:

β(3)p (t) =
e2g2A

192π3 f 2πMN

∫ 1

0
dx

{

1 − (1 − x)(1 − 3x)2 + x
(1 − x)(t/M2

N) + x2 − i0+
−
x t/M2

N + x
2[1 − (1 − x)(4 − 20x + 21x2)]

[

(1 − x)(t/M2
N ) + x2 − i0+

]2

}

. (14)

The imaginary part can be easily calculated:

Im β(3)p (t) = −
e2g2A

192π3 f 2πMN

π

8λ3
[

2 − 72λ + (418λ − 246) τ − (316λ − 471) τ2 + (54λ − 212) τ3 + 27τ4
]

θ(−t), (15)

and the dispersion relation of Eq. (1) can be shown to hold also for these expressions. The electric polarizability at
order p3 withstands this test too, however the expressions are more bulky and will be omitted here.

4. ∆-resonance

It is interesting to examine a case where the pion production cut extends into the physical region, as it happens in
the case when the ∆(1232) is included as an explicit degree of freedom in the chiral Lagrangian (see, e.g., [16–20]).

4

For negative t, these functions develop an imaginary part:

Im κ(p
3 loop)

p (t) =
g2AM

2
N

(4π fπ)2
π

2λ
(

1
2τ + λ

)2(
1 − 3

2 ( 12τ + λ)
)

θ(−t) , (11a)

Im κ(p
3 loop)

n (t) = −
g2AM

2
N

(4π fπ)2
π

2λ
(

1
2τ + λ

)2
θ(−t) , (11b)

with τ = t/M2
N and λ =

√

1
4τ
2 − τ. Substituting these expressions into the dispersion relation (1), and performing the

integral, we obtain:

−
1
π

0
∫

−∞

dt′
Im κ(p

3 loop)
p (t′)
t′ − t

=
g2AM

2
N

(4π fπ)2
1
4

{

1 − 4 − 11τ + 3τ
2

√

1 − 1
4τ

√
τ arccos

√
τ

2
− 6τ + τ(−5 + 3τ) ln τ

}

, (12a)

−
1
π

0
∫

−∞

dt′ Im κ
(p3 loop)
n (t′)
t′ − t

= −
g2AM

2
N

(4π fπ)2
1
2

{

2 − 2 − τ
√

1 − 1
4τ

√
τ arccos

√
τ

2
− τ ln τ

}

. (12b)
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3 loop)
+ c.t., (13)

the counter-term contribution, which here is just a constant involving the “bare” value of a.m.m., can be put in corre-
spondence with one subtraction at t = 0.

Let us remark that the same expression for the nucleon a.m.m. is obtained as well by two other dispersive methods:
a derivative of the Gerasimov-Drell-Hearn sum rule [12] and a “sideways dispersion relation” [13]. Together with the
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feasible.
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(electric) and βN (magnetic). The specifics of this example is that the leading order (p3) correction comes entirely
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1 − (1 − x)(1 − 3x)2 + x
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−
x t/M2
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2[1 − (1 − x)(4 − 20x + 21x2)]
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]2
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4

Figure 3: Graphs representing order-p3 corrections to the electromagnetic interaction of the nucleon.

The term in figure brackets, containing the UV-divergence, must be entirely canceled by the counter-term contribu-
tion [11], which, to this order, is of the form: a0 + a2 t, where a’s contain the “bare” values of the LECs. The first term
in brackets can be viewed as a renormalization of the nucleon mass, while the second as a renormalization of the πN
sigma term. The remaining part, ΣN , is UV-finite and consistent with the power counting in the sense that its size is
indeed of order p3.

Let us now see whether this contribution obeys the dispersion relation of the type stated in Eq. (1). The imaginary
part can be easily found from Eq. (5b) by taking into account that ln(−1 + i0+) = iπ,

ImΣ(3)N (t) =
3g2A

(4π fπ)2
π

2















−(−t)3/2












1 −
t

4M2
N













1/2

+
t2

2MN















θ(−t) , (7)

where θ is the step function. It is quite obvious that the dispersion integral with this imaginary part diverges, which is
consistent with the fact that the self-energy is UV divergent. From Eq. (6a) we have seen that the divergencies appear
in the first two orders of the expansion around t = 0 and are subsequently absorbed by the counter-terms. As the result
one needs to make two subtractions at point t = 0 to find

ΣN(t) − ΣN(0) − Σ′N(0) t = −
1
π

0
∫

−∞

dt′
ImΣN(t′)
t′ − t + i0+

( t
t′
)2
. (8)

Now the dispersion integral, with the imaginary part given by Eq. (7), converges, and moreover, gives the result
identical to the expression in Eq. (6b), that is, the renormalized self-energy contribution. The subtractions have played
here the role of the counter-terms. We therefore conclude that the order-p3 self-energy correction to the nucleon mass
obeys the suitably subtracted dispersion relation of the type of Eq. (1). We emphasize that the subtractions do not
introduce any additional uncertainty in the result. The number of subtractions is not arbitrary but corresponds with
the number of counter-terms available at a given order.

3. Magnetic moment and polarizability

We next turn to the example of chiral corrections to the nucleon’s magnetic moment. For this we introduce
the electromagnetic interaction, firstly by the minimal substitution [i.e., ∂µN → ∂µN + 1

2 (1 + τ3)eAµN, ∂µπ
a →

∂µπ
a + εab3eAµπb, with e %

√
4π/137 ] in the chiral Lagrangian, and secondly by writing out the relevant non-minimal

terms:
L(2)πN = −

e
4MN

N
(

1
2 (1 + τ3)

◦
κp +

1
2 (1 − τ3)

◦
κn

)

γµν N Fµν + c.t., (9)

where
◦
κp and

◦
κn are the chiral-limit values of the proton’s and neutron’s anomalous magnetic moment (a.m.m.),

respectively; furthermore γµν = 1
2γ[µγν], Fµν = ∂[µAν]. According to the power-counting of Eq. (3), the leading order

chiral correction to the electromagnetic coupling comes at order p3 and is given by the graphs in Fig. 3. These graphs
give the following contribution to the a.m.m. of, respectively, the proton and the neutron:

κ
(p3 loop)
p (t) =

g2AM
2
N

(4π fπ)2

∫ 1

0
dx

(1 − 3
2 x) x

2

(1 − x)(t/M2
N) + x2 − i0+

, (10a)

κ
(p3 loop)
n (t) = −

g2AM
2
N

(4π fπ)2

∫ 1

0
dx

x2

(1 − x)(t/M2
N) + x2 − i0+

. (10b)

3
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Example: magnetic moment

For negative t, these functions develop an imaginary part:

Im κ(p
3 loop)

p (t) =
g2AM

2
N

(4π fπ)2
π

2λ
(

1
2τ + λ

)2(
1 − 3

2 ( 12τ + λ)
)

θ(−t) , (11a)

Im κ(p
3 loop)

n (t) = −
g2AM

2
N

(4π fπ)2
π

2λ
(

1
2τ + λ

)2
θ(−t) , (11b)

with τ = t/M2
N and λ =

√

1
4τ
2 − τ. Substituting these expressions into the dispersion relation (1), and performing the

integral, we obtain:

−
1
π

0
∫

−∞

dt′
Im κ(p

3 loop)
p (t′)
t′ − t

=
g2AM

2
N

(4π fπ)2
1
4

{

1 − 4 − 11τ + 3τ
2

√

1 − 1
4τ

√
τ arccos

√
τ

2
− 6τ + τ(−5 + 3τ) ln τ

}

, (12a)

−
1
π

0
∫

−∞

dt′ Im κ
(p3 loop)
n (t′)
t′ − t

= −
g2AM

2
N

(4π fπ)2
1
2

{

2 − 2 − τ
√

1 − 1
4τ

√
τ arccos

√
τ

2
− τ ln τ

}

. (12b)

The exact same result is obtained by integrating over the Feynman-parameter in the loop expressions of Eq. (10). The
dispersion relation proposed in Eq. (1) is thus verified in this example as well. Note that in this case we do not need a
subtraction simply because the integral converges. However, since the complete result to this order is

κ =
◦
κ +κ(p

3 loop)
+ c.t., (13)

the counter-term contribution, which here is just a constant involving the “bare” value of a.m.m., can be put in corre-
spondence with one subtraction at t = 0.

Let us remark that the same expression for the nucleon a.m.m. is obtained as well by two other dispersive methods:
a derivative of the Gerasimov-Drell-Hearn sum rule [12] and a “sideways dispersion relation” [13]. Together with the
present result, we therefore already have three different dispersion relations, which can be applied to the a.m.m.
calculation. One can hope that at least one of them will make the two-loop calculation of the nucleon a.m.m. more
feasible.

We conclude the discussion of the nucleon properties with the example of the scalar nucleon polarizabilities: αN
(electric) and βN (magnetic). The specifics of this example is that the leading order (p3) correction comes entirely
from chiral loops, the counter-terms are absent. In the case of magnetic polarizability of the proton, the result is given
by [14, 15]:

β(3)p (t) =
e2g2A

192π3 f 2πMN

∫ 1

0
dx

{

1 − (1 − x)(1 − 3x)2 + x
(1 − x)(t/M2

N) + x2 − i0+
−
x t/M2

N + x
2[1 − (1 − x)(4 − 20x + 21x2)]

[

(1 − x)(t/M2
N ) + x2 − i0+

]2

}

. (14)

The imaginary part can be easily calculated:

Im β(3)p (t) = −
e2g2A

192π3 f 2πMN

π

8λ3
[

2 − 72λ + (418λ − 246) τ − (316λ − 471) τ2 + (54λ − 212) τ3 + 27τ4
]

θ(−t), (15)

and the dispersion relation of Eq. (1) can be shown to hold also for these expressions. The electric polarizability at
order p3 withstands this test too, however the expressions are more bulky and will be omitted here.

4. ∆-resonance

It is interesting to examine a case where the pion production cut extends into the physical region, as it happens in
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The exact same result is obtained by integrating over the Feynman-parameter in the loop expressions of Eq. (10). The
dispersion relation proposed in Eq. (1) is thus verified in this example as well. Note that in this case we do not need a
subtraction simply because the integral converges. However, since the complete result to this order is
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the counter-term contribution, which here is just a constant involving the “bare” value of a.m.m., can be put in corre-
spondence with one subtraction at t = 0.

