Model independent form factor relations at large N_c

Vojtěch Krejčiřík

Maryland Center for Fundamental Physics
Department of Physics, University of Maryland, College Park, MD

Quantum chromodynamics — theory of strong interaction
 - gauge theory of quarks and gluons based on $SU(N_c = 3)$ symmetry
introduction

Quantum chromodynamics — theory of strong interaction
- gauge theory of quarks and gluons based on $SU(N_c = 3)$ symmetry

Practical problem — QCD is strongly coupled at low energies
- conventional perturbative expansion is not applicable
- expansion around non-interacting theory
- corrections in the powers of coupling constant
introduction

- Quantum chromodynamics — theory of strong interaction
 - gauge theory of quarks and gluons based on $SU(N_c = 3)$ symmetry

- Practical problem — QCD is strongly coupled at low energies
 - conventional perturbative expansion is not applicable
 - expansion around non-interacting theory
 - corrections in the powers of coupling constant

- Some useful approaches
 - expansion around large-N_c limit
 - expansion around massless-quark (chiral) limit
introduction — two limits of QCD

- Large N_c world
 - number of colors N_c is a hidden free parameter of QCD
 - simplifies substantially in the limit $N_c \to \infty$
 - due to combinatorics properties of diagrams

Vojtěch Krejčiřík
Model independent form factor relations at large N_c
introduction — two limits of QCD

- **Large N_c world**
 - number of colors N_c is a hidden free parameter of QCD
 - simplifies substantially in the limit $N_c \to \infty$
 due to combinatorics properties of diagrams

- **Chiral world**
 - QCD possesses a new symmetry if quark masses are zero — chiral symmetry
 - again, leads to simplification of the problem
introduction — two limits of QCD

- **Large N_c world**
 - number of colors N_c is a hidden free parameter of QCD
 - simplifies substantially in the limit $N_c \to \infty$
 due to combinatorics properties of diagrams

- **Chiral world**
 - QCD possesses a new symmetry if quark masses are zero — chiral symmetry
 - again, leads to simplification of the problem

- **Promising idea — develop models of QCD in these two limits**
 - even though these limits do not completely describe the real world, they are believed to capture many of its (at least qualitative) details.
 - systematic procedure how to include corrections in the powers of m_π or $1/N_c$
introduction — two limits of QCD

- **Large N_c world**
 - number of colors N_c is a hidden free parameter of QCD
 - simplifies substantially in the limit $N_c \to \infty$
 due to combinatorics properties of diagrams

- **Chiral world**
 - QCD possesses a new symmetry if quark masses are zero — chiral symmetry
 - again, leads to simplification of the problem

- **Promising idea — develop models of QCD in these two limits**
 - even though these limits do not completely describe the real world,
 they are believed to capture many of its (at least qualitative) details.
 - systematic procedure how to include corrections in the powers of m_π or $1/N_c$

- **Double limit is not uniform and ordering of limits does matter (for certain observables).**
introduction — baryon models

- In the large N_c world
 - QCD becomes weakly interacting theory of mesons
 - Baryons emerge as solitons-like configurations of meson fields
In the large N_c world

- QCD becomes weakly interacting theory of mesons
- baryons emerge as solitons-like configurations of meson fields

Chiral soliton models treated semiclassically (Skyrme model$^{(1)}$)

- large N_c — encoded in the very core of the models, in the semiclassical treatment
- chiral — imposed later as a constraint on the dynamic of meson fields

In the large N_c world

- QCD becomes weakly interacting theory of mesons
- Baryons emerge as solitons-like configurations of meson fields

Chiral soliton models treated semiclassically (Skyrme model$^{(1)}$)

- Large N_c — encoded in the very core of the models, in the semiclassical treatment
- Chiral — imposed later as a constraint on the dynamic of meson fields
- Models based on large N_c and chiral limits of QCD with $N_c \to \infty$ taken first

introduction — baryon models

- In the large N_c world
 - QCD becomes weakly interacting theory of mesons
 - baryons emerge as solitons-like configurations of meson fields

- Chiral soliton models treated semiclassically (Skyrme model\(^{(1)}\))
 - large N_c — encoded in the very core of the models, in the semiclassical treatment
 - chiral — imposed later as a constraint on the dynamic of meson fields

- Models based on gauge-gravity duality\(^{(2,3)}\)
 - attracted wide interest recently

\(^{(2)}\) A. Pomarol, A. Wulzer, JHEP **03** (2008) 051.

introduction — baryon models

- In the large N_c world
 - QCD becomes weakly interacting theory of mesons
 - baryons emerge as solitons-like configurations of meson fields

- Chiral soliton models treated semiclassically (Skyrme model(1))
 - large N_c — encoded in the very core of the models, in the semiclassical treatment
 - chiral — imposed later as a constraint on the dynamic of meson fields
 - models based on large N_c and chiral limits of QCD with $N_c \rightarrow \infty$ taken first

- Models based on gauge-gravity duality(2,3)
 - attracted wide interest recently
 - large N_c — encoded in the very core of the models ($N_c \rightarrow \infty$ taken first)
 - looks totally different (if nothing else they are formulated in five dimensions)

(2) A. Pomarol, A. Wulzer, JHEP \textbf{03} (2008) 051.
introduction — baryon models

- Important to check, if large N_c and chiral physics are encoded correctly
 - of course, there is more to modeling QCD than getting large N_c and chiral behavior right
 - however, there is, in principle, infinite number of models
 - simple method to check the inclusion of large N_c and chiral physics is important
introduction — baryon models

- **Important to check, if large N_c and chiral physics are encoded correctly**
 - of course, there is more to modeling QCD than getting large N_c and chiral behavior right
 - however, there is, in principle, infinite number of models