Let us remark that the same expression for the nucleon a.m.m. is obtained as well by two other dispersive methods:
a derivative of the Gerasimov-Drell-Hearn sum rule [12] and a “sideways dispersion relation” [13]. Together with the
present result, we therefore already have three different dispersion relations, which can be applied to the a.m.m.
calculation. One can hope that at least one of them will make the two-loop calculation of the nucleon a.m.m. more
feasible.

We conclude the discussion of the nucleon properties with the example of the scalar nucleon polarizabilities: αN
(electric) and βN (magnetic). The specifics of this example is that the leading order (p3) correction comes entirely
from chiral loops, the counter-terms are absent. In the case of magnetic polarizability of the proton, the result is given
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and the dispersion relation of Eq. (1) can be shown to hold also for these expressions. The electric polarizability at
order p3 withstands this test too, however the expressions are more bulky and will be omitted here.
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Figure 3: Graphs representing order-p3 corrections to the electromagnetic interaction of the nucleon.
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in brackets can be viewed as a renormalization of the nucleon mass, while the second as a renormalization of the πN
sigma term. The remaining part, ΣN , is UV-finite and consistent with the power counting in the sense that its size is
indeed of order p3.
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where θ is the step function. It is quite obvious that the dispersion integral with this imaginary part diverges, which is
consistent with the fact that the self-energy is UV divergent. From Eq. (6a) we have seen that the divergencies appear
in the first two orders of the expansion around t = 0 and are subsequently absorbed by the counter-terms. As the result
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Now the dispersion integral, with the imaginary part given by Eq. (7), converges, and moreover, gives the result
identical to the expression in Eq. (6b), that is, the renormalized self-energy contribution. The subtractions have played
here the role of the counter-terms. We therefore conclude that the order-p3 self-energy correction to the nucleon mass
obeys the suitably subtracted dispersion relation of the type of Eq. (1). We emphasize that the subtractions do not
introduce any additional uncertainty in the result. The number of subtractions is not arbitrary but corresponds with
the number of counter-terms available at a given order.

3. Magnetic moment and polarizability

We next turn to the example of chiral corrections to the nucleon’s magnetic moment. For this we introduce
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The exact same result is obtained by integrating over the Feynman-parameter in the loop expressions of Eq. (10). The
dispersion relation proposed in Eq. (1) is thus verified in this example as well. Note that in this case we do not need a
subtraction simply because the integral converges. However, since the complete result to this order is

κ =
◦
κ +κ(p

3 loop)
+ c.t., (13)

the counter-term contribution, which here is just a constant involving the “bare” value of a.m.m., can be put in corre-
spondence with one subtraction at t = 0.

Let us remark that the same expression for the nucleon a.m.m. is obtained as well by two other dispersive methods:
a derivative of the Gerasimov-Drell-Hearn sum rule [12] and a “sideways dispersion relation” [13]. Together with the
present result, we therefore already have three different dispersion relations, which can be applied to the a.m.m.
calculation. One can hope that at least one of them will make the two-loop calculation of the nucleon a.m.m. more
feasible.

We conclude the discussion of the nucleon properties with the example of the scalar nucleon polarizabilities: αN
(electric) and βN (magnetic). The specifics of this example is that the leading order (p3) correction comes entirely
from chiral loops, the counter-terms are absent. In the case of magnetic polarizability of the proton, the result is given
by [14, 15]:
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and the dispersion relation of Eq. (1) can be shown to hold also for these expressions. The electric polarizability at
order p3 withstands this test too, however the expressions are more bulky and will be omitted here.

4. ∆-resonance

It is interesting to examine a case where the pion production cut extends into the physical region, as it happens in
the case when the ∆(1232) is included as an explicit degree of freedom in the chiral Lagrangian (see, e.g., [16–20]).
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Let us remark that the same expression for the nucleon a.m.m. is obtained as well by two other dispersive methods:
a derivative of the Gerasimov-Drell-Hearn sum rule [12] and a “sideways dispersion relation” [13]. Together with the
present result, we therefore already have three different dispersion relations, which can be applied to the a.m.m.
calculation. One can hope that at least one of them will make the two-loop calculation of the nucleon a.m.m. more
feasible.

We conclude the discussion of the nucleon properties with the example of the scalar nucleon polarizabilities: αN
(electric) and βN (magnetic). The specifics of this example is that the leading order (p3) correction comes entirely
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and the dispersion relation of Eq. (1) can be shown to hold also for these expressions. The electric polarizability at
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Figure 3: Graphs representing order-p3 corrections to the electromagnetic interaction of the nucleon.
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in brackets can be viewed as a renormalization of the nucleon mass, while the second as a renormalization of the πN
sigma term. The remaining part, ΣN , is UV-finite and consistent with the power counting in the sense that its size is
indeed of order p3.
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where θ is the step function. It is quite obvious that the dispersion integral with this imaginary part diverges, which is
consistent with the fact that the self-energy is UV divergent. From Eq. (6a) we have seen that the divergencies appear
in the first two orders of the expansion around t = 0 and are subsequently absorbed by the counter-terms. As the result
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Now the dispersion integral, with the imaginary part given by Eq. (7), converges, and moreover, gives the result
identical to the expression in Eq. (6b), that is, the renormalized self-energy contribution. The subtractions have played
here the role of the counter-terms. We therefore conclude that the order-p3 self-energy correction to the nucleon mass
obeys the suitably subtracted dispersion relation of the type of Eq. (1). We emphasize that the subtractions do not
introduce any additional uncertainty in the result. The number of subtractions is not arbitrary but corresponds with
the number of counter-terms available at a given order.
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We next turn to the example of chiral corrections to the nucleon’s magnetic moment. For this we introduce
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The exact same result is obtained by integrating over the Feynman-parameter in the loop expressions of Eq. (10). The
dispersion relation proposed in Eq. (1) is thus verified in this example as well. Note that in this case we do not need a
subtraction simply because the integral converges. However, since the complete result to this order is

κ =
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the counter-term contribution, which here is just a constant involving the “bare” value of a.m.m., can be put in corre-
spondence with one subtraction at t = 0.

Let us remark that the same expression for the nucleon a.m.m. is obtained as well by two other dispersive methods:
a derivative of the Gerasimov-Drell-Hearn sum rule [12] and a “sideways dispersion relation” [13]. Together with the
present result, we therefore already have three different dispersion relations, which can be applied to the a.m.m.
calculation. One can hope that at least one of them will make the two-loop calculation of the nucleon a.m.m. more
feasible.

We conclude the discussion of the nucleon properties with the example of the scalar nucleon polarizabilities: αN
(electric) and βN (magnetic). The specifics of this example is that the leading order (p3) correction comes entirely
from chiral loops, the counter-terms are absent. In the case of magnetic polarizability of the proton, the result is given
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}

. (14)

The imaginary part can be easily calculated:

Im β(3)p (t) = −
e2g2A

192π3 f 2πMN

π

8λ3
[

2 − 72λ + (418λ − 246) τ − (316λ − 471) τ2 + (54λ − 212) τ3 + 27τ4
]

θ(−t), (15)

and the dispersion relation of Eq. (1) can be shown to hold also for these expressions. The electric polarizability at
order p3 withstands this test too, however the expressions are more bulky and will be omitted here.

4. ∆-resonance

It is interesting to examine a case where the pion production cut extends into the physical region, as it happens in
the case when the ∆(1232) is included as an explicit degree of freedom in the chiral Lagrangian (see, e.g., [16–20]).

4

direct calculation of the loops results in the same r.h.s!
c.f.: Holstein, V.P. & Vanderhaeghen, PLB (2004), PRD (2005); 
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Example: two-loop selfenergy 
(sunset diagram)

(b) (c) (d)(a)

Figure 2: Graphs representing chiral-loop corrections to the nucleon mass. Nucleon (pion) propagators are denoted by solid (dashed) lines.

2. Nucleon mass

We begin right away by considering the nucleon properties as a function of t = m2
π. For example, the pion-mass

dependence of the nucleon mass, computed to the nth order in the chiral expansion, can be written as:

MN =

n
∑

even "
a" t

"
2 +

n
∑

"

Σ
(")
N (t) , (2)

where a’s are some linear combinations of LECs, Σ(")
N (t) is the "th order nucleon self-energy given by the graphs of

the type shown in Fig. 2. According to the power counting rules [9], a graph with L loops, Nπ pion and NN nucleon
lines, Vk vertices from the Lagrangian of order k, contributes at order pn, with p being the generic light scale and

n =
∑

k

kVk + 4L − 2Nπ − NN . (3)

The leading order pion-nucleon Lagrangian is of order k = 1, and, to the first order in the pion-field πa(x) (with index
a = 1, 2, 3), is written as [10]:

L(1)
πN =

 N(x)
(

i∂/−
◦
MN +

◦gA

2
◦
f π

(∂/ πa)τaγ5

)

N(x) + c.t. + O(π2), (4)

where N(x) is the isospin-doublet nucleon field, τa are Pauli matrices,
◦
MN ,

◦gA, and
◦
f π are respectively: the nucleon

mass, axial-coupling and pion-decay constants, in the chiral limit (mπ → 0); “c.t.” stands for counter-term contribu-
tions, which are required for the renormalization of the nucleon mass, field, and so on.

The self-energy receives its leading contribution at order p3, which is given by the graph Fig. 2(a) and the following
expression:

Σ
(3)
N (t) =

3g2
A

4 f 2
π

i
∫

d4k
(2π)4

k · γ γ5(p · γ − k · γ + MN)k · γ γ5

(k2 − t + i0+)[(p − k)2 − M2
N + i0+]

∣

∣

∣

∣

∣

∣

p·γ=MN

(5a)

dimreg
= −

3g2
A

4 f 2
π

M3
N

(4π)2

∫ 1

0
dx

{

[x2
+ (1 − x)τ]

(

Lε + ln[x2
+ (1 − x)τ − i0+]

)

+ [2x2 − (2 + x)τ]
(

Lε + 1 + ln[x2
+ (1 − x)τ − i0+]

)

− 3Lε
}

, (5b)

where τ = t/M2
N , Lε = −1/ε−1+γE− ln(4πΛ/MN) exhibits the ultraviolet (UV) divergence as ε = (4−d)/2→ 0, with

d being the number of space-time dimensions, Λ the scale of dimensional regularization, and γE $ 0.5772 the Euler’s
constant. Note that for simplicity we assume the physical values for the parameters: MN $ 939 MeV, gA $ 1.267,
fπ $ 92.4 MeV; the difference with the chiral-limit values leads to higher order effects.

After integration over the Feynman-parameter x, this result can be written as:

Σ
(3)
N (t) =

3g2
AM

3
N

2(4π fπ)2

{

− Lε + (1 − Lε)
t
M2
N

}

+ Σ
(3)
N , (6a)

with Σ
(3)
N (t) = −

3g2
AM

3
N

(4π fπ)2

(

τ3/2
√

1 − 1
4τ arccos( 1

2

√
τ ) + 1

4τ
2 ln τ

)

. (6b)

2

with an integer n. After the Wick rotation and going to the hyperspherical coordinates we obtain

Jtad(t) =
∫

dΩ4
(2π)4

∞
∫

0

dK
K3+2n

K2 + t − i0+
, (23)

where
∫

dΩ4 =
∫ 2π
0 dϕ

∫ π

0 dθ sin θ
∫ π

0 dχ sin
2 χ = 2π2. The absorptive part can now be simply found as

Im Jtad(t) =
2π
(4π)2

∞
∫

0

dK K3+2nδ(K2 + t) =
π

(4π)2
(−t)1+n θ(−t) . (24)

As the second example we consider another typical integral, which appears, e.g., in the calculation of the graph
Fig. 2(a),

I(t,M2) = i
∫

d4k
(2π)4

1
(k2 − t + i0+)[(p − k)2 − M2 + i0+]

, (25)

with p2 = M2. Again, after the Wick rotation and the adoption of hyperspherical coordinates we obtain

I(t,M2) = −
∫

dΩ4
(2π)4

∞
∫

0

dK
K2

(K2 + t − i0+)(2iM cosχ + K − i0+)
, (26)

and therefore the absorptive part is found as

Im I(t,M2) = −π
4π
(2π)4

π
∫

0

dχ sin2 χ
∞

∫

0

dK
K2

2iM cosχ + K
δ(K2 + t) = −

2
(4π)2

π
∫

0

dχ
√
−t sin2 χ

2iM cosχ +
√
−t

= −
π

(4π)2













t
2M2 +

√

−
t
M2

(

1 −
t

4M2

)













θ(−t) . (27)

From these two elementary examples one can see that a direct computation of the absorptive part is in principle simpler
than the one of the full result, since one of the integrals is always lifted by the δ-function.

We finally come to a two-loop example, namely the pseudothreshold sunset graph with two different masses [see
Fig. 2(c)]:

Jsunset(m2,M2) = π−d
∫

ddk1
∫

ddk2
1

(k21 − m2)(k
2
2 − m2)[(p − k1 − k2)2 − M2]

, (28)

where p2 = M2. In this case we keep an arbitrary number of dimensions d = 4 − 2ε, since the absorptive part has an
ultraviolet divergence. Conveniently defining the dimensionless quantities t = m2/M2 and

J̃(t) =
M2(2ε−1)

Γ2(1 + ε)
Jsunset(m2,M2) , (29)

one can show that J̃ satisfies a hypergeometric type of differential equation [22]:

t(t − 1)
d2 J̃(t)
dt2

+
[1
2
− 2ε +

(

−
3
2
+ 4ε

)

t
]dJ̃(t)
dt
+
1
2
(1 − 2ε)(2 − 3ε)J̃(t) =

1
2ε2

(

t1−2ε − 2t−ε
)

. (30)

As the boundary conditions one may use the easily computable massless expressions:

Jsunset(m2,M2
= 0) = −m2(1−2ε)

Γ2(1 + ε)
ε2(1 − ε)(1 − 2ε)

, (31)

Jsunset(m2 = 0,M2) = M2(1−2ε) Γ(3 − 4ε) Γ(2ε − 1) Γ2(1 − ε) Γ(ε)
Γ(2 − 2ε) Γ(3 − 3ε)

, (32)
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with an integer n. After the Wick rotation and going to the hyperspherical coordinates we obtain

Jtad(t) =
∫

dΩ4
(2π)4

∞
∫

0

dK
K3+2n

K2 + t − i0+
, (23)

where
∫

dΩ4 =
∫ 2π
0 dϕ

∫ π

0 dθ sin θ
∫ π

0 dχ sin
2 χ = 2π2. The absorptive part can now be simply found as

Im Jtad(t) =
2π
(4π)2

∞
∫

0

dK K3+2nδ(K2 + t) =
π

(4π)2
(−t)1+n θ(−t) . (24)

As the second example we consider another typical integral, which appears, e.g., in the calculation of the graph
Fig. 2(a),

I(t,M2) = i
∫

d4k
(2π)4

1
(k2 − t + i0+)[(p − k)2 − M2 + i0+]

, (25)

with p2 = M2. Again, after the Wick rotation and the adoption of hyperspherical coordinates we obtain

I(t,M2) = −
∫

dΩ4
(2π)4

∞
∫

0

dK
K2

(K2 + t − i0+)(2iM cosχ + K − i0+)
, (26)

and therefore the absorptive part is found as

Im I(t,M2) = −π
4π
(2π)4

π
∫

0

dχ sin2 χ
∞

∫

0

dK
K2

2iM cosχ + K
δ(K2 + t) = −

2
(4π)2

π
∫

0

dχ
√
−t sin2 χ

2iM cosχ +
√
−t

= −
π

(4π)2













t
2M2 +

√

−
t
M2

(

1 −
t

4M2

)













θ(−t) . (27)

From these two elementary examples one can see that a direct computation of the absorptive part is in principle simpler
than the one of the full result, since one of the integrals is always lifted by the δ-function.

We finally come to a two-loop example, namely the pseudothreshold sunset graph with two different masses [see
Fig. 2(c)]:

Jsunset(m2,M2) = π−d
∫

ddk1
∫

ddk2
1

(k21 − m2)(k
2
2 − m2)[(p − k1 − k2)2 − M2]

, (28)

where p2 = M2. In this case we keep an arbitrary number of dimensions d = 4 − 2ε, since the absorptive part has an
ultraviolet divergence. Conveniently defining the dimensionless quantities t = m2/M2 and

J̃(t) =
M2(2ε−1)

Γ2(1 + ε)
Jsunset(m2,M2) , (29)

one can show that J̃ satisfies a hypergeometric type of differential equation [22]:

t(t − 1)
d2 J̃(t)
dt2

+
[1
2
− 2ε +

(

−
3
2
+ 4ε

)

t
]dJ̃(t)
dt
+
1
2
(1 − 2ε)(2 − 3ε)J̃(t) =

1
2ε2

(

t1−2ε − 2t−ε
)

. (30)

As the boundary conditions one may use the easily computable massless expressions:

Jsunset(m2,M2
= 0) = −m2(1−2ε)

Γ2(1 + ε)
ε2(1 − ε)(1 − 2ε)

, (31)

Jsunset(m2 = 0,M2) = M2(1−2ε) Γ(3 − 4ε) Γ(2ε − 1) Γ2(1 − ε) Γ(ε)
Γ(2 − 2ε) Γ(3 − 3ε)

, (32)
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with an integer n. After the Wick rotation and going to the hyperspherical coordinates we obtain

Jtad(t) =
∫

dΩ4
(2π)4

∞
∫

0

dK
K3+2n

K2 + t − i0+
, (23)

where
∫

dΩ4 =
∫ 2π
0 dϕ

∫ π

0 dθ sin θ
∫ π

0 dχ sin
2 χ = 2π2. The absorptive part can now be simply found as

Im Jtad(t) =
2π
(4π)2

∞
∫

0

dK K3+2nδ(K2 + t) =
π

(4π)2
(−t)1+n θ(−t) . (24)

As the second example we consider another typical integral, which appears, e.g., in the calculation of the graph
Fig. 2(a),

I(t,M2) = i
∫

d4k
(2π)4

1
(k2 − t + i0+)[(p − k)2 − M2 + i0+]

, (25)

with p2 = M2. Again, after the Wick rotation and the adoption of hyperspherical coordinates we obtain

I(t,M2) = −
∫

dΩ4
(2π)4

∞
∫

0

dK
K2

(K2 + t − i0+)(2iM cosχ + K − i0+)
, (26)

and therefore the absorptive part is found as

Im I(t,M2) = −π
4π
(2π)4

π
∫

0

dχ sin2 χ
∞

∫

0

dK
K2

2iM cosχ + K
δ(K2 + t) = −

2
(4π)2

π
∫

0

dχ
√
−t sin2 χ

2iM cosχ +
√
−t

= −
π

(4π)2













t
2M2 +

√

−
t
M2

(

1 −
t

4M2

)













θ(−t) . (27)

From these two elementary examples one can see that a direct computation of the absorptive part is in principle simpler
than the one of the full result, since one of the integrals is always lifted by the δ-function.

We finally come to a two-loop example, namely the pseudothreshold sunset graph with two different masses [see
Fig. 2(c)]:

Jsunset(m2,M2) = π−d
∫

ddk1
∫

ddk2
1

(k21 − m2)(k
2
2 − m2)[(p − k1 − k2)2 − M2]

, (28)

where p2 = M2. In this case we keep an arbitrary number of dimensions d = 4 − 2ε, since the absorptive part has an
ultraviolet divergence. Conveniently defining the dimensionless quantities t = m2/M2 and

J̃(t) =
M2(2ε−1)

Γ2(1 + ε)
Jsunset(m2,M2) , (29)

one can show that J̃ satisfies a hypergeometric type of differential equation [22]:

t(t − 1)
d2 J̃(t)
dt2

+
[1
2
− 2ε +

(

−
3
2
+ 4ε

)

t
]dJ̃(t)
dt
+
1
2
(1 − 2ε)(2 − 3ε)J̃(t) =

1
2ε2

(

t1−2ε − 2t−ε
)

. (30)

As the boundary conditions one may use the easily computable massless expressions:

Jsunset(m2,M2
= 0) = −m2(1−2ε)

Γ2(1 + ε)
ε2(1 − ε)(1 − 2ε)

, (31)

Jsunset(m2 = 0,M2) = M2(1−2ε) Γ(3 − 4ε) Γ(2ε − 1) Γ2(1 − ε) Γ(ε)
Γ(2 − 2ε) Γ(3 − 3ε)

, (32)
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with an integer n. After the Wick rotation and going to the hyperspherical coordinates we obtain

Jtad(t) =
∫

dΩ4
(2π)4

∞
∫

0

dK
K3+2n

K2 + t − i0+
, (23)

where
∫

dΩ4 =
∫ 2π
0 dϕ

∫ π

0 dθ sin θ
∫ π

0 dχ sin
2 χ = 2π2. The absorptive part can now be simply found as

Im Jtad(t) =
2π
(4π)2

∞
∫

0

dK K3+2nδ(K2 + t) =
π

(4π)2
(−t)1+n θ(−t) . (24)

As the second example we consider another typical integral, which appears, e.g., in the calculation of the graph
Fig. 2(a),

I(t,M2) = i
∫

d4k
(2π)4

1
(k2 − t + i0+)[(p − k)2 − M2 + i0+]

, (25)

with p2 = M2. Again, after the Wick rotation and the adoption of hyperspherical coordinates we obtain

I(t,M2) = −
∫

dΩ4
(2π)4

∞
∫

0

dK
K2

(K2 + t − i0+)(2iM cosχ + K − i0+)
, (26)

and therefore the absorptive part is found as

Im I(t,M2) = −π
4π
(2π)4

π
∫

0

dχ sin2 χ
∞

∫

0

dK
K2

2iM cosχ + K
δ(K2 + t) = −

2
(4π)2

π
∫

0

dχ
√
−t sin2 χ

2iM cosχ +
√
−t

= −
π

(4π)2













t
2M2 +

√

−
t
M2

(

1 −
t

4M2

)













θ(−t) . (27)

From these two elementary examples one can see that a direct computation of the absorptive part is in principle simpler
than the one of the full result, since one of the integrals is always lifted by the δ-function.

We finally come to a two-loop example, namely the pseudothreshold sunset graph with two different masses [see
Fig. 2(c)]:

Jsunset(m2,M2) = π−d
∫

ddk1
∫

ddk2
1

(k21 − m2)(k
2
2 − m2)[(p − k1 − k2)2 − M2]

, (28)

where p2 = M2. In this case we keep an arbitrary number of dimensions d = 4 − 2ε, since the absorptive part has an
ultraviolet divergence. Conveniently defining the dimensionless quantities t = m2/M2 and

J̃(t) =
M2(2ε−1)

Γ2(1 + ε)
Jsunset(m2,M2) , (29)

one can show that J̃ satisfies a hypergeometric type of differential equation [22]:

t(t − 1)
d2 J̃(t)
dt2

+
[1
2
− 2ε +

(

−
3
2
+ 4ε

)

t
]dJ̃(t)
dt
+
1
2
(1 − 2ε)(2 − 3ε)J̃(t) =

1
2ε2

(

t1−2ε − 2t−ε
)

. (30)

As the boundary conditions one may use the easily computable massless expressions:

Jsunset(m2,M2
= 0) = −m2(1−2ε)

Γ2(1 + ε)
ε2(1 − ε)(1 − 2ε)

, (31)

Jsunset(m2 = 0,M2) = M2(1−2ε) Γ(3 − 4ε) Γ(2ε − 1) Γ2(1 − ε) Γ(ε)
Γ(2 − 2ε) Γ(3 − 3ε)

, (32)
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with an integer n. After the Wick rotation and going to the hyperspherical coordinates we obtain

Jtad(t) =
∫

dΩ4
(2π)4

∞
∫

0

dK
K3+2n

K2 + t − i0+
, (23)

where
∫

dΩ4 =
∫ 2π
0 dϕ

∫ π

0 dθ sin θ
∫ π

0 dχ sin
2 χ = 2π2. The absorptive part can now be simply found as

Im Jtad(t) =
2π
(4π)2

∞
∫

0

dK K3+2nδ(K2 + t) =
π

(4π)2
(−t)1+n θ(−t) . (24)

As the second example we consider another typical integral, which appears, e.g., in the calculation of the graph
Fig. 2(a),

I(t,M2) = i
∫

d4k
(2π)4

1
(k2 − t + i0+)[(p − k)2 − M2 + i0+]

, (25)

with p2 = M2. Again, after the Wick rotation and the adoption of hyperspherical coordinates we obtain

I(t,M2) = −
∫

dΩ4
(2π)4

∞
∫

0

dK
K2

(K2 + t − i0+)(2iM cosχ + K − i0+)
, (26)

and therefore the absorptive part is found as

Im I(t,M2) = −π
4π
(2π)4

π
∫

0

dχ sin2 χ
∞

∫

0

dK
K2

2iM cosχ + K
δ(K2 + t) = −

2
(4π)2

π
∫

0

dχ
√
−t sin2 χ

2iM cosχ +
√
−t

= −
π

(4π)2













t
2M2 +

√

−
t
M2

(

1 −
t

4M2

)













θ(−t) . (27)

From these two elementary examples one can see that a direct computation of the absorptive part is in principle simpler
than the one of the full result, since one of the integrals is always lifted by the δ-function.

We finally come to a two-loop example, namely the pseudothreshold sunset graph with two different masses [see
Fig. 2(c)]:

Jsunset(m2,M2) = π−d
∫

ddk1
∫

ddk2
1

(k21 − m2)(k
2
2 − m2)[(p − k1 − k2)2 − M2]

, (28)

where p2 = M2. In this case we keep an arbitrary number of dimensions d = 4 − 2ε, since the absorptive part has an
ultraviolet divergence. Conveniently defining the dimensionless quantities t = m2/M2 and

J̃(t) =
M2(2ε−1)

Γ2(1 + ε)
Jsunset(m2,M2) , (29)

one can show that J̃ satisfies a hypergeometric type of differential equation [22]:

t(t − 1)
d2 J̃(t)
dt2

+
[1
2
− 2ε +

(

−
3
2
+ 4ε

)

t
]dJ̃(t)
dt
+
1
2
(1 − 2ε)(2 − 3ε)J̃(t) =

1
2ε2

(

t1−2ε − 2t−ε
)

. (30)

As the boundary conditions one may use the easily computable massless expressions:

Jsunset(m2,M2
= 0) = −m2(1−2ε)

Γ2(1 + ε)
ε2(1 − ε)(1 − 2ε)

, (31)

Jsunset(m2 = 0,M2) = M2(1−2ε) Γ(3 − 4ε) Γ(2ε − 1) Γ2(1 − ε) Γ(ε)
Γ(2 − 2ε) Γ(3 − 3ε)

, (32)
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defining the dimensionless:

and # of dimensions:

hence, e.g., t−1+2ε J̃(t) t→+∞= −1/[ε2(1 − ε)(1 − 2ε)].
Since for real t the equation is linear with real coefficients we deduce that the solution develops an imaginary part

when the inhomogeneous term (the r.h.s.) develops an imaginary part, i.e., for t < 0. The existence of the cut for
negativem2 is evident. Furthermore, when seeking the solution in the ε-expanded form, we again observe that solving
for the imaginary part is simpler, because the corresponding inhomogeneous term is simpler at any given order in ε,
cf.:

1
2ε2

t−ε(t1−ε − 2) =
1
2 t − 1
ε2
−
t − 1
ε

ln t +
2t − 1
2

ln2 t + O(ε), (33)

Im
1
2ε2

t−ε(t1−ε − 2) = θ(−t) π
[ t − 1
ε
− (2t − 1) ln(−t) + O(ε)

]

. (34)

The solution for the imaginary part is of the form

Im J̃(t) = θ(−t) π
[

−
2t
ε
+ t

(

− 7 + (2 + t) ln(−t)
)

− (1 − t)2 ln(1 − t) + O(ε)
]

, (35)

which agrees with the result derived from a conventional formulae [23].

6. Concluding remarks

Hadron properties depend on the pion-mass squared (or, the light-quark mass, mu,d ∼ m2π) in an essentially non-
analytic way. In this work we have identified the origin of this non-analyticity with a cut in the m2π complex plane,
which extends along the negative axis. In χPT, the cut arises due to the possibility of a “subsoft” pion production.
Assuming analyticity in the rest of the complex plane, we are able to write a simple dispersion relation in m2π, cf.
Eq. (1). The validity of this relation has been tested here, on a number of quantities computed in χPT to lowest order.
It also has been tested here on a generic two-loop example.

There are at least two ways in which the proposed dispersion relation can be useful. First, as a consistency
constraint of various “chiral extrapolation” formulas and methods. Second, as a computational technique, similarly to
how the usual dispersion relations, written in terms of energy (or, in relativistic theory, the Mandelstam variables), are
used.

Although the usual dispersion relation appears to be quite different from the dispersion relation in the mass, at a
given kinematical point, the Mandelstam variables can take values given entirely in terms of mass, e.g., t = m2π. Then,
the dispersion relation in that variable can be used to connect to another kinematical point, e.g., t = 0. This is precisely
the strategy that had long ago been proposed to relate the scattering amplitudes at the physical pion mass with their
chiral-limit values [24, 25]. It led to the so-called “mass-dispersion relations” [26–28], which appear to be similar to
the relation put forward in this work (cf. Eq. (2.1) of Ref. [24] with Eq. (1) here). Whether the similarities extend
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Example: Delta(1232)
 mass and width

In this example the cut may extend from t = −∞ up to t = ∆2, with ∆ = M∆ −MN , the Delta-nucleon mass difference.
The pion-mass dispersion relation for a static quantity f becomes

f (m2π) = −
1
π

∆2
∫

−∞

dt′
Im f (t′)

t′ − m2π + i0+
. (16)

Figure 4: A chiral loop correction to the
∆-isobar mass. Double lines denote the ∆
propagation.

Let us demonstrate how it works on the example of a chiral correction
to the ∆-isobar mass. A one-loop graph with the cut all the way up to ∆2 is
shown in Fig. 4. It yields the following contribution to the self-energy [21]:

Σ
(πN loop)
∆

(t) = −1
2

(

hAM∆
8π fπ

)2 ∫ 1

0
dx (xM∆+MN)M2(x)

[

Lε+lnM2(x)
]

, (17)

where hA $ 2.85 is the πN∆ axial-coupling constant, and

M2(x) = x2 − (1 + r2 − τ)x + r2 − i0+ = (x − α)2 − λ2 − i0+, (18)

with r = MN/M∆, τ = t/M2
∆
, α = 1

2 (1 + r
2 − τ), and λ2 = α2 − r2.

The imaginary part arises again from the log, when its argument turns negative in the region of integration over
the Feynman parameter x. More specifically,

M2(x) < 0, for α − λ < x <
{

1, if t < 0
α + λ, if 0 ≤ t ≤ ∆2 , (19)

and as the result:

ImΣ(πN loop)
∆

(t) = πM∆
2

(

hAM∆
8π fπ

)2

×























1
3 (α + r)

[

− 2λ3 + (1 − α)(τ − 2λ2)
]

+
1
4τ
2, t < 0

− 43 (α + r)λ
3, 0 ≤ t ≤ ∆2

0, t > ∆2 .
(20)

Note that, despite the awkward separation into regions in t, the function is continuous. For the physical value of the
pion mass it provides the familiar expression for the ∆-resonance width: Γ∆ = −2 ImΣ∆ $ 115 MeV.

We have checked that, analogously to the nucleon case, this chiral correction to the ∆ mass satisfies the doubly-
subtracted dispersion relation in the pion mass squared:

ReΣ(πN loop)
∆

(m2π) = −
1
π

∆2
∫

−∞

dt′
ImΣ(πN loop)

∆
(t′)

t′ − m2π

(

m2π
t′

)2

, (21)

where the integration is done, as usual, in the principal-value sense.

5. Direct calculation of the absorptive part

Of course to find the absorptive part it should not always be necessary to go through the entire loop calculation, as
we have done so far. In the usual dispersion relations, done in external variables such as energy, the Cutkowski rules
offer a simple method to compute the absorptive contributions. In our case Cutkowski rules are inapplicable because
the pion is not on its positive-energy mass shell to begin with. Nevertheless a direct computation of absorptive parts
is possible as will be demonstrated in the following three examples.

Consider first the tadpole, Fig. 2(b), having the following generic expression

Jtad(t) = i
∫

d4k
(2π)4

k2n

k2 − t + i0+
, (22)
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where hA $ 2.85 is the πN∆ axial-coupling constant, and

M2(x) = x2 − (1 + r2 − τ)x + r2 − i0+ = (x − α)2 − λ2 − i0+, (18)

with r = MN/M∆, τ = t/M2
∆
, α = 1

2 (1 + r
2 − τ), and λ2 = α2 − r2.

The imaginary part arises again from the log, when its argument turns negative in the region of integration over
the Feynman parameter x. More specifically,

M2(x) < 0, for α − λ < x <
{

1, if t < 0
α + λ, if 0 ≤ t ≤ ∆2 , (19)

and as the result:
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Note that, despite the awkward separation into regions in t, the function is continuous. For the physical value of the
pion mass it provides the familiar expression for the ∆-resonance width: Γ∆ = −2 ImΣ∆ $ 115 MeV.

We have checked that, analogously to the nucleon case, this chiral correction to the ∆ mass satisfies the doubly-
subtracted dispersion relation in the pion mass squared:
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where the integration is done, as usual, in the principal-value sense.

5. Direct calculation of the absorptive part

Of course to find the absorptive part it should not always be necessary to go through the entire loop calculation, as
we have done so far. In the usual dispersion relations, done in external variables such as energy, the Cutkowski rules
offer a simple method to compute the absorptive contributions. In our case Cutkowski rules are inapplicable because
the pion is not on its positive-energy mass shell to begin with. Nevertheless a direct computation of absorptive parts
is possible as will be demonstrated in the following three examples.

Consider first the tadpole, Fig. 2(b), having the following generic expression

Jtad(t) = i
∫

d4k
(2π)4

k2n

k2 − t + i0+
, (22)
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In this example the cut may extend from t = −∞ up to t = ∆2, with ∆ = M∆ −MN , the Delta-nucleon mass difference.
The pion-mass dispersion relation for a static quantity f becomes
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Abstract

We present a dispersion relation in the pion-mass squared, which static quantities (nucleon mass, magnetic moment,
etc.) obey under the assumption of analyticity in the entire complex m2

π plane modulo a cut at negative m2
π associated

with pion production. The relation is verified here in a number of examples of nucleon and ∆-isobar properties
computed in chiral perturbation theory up to order p3. We outline a method to obtain relations for other mass-
dependencies, and illustrate it on a two-loop example.

Keywords: chiral behavior, analyticity, nucleon mass, magnetic moment, polarizability, Delta(1232), sunset diagram
PACS: 11.55.Fv, 12.39.Fe, 14.20.Dh, 14.20.Gk

1. Introduction

Present lattice QCD calculations are still limited to larger than physical values of light quark masses, mq > mu,d !
5 − 10 MeV, but the chiral perturbation theory (χPT) [1, 2] can, in many cases, be applied to bridge the gap between
the lattice and the real world (see e.g., [3–8]). χPT can predict at least some of the ‘non-analytic’ dependencies of
static quantities (masses, magnetic moments, etc.) on pion-mass squared, or the quark mass (m2

π ∼ mq). The rest of
the contributions contain the a priory unknown low-energy constants (LECs). In this paper we examine the origins of
non-analytic dependencies arising in χPT, by considering analytic properties of the chiral expansion in the complex
m2
π plane.

t

Figure 1: The cut and the contour in the complex
t = m2

π plane, which go into the derivation of the
dispersion relation in Eq. (1).

The basic observation is that chiral loops exhibit a cut along the
negative m2

π axis. The cut is associated with pion production which can
occur without any excess of energy for m2

π ≤ 0. Assuming analyticity in
the rest of the m2

π-plane (see Fig. 1), one arrives at a dispersion relation
of the type:

f (m2
π) = −

1
π

0
∫

−∞

dt
Im f (t)

t − m2
π + i0+

, (1)

where f is a static quantity, 0+ is an infinitesimally small positive num-
ber. In what follows, we explicitly verify this type of dispersion relation
on a few examples of the nucleon and ∆(1232)-isobar properties and
discuss its field of application. In particular, we consider a two-loop ex-
ample (a sunset graph) for which the absorptive part can relatively easy
be extracted. We conclude by comparing this dispersion relation with a
similar “mass-dispersion” relation long-known in the literature.
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In this example the cut may extend from t = −∞ up to t = ∆2, with ∆ = M∆ −MN , the Delta-nucleon mass difference.
The pion-mass dispersion relation for a static quantity f becomes

f (m2π) = −
1
π

∆2
∫

−∞

dt′
Im f (t′)

t′ − m2π + i0+
. (16)

Figure 4: A chiral loop correction to the
∆-isobar mass. Double lines denote the ∆
propagation.

Let us demonstrate how it works on the example of a chiral correction
to the ∆-isobar mass. A one-loop graph with the cut all the way up to ∆2 is
shown in Fig. 4. It yields the following contribution to the self-energy [21]:

Σ
(πN loop)
∆

(t) = −1
2

(

hAM∆
8π fπ

)2 ∫ 1

0
dx (xM∆+MN)M2(x)

[

Lε+lnM2(x)
]

, (17)

where hA $ 2.85 is the πN∆ axial-coupling constant, and

M2(x) = x2 − (1 + r2 − τ)x + r2 − i0+ = (x − α)2 − λ2 − i0+, (18)

with r = MN/M∆, τ = t/M2
∆
, α = 1

2 (1 + r
2 − τ), and λ2 = α2 − r2.

The imaginary part arises again from the log, when its argument turns negative in the region of integration over
the Feynman parameter x. More specifically,

M2(x) < 0, for α − λ < x <
{

1, if t < 0
α + λ, if 0 ≤ t ≤ ∆2 , (19)

and as the result:
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(20)

Note that, despite the awkward separation into regions in t, the function is continuous. For the physical value of the
pion mass it provides the familiar expression for the ∆-resonance width: Γ∆ = −2 ImΣ∆ $ 115 MeV.

We have checked that, analogously to the nucleon case, this chiral correction to the ∆ mass satisfies the doubly-
subtracted dispersion relation in the pion mass squared:

ReΣ(πN loop)
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(m2π) = −
1
π

∆2
∫
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dt′
ImΣ(πN loop)

∆
(t′)

t′ − m2π

(

m2π
t′

)2

, (21)

where the integration is done, as usual, in the principal-value sense.

5. Direct calculation of the absorptive part

Of course to find the absorptive part it should not always be necessary to go through the entire loop calculation, as
we have done so far. In the usual dispersion relations, done in external variables such as energy, the Cutkowski rules
offer a simple method to compute the absorptive contributions. In our case Cutkowski rules are inapplicable because
the pion is not on its positive-energy mass shell to begin with. Nevertheless a direct computation of absorptive parts
is possible as will be demonstrated in the following three examples.

Consider first the tadpole, Fig. 2(b), having the following generic expression

Jtad(t) = i
∫

d4k
(2π)4

k2n

k2 − t + i0+
, (22)

5

Chiral corrections to Delta’s mass and width 
are defined unambiguously this way,

independent of field redefinitions, etc.
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Insights to the (bad) convergence 
of the HB expansion

Becher & Leutwyler (1999) 
[“Infrared Regularization” violates analyticity,
cf. Becher & Leutwyler (1999).]

3

with the full result, to order p3, given by Eq. (2). The LECs
play the role of the subtraction constants.
Introduction of an ultraviolet cutoff in the finite integral af-

ter the subtractions allows one to separate the low- and high-
momentum contributions. It can also tell us about the scale at
which the HB- and BχPT results start to deviate.

III. INTRODUCING A CUTOFF: FINITE-RANGE
REGULARIZATION

The chiral expansion of an observable quantity f is an
expansion in the quark mass mq around the chiral limit
(mq → 0), which in χPT becomes an expansion in p =
mπ/Λχ, the mass of the pseudo-Goldstone boson of sponta-
neous chiral symmetry breaking over the scale of chiral sym-
metry breaking Λχ " 4πfπ ≈ 1 GeV [32]. Because of the
branch cut in the complex-m2

π plane along the negative real-
axis, the chiral expansion is not a series expansion (otherwise,
it would have a zero radius of convergence), but rather an ex-
pansion in non-integer powers ofm2

π ∝ mq.
By writing the dispersion integral as:

Re f(m2
π) = −

1

π







0
∫

−Λ2
χ

+

−Λ2

χ
∫

−∞






dt

Im f(t)

t−m2
π
, (7)

it is evident that the second integral can be expanded in integer
powers ofm2

π/Λ
2
χ. Hence this term is of analytic form and can

only affect the values of the LECs. Indeed, the physics above
the scale Λχ is not described by χPT and therefore its effect
should be absorbable by the LECs.
The second integral generates an infinite number of analytic

terms, while the number of LECs to a given order of the cal-
culation is finite. The higher-order analytic terms are present
and not compensated by the LECs at this order, but their ef-
fect should not exceed the uncertainty in the calculation due
to the neglect of all the other higher-order terms. That is,
the second integral can be dropped, while the resulting cutoff-
dependence represents the uncertainty due to higher-order ef-
fects.
One purpose of imposing a cutoff of order of 1 GeV is to

investigate the convergence of the expansion without actually
computing any of the higher-order contributions. This is one
the main goals of FRR [21, 23, 27, 33]. From the formulae
shown in Eqs. (4) – (6) in the previous section, it is clear that
the ‘sharp cutoff’ FRR is equivalent to the cutoff pion-mass
dispersion relation:

f(m2
π;Λ

2) = −
1

π

0
∫

−Λ2

dt
Im f(t)

t−m2
π

(

m2
π

t

)n

, (8)

where n indicates the number of subtractions around the chi-
ral limit. In this work, the main aim is to see at which values
of the cutoff the HB- and BχPT results begin to deviate. If
the deviation begins at Λ & 1 GeV, then the differences be-
tween the two expansions cannot be reconciled in a natural

way. In the next section, this situation is examined using sev-
eral specific examples, and for each of them a different picture
is obtained (cf. Fig. 3).

IV. NUCLEON PROPERTIES ATO(p3)

At chiral order p3, the imaginary parts of the nucleon mass,
the proton and neutron AMMs, and the magnetic polarizabil-
ity of the proton were computed in Ref. [18]1:

ImM (3)
N (t) =

3g2AM̂
3
N

(4πfπ)2
πτ

2

(1

2
τ + λ

)

θ(−t) , (9a)

Imκ(3)
p (t) =

g2AM̂
2
N

(4πfπ)2
2π

λ

(1

2
τ + λ

)2[

1−
3

2

(1

2
τ + λ

)]

× θ(−t) , (9b)

Imκ(3)
n (t) = −

g2AM̂
2
N

(4πfπ)2
2π

λ

(1

2
τ + λ

)2
θ(−t) , (9c)

Imβ(3)
p (t) = −

(e2/4π) g2A
(4πfπ)2M̂N

πτ

24λ3

[

2− 72λ

+ (418λ− 246) τ − (316λ− 471) τ2

+ (54λ− 212) τ3 + 27τ4
]

θ(−t), (9d)

where M̂N " 939 MeV is the physical nucleon mass,
e2/4π " 1/137 is the fine-structure constant, and the fol-
lowing dimensionless variables are introduced:

τ =
t

M̂2
N

, λ =

√

1

4
τ2 − τ . (10)

The expression for the mass comes from the graph in Fig. 2,
with leading (pseudo-vector) πNN coupling. The expres-
sions for the AMMs and polarizability come from graphs
obtained from Fig. 2 by minimal insertion(s) of 1- and 2-
photons, respectively.
The corresponding heavy-baryon expressions at order p3

can be obtained by keeping only the leading in 1/M̂N term
(i.e, λ ≈

√
−τ , etc.):

ImM (3)
N (t)

HB
=

3g2AM̂
3
N

(4πfπ)2
πτ

2

√
−τ θ(−t) , (11a)

Imκ(3)
p (t)

HB
=

g2AM̂
2
N

(4πfπ)2
2π

√
−τ θ(−t)

HB
= − Imκ(3)

n (t),

(11b)

Imβ(3)
p (t)

HB
=

(e2/4π) g2A
(4πfπ)2M̂N

π

12
√
−τ

θ(−t). (11c)

1 The original expressions of [18] contain misprints: Eqs. (10)–(12) miss an
overall factor of 4, while Eq. (14) misses a factor of τ .
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FIG. 3. (color online). The cutoff-dependence of leading-order loop
contributions to various nucleon quantities (mass, isovector AMM,
and proton’s magnetic polarizability) calculated in HBχPT (blue
dashed curves) and BχPT (red solid curves).

2. The HB- and BχPT results are guaranteed to be the
same at small values of Λ, as can be seen by taking
derivatives of Eq. (8) with respect to Λ2, at Λ = 0.
However, at finite values of Λ the differences are appre-

ciable. Observing significant differences for Λ of order
mπ, as in the case of βp, indicates that the size of the
1/M̂N terms is largely underestimated in HBχPT.

V. MATCHING: CONFRONTING THE DATA

Eventually, the χPT results must be matched to the under-
lying theory – or in practice – fitted to experimental and lattice
QCD simulation results.
The case of magnetic polarizability is interesting. Since

there are no unknown LECs at leading order, it constitutes a
genuine prediction. Unfortunately, there are no lattice results
for this quantity, while the experimental data are largely un-
certain (see Ref. [33] for a recent discussion). One thing that
the data indisputably show is that βp is small compared to the
electric polarizability, and positive, which seems to be more
consistent with the HBχPT result. However, it is well known
that βp must have a large positive contribution from the ex-
citation of the ∆(1232) resonance [33], which can only be
accommodated if the chiral loops are negative and partially
cancel it out. Thus, the natural explanation of βp in the the-
ory with explicit ∆ baryons is provided by BχPT, rather than
HBχPT.
For the nucleon mass, one does not expect much difference

between HB- and BχPT around the physical pion mass, based
on Fig. 3. For larger pion masses, however, the difference
becomes significant, and may affect the fit to lattice results as
is shown in what follows.
In Figs. 4 and 5, chiral extrapolations of recent lattice re-

sults from PACS-CS [28] and JLQCD [29] are presented. The
different panels correspond to different values of the cutoff
Λ, while the dashed and solid curves correspond to HB- and
BχPT fit at order p3. The values of the fit parameters obtained
using PACS-CS and JLQCD results are shown in Tables I and
II, respectively.
The PACS-CS results were generated using non-

perturbatively O(a)-improved Wilson quark action at a
lattice box size of ∼ 2.9 fm, but the set only contains five
points, and there is a large statistical error in the smallest
m2

π point. The JLQCD results were generated using overlap
fermions in Nf = 2 QCD. The lattice box length for each
simulation result is ∼ 1.9 fm, with a corresponding lattice
spacing is 0.118 fm. The box size is small compared to that
of the PACS-CS simulations, but the statistical uncertainties
in each point are also smaller. For simplicity, the fits also
neglect possible finite-volume corrections.

Previous studies in HBχPT have indicated that, for lattice
results extending outside the chiral power-counting regime,
the optimal value of the FRR scale Λ is of the order Λ ≈ 1
GeV [32]. Clearly, Fig. 4 shows agreement that the best
heavy-baryon result is obtained for Λ ≈ 1 GeV. The heavy-
baryon extrapolation is much more sensitive to changes in the

FRR scaleΛ comparedwith the BχPT extrapolation, in agree-
ment with Fig. 3.
For small values of Λ, the HBχPT and BχPT results are

similar, since the chiral loops are suppressed. An almost-
linear fit eventuates in both cases. This is not ideal, as Fig. 4
indicates that neglecting the chiral curvature leads to a poor

Thursday, August 9, 12



Cutoff dependence 
in HB- and B-ChPT5

0.0 0.5 1.0 1.5 2.0
!70
!60
!50
!40
!30
!20
!10
0

M
N!3
"
!M
eV
"

HBΧPT
BΧPT

0.0 0.5 1.0 1.5 2.0
!2.0

!1.5

!1.0

!0.5

0.0

Κ i
so
v
!3
"

0.0 0.5 1.0 1.5 2.0

!1.5
!1.0
!0.5
0.0
0.5
1.0
1.5

$ !GeV"

Β
p!3
"
!1
0!

4
fm

3 "

FIG. 3. (color online). The cutoff-dependence of leading-order loop
contributions to various nucleon quantities (mass, isovector AMM,
and proton’s magnetic polarizability) calculated in HBχPT (blue
dashed curves) and BχPT (red solid curves).

2. The HB- and BχPT results are guaranteed to be the
same at small values of Λ, as can be seen by taking
derivatives of Eq. (8) with respect to Λ2, at Λ = 0.
However, at finite values of Λ the differences are appre-

ciable. Observing significant differences for Λ of order
mπ, as in the case of βp, indicates that the size of the
1/M̂N terms is largely underestimated in HBχPT.

V. MATCHING: CONFRONTING THE DATA

Eventually, the χPT results must be matched to the under-
lying theory – or in practice – fitted to experimental and lattice
QCD simulation results.
The case of magnetic polarizability is interesting. Since

there are no unknown LECs at leading order, it constitutes a
genuine prediction. Unfortunately, there are no lattice results
for this quantity, while the experimental data are largely un-
certain (see Ref. [33] for a recent discussion). One thing that
the data indisputably show is that βp is small compared to the
electric polarizability, and positive, which seems to be more
consistent with the HBχPT result. However, it is well known
that βp must have a large positive contribution from the ex-
citation of the ∆(1232) resonance [33], which can only be
accommodated if the chiral loops are negative and partially
cancel it out. Thus, the natural explanation of βp in the the-
ory with explicit ∆ baryons is provided by BχPT, rather than
HBχPT.
For the nucleon mass, one does not expect much difference

between HB- and BχPT around the physical pion mass, based
on Fig. 3. For larger pion masses, however, the difference
becomes significant, and may affect the fit to lattice results as
is shown in what follows.
In Figs. 4 and 5, chiral extrapolations of recent lattice re-

sults from PACS-CS [28] and JLQCD [29] are presented. The
different panels correspond to different values of the cutoff
Λ, while the dashed and solid curves correspond to HB- and
BχPT fit at order p3. The values of the fit parameters obtained
using PACS-CS and JLQCD results are shown in Tables I and
II, respectively.
The PACS-CS results were generated using non-

perturbatively O(a)-improved Wilson quark action at a
lattice box size of ∼ 2.9 fm, but the set only contains five
points, and there is a large statistical error in the smallest
m2

π point. The JLQCD results were generated using overlap
fermions in Nf = 2 QCD. The lattice box length for each
simulation result is ∼ 1.9 fm, with a corresponding lattice
spacing is 0.118 fm. The box size is small compared to that
of the PACS-CS simulations, but the statistical uncertainties
in each point are also smaller. For simplicity, the fits also
neglect possible finite-volume corrections.

Previous studies in HBχPT have indicated that, for lattice
results extending outside the chiral power-counting regime,
the optimal value of the FRR scale Λ is of the order Λ ≈ 1
GeV [32]. Clearly, Fig. 4 shows agreement that the best
heavy-baryon result is obtained for Λ ≈ 1 GeV. The heavy-
baryon extrapolation is much more sensitive to changes in the

FRR scaleΛ comparedwith the BχPT extrapolation, in agree-
ment with Fig. 3.
For small values of Λ, the HBχPT and BχPT results are

similar, since the chiral loops are suppressed. An almost-
linear fit eventuates in both cases. This is not ideal, as Fig. 4
indicates that neglecting the chiral curvature leads to a poor
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contributions to various nucleon quantities (mass, isovector AMM,
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2. The HB- and BχPT results are guaranteed to be the
same at small values of Λ, as can be seen by taking
derivatives of Eq. (8) with respect to Λ2, at Λ = 0.
However, at finite values of Λ the differences are appre-

ciable. Observing significant differences for Λ of order
mπ, as in the case of βp, indicates that the size of the
1/M̂N terms is largely underestimated in HBχPT.

V. MATCHING: CONFRONTING THE DATA

Eventually, the χPT results must be matched to the under-
lying theory – or in practice – fitted to experimental and lattice
QCD simulation results.
The case of magnetic polarizability is interesting. Since

there are no unknown LECs at leading order, it constitutes a
genuine prediction. Unfortunately, there are no lattice results
for this quantity, while the experimental data are largely un-
certain (see Ref. [33] for a recent discussion). One thing that
the data indisputably show is that βp is small compared to the
electric polarizability, and positive, which seems to be more
consistent with the HBχPT result. However, it is well known
that βp must have a large positive contribution from the ex-
citation of the ∆(1232) resonance [33], which can only be
accommodated if the chiral loops are negative and partially
cancel it out. Thus, the natural explanation of βp in the the-
ory with explicit ∆ baryons is provided by BχPT, rather than
HBχPT.
For the nucleon mass, one does not expect much difference

between HB- and BχPT around the physical pion mass, based
on Fig. 3. For larger pion masses, however, the difference
becomes significant, and may affect the fit to lattice results as
is shown in what follows.
In Figs. 4 and 5, chiral extrapolations of recent lattice re-

sults from PACS-CS [28] and JLQCD [29] are presented. The
different panels correspond to different values of the cutoff
Λ, while the dashed and solid curves correspond to HB- and
BχPT fit at order p3. The values of the fit parameters obtained
using PACS-CS and JLQCD results are shown in Tables I and
II, respectively.
The PACS-CS results were generated using non-

perturbatively O(a)-improved Wilson quark action at a
lattice box size of ∼ 2.9 fm, but the set only contains five
points, and there is a large statistical error in the smallest
m2

π point. The JLQCD results were generated using overlap
fermions in Nf = 2 QCD. The lattice box length for each
simulation result is ∼ 1.9 fm, with a corresponding lattice
spacing is 0.118 fm. The box size is small compared to that
of the PACS-CS simulations, but the statistical uncertainties
in each point are also smaller. For simplicity, the fits also
neglect possible finite-volume corrections.

Previous studies in HBχPT have indicated that, for lattice
results extending outside the chiral power-counting regime,
the optimal value of the FRR scale Λ is of the order Λ ≈ 1
GeV [32]. Clearly, Fig. 4 shows agreement that the best
heavy-baryon result is obtained for Λ ≈ 1 GeV. The heavy-
baryon extrapolation is much more sensitive to changes in the

FRR scaleΛ comparedwith the BχPT extrapolation, in agree-
ment with Fig. 3.
For small values of Λ, the HBχPT and BχPT results are

similar, since the chiral loops are suppressed. An almost-
linear fit eventuates in both cases. This is not ideal, as Fig. 4
indicates that neglecting the chiral curvature leads to a poor
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contributions to various nucleon quantities (mass, isovector AMM,
and proton’s magnetic polarizability) calculated in HBχPT (blue
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2. The HB- and BχPT results are guaranteed to be the
same at small values of Λ, as can be seen by taking
derivatives of Eq. (8) with respect to Λ2, at Λ = 0.
However, at finite values of Λ the differences are appre-

ciable. Observing significant differences for Λ of order
mπ, as in the case of βp, indicates that the size of the
1/M̂N terms is largely underestimated in HBχPT.

V. MATCHING: CONFRONTING THE DATA

Eventually, the χPT results must be matched to the under-
lying theory – or in practice – fitted to experimental and lattice
QCD simulation results.
The case of magnetic polarizability is interesting. Since

there are no unknown LECs at leading order, it constitutes a
genuine prediction. Unfortunately, there are no lattice results
for this quantity, while the experimental data are largely un-
certain (see Ref. [33] for a recent discussion). One thing that
the data indisputably show is that βp is small compared to the
electric polarizability, and positive, which seems to be more
consistent with the HBχPT result. However, it is well known
that βp must have a large positive contribution from the ex-
citation of the ∆(1232) resonance [33], which can only be
accommodated if the chiral loops are negative and partially
cancel it out. Thus, the natural explanation of βp in the the-
ory with explicit ∆ baryons is provided by BχPT, rather than
HBχPT.
For the nucleon mass, one does not expect much difference

between HB- and BχPT around the physical pion mass, based
on Fig. 3. For larger pion masses, however, the difference
becomes significant, and may affect the fit to lattice results as
is shown in what follows.
In Figs. 4 and 5, chiral extrapolations of recent lattice re-

sults from PACS-CS [28] and JLQCD [29] are presented. The
different panels correspond to different values of the cutoff
Λ, while the dashed and solid curves correspond to HB- and
BχPT fit at order p3. The values of the fit parameters obtained
using PACS-CS and JLQCD results are shown in Tables I and
II, respectively.
The PACS-CS results were generated using non-

perturbatively O(a)-improved Wilson quark action at a
lattice box size of ∼ 2.9 fm, but the set only contains five
points, and there is a large statistical error in the smallest
m2

π point. The JLQCD results were generated using overlap
fermions in Nf = 2 QCD. The lattice box length for each
simulation result is ∼ 1.9 fm, with a corresponding lattice
spacing is 0.118 fm. The box size is small compared to that
of the PACS-CS simulations, but the statistical uncertainties
in each point are also smaller. For simplicity, the fits also
neglect possible finite-volume corrections.

Previous studies in HBχPT have indicated that, for lattice
results extending outside the chiral power-counting regime,
the optimal value of the FRR scale Λ is of the order Λ ≈ 1
GeV [32]. Clearly, Fig. 4 shows agreement that the best
heavy-baryon result is obtained for Λ ≈ 1 GeV. The heavy-
baryon extrapolation is much more sensitive to changes in the

FRR scaleΛ comparedwith the BχPT extrapolation, in agree-
ment with Fig. 3.
For small values of Λ, the HBχPT and BχPT results are

similar, since the chiral loops are suppressed. An almost-
linear fit eventuates in both cases. This is not ideal, as Fig. 4
indicates that neglecting the chiral curvature leads to a poor
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2. The HB- and BχPT results are guaranteed to be the
same at small values of Λ, as can be seen by taking
derivatives of Eq. (8) with respect to Λ2, at Λ = 0.
However, at finite values of Λ the differences are appre-

ciable. Observing significant differences for Λ of order
mπ, as in the case of βp, indicates that the size of the
1/M̂N terms is largely underestimated in HBχPT.

V. MATCHING: CONFRONTING THE DATA

Eventually, the χPT results must be matched to the under-
lying theory – or in practice – fitted to experimental and lattice
QCD simulation results.
The case of magnetic polarizability is interesting. Since

there are no unknown LECs at leading order, it constitutes a
genuine prediction. Unfortunately, there are no lattice results
for this quantity, while the experimental data are largely un-
certain (see Ref. [33] for a recent discussion). One thing that
the data indisputably show is that βp is small compared to the
electric polarizability, and positive, which seems to be more
consistent with the HBχPT result. However, it is well known
that βp must have a large positive contribution from the ex-
citation of the ∆(1232) resonance [33], which can only be
accommodated if the chiral loops are negative and partially
cancel it out. Thus, the natural explanation of βp in the the-
ory with explicit ∆ baryons is provided by BχPT, rather than
HBχPT.
For the nucleon mass, one does not expect much difference

between HB- and BχPT around the physical pion mass, based
on Fig. 3. For larger pion masses, however, the difference
becomes significant, and may affect the fit to lattice results as
is shown in what follows.
In Figs. 4 and 5, chiral extrapolations of recent lattice re-

sults from PACS-CS [28] and JLQCD [29] are presented. The
different panels correspond to different values of the cutoff
Λ, while the dashed and solid curves correspond to HB- and
BχPT fit at order p3. The values of the fit parameters obtained
using PACS-CS and JLQCD results are shown in Tables I and
II, respectively.
The PACS-CS results were generated using non-

perturbatively O(a)-improved Wilson quark action at a
lattice box size of ∼ 2.9 fm, but the set only contains five
points, and there is a large statistical error in the smallest
m2

π point. The JLQCD results were generated using overlap
fermions in Nf = 2 QCD. The lattice box length for each
simulation result is ∼ 1.9 fm, with a corresponding lattice
spacing is 0.118 fm. The box size is small compared to that
of the PACS-CS simulations, but the statistical uncertainties
in each point are also smaller. For simplicity, the fits also
neglect possible finite-volume corrections.

Previous studies in HBχPT have indicated that, for lattice
results extending outside the chiral power-counting regime,
the optimal value of the FRR scale Λ is of the order Λ ≈ 1
GeV [32]. Clearly, Fig. 4 shows agreement that the best
heavy-baryon result is obtained for Λ ≈ 1 GeV. The heavy-
baryon extrapolation is much more sensitive to changes in the

FRR scaleΛ comparedwith the BχPT extrapolation, in agree-
ment with Fig. 3.
For small values of Λ, the HBχPT and BχPT results are

similar, since the chiral loops are suppressed. An almost-
linear fit eventuates in both cases. This is not ideal, as Fig. 4
indicates that neglecting the chiral curvature leads to a poor

MN ⇠ m3
⇡

 ⇠ m⇡

�M ⇠ 1

m⇡

Heavy-Baryon expansion fails for quantities where
the leading chiral-loop effects scales with a negative 
power of pion mass

Thursday, August 9, 12



Cutoff dependence 
in HB- and B-ChPT5

0.0 0.5 1.0 1.5 2.0
!70
!60
!50
!40
!30
!20
!10
0

M
N!3
"
!M
eV
"

HBΧPT
BΧPT

0.0 0.5 1.0 1.5 2.0
!2.0

!1.5

!1.0

!0.5

0.0

Κ i
so
v
!3
"

0.0 0.5 1.0 1.5 2.0

!1.5
!1.0
!0.5
0.0
0.5
1.0
1.5

$ !GeV"

Β
p!3
"
!1
0!

4
fm

3 "

FIG. 3. (color online). The cutoff-dependence of leading-order loop
contributions to various nucleon quantities (mass, isovector AMM,
and proton’s magnetic polarizability) calculated in HBχPT (blue
dashed curves) and BχPT (red solid curves).

2. The HB- and BχPT results are guaranteed to be the
same at small values of Λ, as can be seen by taking
derivatives of Eq. (8) with respect to Λ2, at Λ = 0.
However, at finite values of Λ the differences are appre-

ciable. Observing significant differences for Λ of order
mπ, as in the case of βp, indicates that the size of the
1/M̂N terms is largely underestimated in HBχPT.

V. MATCHING: CONFRONTING THE DATA

Eventually, the χPT results must be matched to the under-
lying theory – or in practice – fitted to experimental and lattice
QCD simulation results.
The case of magnetic polarizability is interesting. Since

there are no unknown LECs at leading order, it constitutes a
genuine prediction. Unfortunately, there are no lattice results
for this quantity, while the experimental data are largely un-
certain (see Ref. [33] for a recent discussion). One thing that
the data indisputably show is that βp is small compared to the
electric polarizability, and positive, which seems to be more
consistent with the HBχPT result. However, it is well known
that βp must have a large positive contribution from the ex-
citation of the ∆(1232) resonance [33], which can only be
accommodated if the chiral loops are negative and partially
cancel it out. Thus, the natural explanation of βp in the the-
ory with explicit ∆ baryons is provided by BχPT, rather than
HBχPT.
For the nucleon mass, one does not expect much difference

between HB- and BχPT around the physical pion mass, based
on Fig. 3. For larger pion masses, however, the difference
becomes significant, and may affect the fit to lattice results as
is shown in what follows.
In Figs. 4 and 5, chiral extrapolations of recent lattice re-

sults from PACS-CS [28] and JLQCD [29] are presented. The
different panels correspond to different values of the cutoff
Λ, while the dashed and solid curves correspond to HB- and
BχPT fit at order p3. The values of the fit parameters obtained
using PACS-CS and JLQCD results are shown in Tables I and
II, respectively.
The PACS-CS results were generated using non-

perturbatively O(a)-improved Wilson quark action at a
lattice box size of ∼ 2.9 fm, but the set only contains five
points, and there is a large statistical error in the smallest
m2

π point. The JLQCD results were generated using overlap
fermions in Nf = 2 QCD. The lattice box length for each
simulation result is ∼ 1.9 fm, with a corresponding lattice
spacing is 0.118 fm. The box size is small compared to that
of the PACS-CS simulations, but the statistical uncertainties
in each point are also smaller. For simplicity, the fits also
neglect possible finite-volume corrections.

Previous studies in HBχPT have indicated that, for lattice
results extending outside the chiral power-counting regime,
the optimal value of the FRR scale Λ is of the order Λ ≈ 1
GeV [32]. Clearly, Fig. 4 shows agreement that the best
heavy-baryon result is obtained for Λ ≈ 1 GeV. The heavy-
baryon extrapolation is much more sensitive to changes in the

FRR scaleΛ comparedwith the BχPT extrapolation, in agree-
ment with Fig. 3.
For small values of Λ, the HBχPT and BχPT results are

similar, since the chiral loops are suppressed. An almost-
linear fit eventuates in both cases. This is not ideal, as Fig. 4
indicates that neglecting the chiral curvature leads to a poor
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FIG. 3. (color online). The cutoff-dependence of leading-order loop
contributions to various nucleon quantities (mass, isovector AMM,
and proton’s magnetic polarizability) calculated in HBχPT (blue
dashed curves) and BχPT (red solid curves).

2. The HB- and BχPT results are guaranteed to be the
same at small values of Λ, as can be seen by taking
derivatives of Eq. (8) with respect to Λ2, at Λ = 0.
However, at finite values of Λ the differences are appre-

ciable. Observing significant differences for Λ of order
mπ, as in the case of βp, indicates that the size of the
1/M̂N terms is largely underestimated in HBχPT.

V. MATCHING: CONFRONTING THE DATA

Eventually, the χPT results must be matched to the under-
lying theory – or in practice – fitted to experimental and lattice
QCD simulation results.
The case of magnetic polarizability is interesting. Since

there are no unknown LECs at leading order, it constitutes a
genuine prediction. Unfortunately, there are no lattice results
for this quantity, while the experimental data are largely un-
certain (see Ref. [33] for a recent discussion). One thing that
the data indisputably show is that βp is small compared to the
electric polarizability, and positive, which seems to be more
consistent with the HBχPT result. However, it is well known
that βp must have a large positive contribution from the ex-
citation of the ∆(1232) resonance [33], which can only be
accommodated if the chiral loops are negative and partially
cancel it out. Thus, the natural explanation of βp in the the-
ory with explicit ∆ baryons is provided by BχPT, rather than
HBχPT.
For the nucleon mass, one does not expect much difference

between HB- and BχPT around the physical pion mass, based
on Fig. 3. For larger pion masses, however, the difference
becomes significant, and may affect the fit to lattice results as
is shown in what follows.
In Figs. 4 and 5, chiral extrapolations of recent lattice re-

sults from PACS-CS [28] and JLQCD [29] are presented. The
different panels correspond to different values of the cutoff
Λ, while the dashed and solid curves correspond to HB- and
BχPT fit at order p3. The values of the fit parameters obtained
using PACS-CS and JLQCD results are shown in Tables I and
II, respectively.
The PACS-CS results were generated using non-

perturbatively O(a)-improved Wilson quark action at a
lattice box size of ∼ 2.9 fm, but the set only contains five
points, and there is a large statistical error in the smallest
m2

π point. The JLQCD results were generated using overlap
fermions in Nf = 2 QCD. The lattice box length for each
simulation result is ∼ 1.9 fm, with a corresponding lattice
spacing is 0.118 fm. The box size is small compared to that
of the PACS-CS simulations, but the statistical uncertainties
in each point are also smaller. For simplicity, the fits also
neglect possible finite-volume corrections.

Previous studies in HBχPT have indicated that, for lattice
results extending outside the chiral power-counting regime,
the optimal value of the FRR scale Λ is of the order Λ ≈ 1
GeV [32]. Clearly, Fig. 4 shows agreement that the best
heavy-baryon result is obtained for Λ ≈ 1 GeV. The heavy-
baryon extrapolation is much more sensitive to changes in the

FRR scaleΛ comparedwith the BχPT extrapolation, in agree-
ment with Fig. 3.
For small values of Λ, the HBχPT and BχPT results are

similar, since the chiral loops are suppressed. An almost-
linear fit eventuates in both cases. This is not ideal, as Fig. 4
indicates that neglecting the chiral curvature leads to a poor
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FIG. 3. (color online). The cutoff-dependence of leading-order loop
contributions to various nucleon quantities (mass, isovector AMM,
and proton’s magnetic polarizability) calculated in HBχPT (blue
dashed curves) and BχPT (red solid curves).

2. The HB- and BχPT results are guaranteed to be the
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derivatives of Eq. (8) with respect to Λ2, at Λ = 0.
However, at finite values of Λ the differences are appre-

ciable. Observing significant differences for Λ of order
mπ, as in the case of βp, indicates that the size of the
1/M̂N terms is largely underestimated in HBχPT.
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there are no unknown LECs at leading order, it constitutes a
genuine prediction. Unfortunately, there are no lattice results
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π point. The JLQCD results were generated using overlap
fermions in Nf = 2 QCD. The lattice box length for each
simulation result is ∼ 1.9 fm, with a corresponding lattice
spacing is 0.118 fm. The box size is small compared to that
of the PACS-CS simulations, but the statistical uncertainties
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Previous studies in HBχPT have indicated that, for lattice
results extending outside the chiral power-counting regime,
the optimal value of the FRR scale Λ is of the order Λ ≈ 1
GeV [32]. Clearly, Fig. 4 shows agreement that the best
heavy-baryon result is obtained for Λ ≈ 1 GeV. The heavy-
baryon extrapolation is much more sensitive to changes in the

FRR scaleΛ comparedwith the BχPT extrapolation, in agree-
ment with Fig. 3.
For small values of Λ, the HBχPT and BχPT results are

similar, since the chiral loops are suppressed. An almost-
linear fit eventuates in both cases. This is not ideal, as Fig. 4
indicates that neglecting the chiral curvature leads to a poor

MN ⇠ m3
⇡

 ⇠ m⇡

�M ⇠ 1

m⇡

Heavy-Baryon expansion fails for quantities where
the leading chiral-loop effects scales with a negative 
power of pion mass

E.g.: the effective range parameters of the NN force
are such quantities -- hope for “perturbative pions” (KSW)
in BChPT
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Abstract

We present a dispersion relation in the pion-mass squared, which static quantities (nucleon mass, magnetic moment,
etc.) obey under the assumption of analyticity in the entire complex m2

π plane modulo a cut at negative m2
π associated

with pion production. The relation is verified here in a number of examples of nucleon and ∆-isobar properties
computed in chiral perturbation theory up to order p3. We outline a method to obtain relations for other mass-
dependencies, and illustrate it on a two-loop example.

Keywords: chiral behavior, analyticity, nucleon mass, magnetic moment, polarizability, Delta(1232), sunset diagram
PACS: 11.55.Fv, 12.39.Fe, 14.20.Dh, 14.20.Gk

1. Introduction

Present lattice QCD calculations are still limited to larger than physical values of light quark masses, mq > mu,d !
5 − 10 MeV, but the chiral perturbation theory (χPT) [1, 2] can, in many cases, be applied to bridge the gap between
the lattice and the real world (see e.g., [3–8]). χPT can predict at least some of the ‘non-analytic’ dependencies of
static quantities (masses, magnetic moments, etc.) on pion-mass squared, or the quark mass (m2

π ∼ mq). The rest of
the contributions contain the a priory unknown low-energy constants (LECs). In this paper we examine the origins of
non-analytic dependencies arising in χPT, by considering analytic properties of the chiral expansion in the complex
m2
π plane.

t

Figure 1: The cut and the contour in the complex
t = m2

π plane, which go into the derivation of the
dispersion relation in Eq. (1).

The basic observation is that chiral loops exhibit a cut along the
negative m2

π axis. The cut is associated with pion production which can
occur without any excess of energy for m2

π ≤ 0. Assuming analyticity in
the rest of the m2

π-plane (see Fig. 1), one arrives at a dispersion relation
of the type:

f (m2
π) = −

1
π

0
∫

−∞

dt
Im f (t)

t − m2
π + i0+

, (1)

where f is a static quantity, 0+ is an infinitesimally small positive num-
ber. In what follows, we explicitly verify this type of dispersion relation
on a few examples of the nucleon and ∆(1232)-isobar properties and
discuss its field of application. In particular, we consider a two-loop ex-
ample (a sunset graph) for which the absorptive part can relatively easy
be extracted. We conclude by comparing this dispersion relation with a
similar “mass-dispersion” relation long-known in the literature.
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 insights from the FRR:  quantities which expansion begins with inverse 
powers of pion mass converge badly (unnaturally) in HB-ChPT,                   

e.g. polarizabilities, NN effective range parameters.
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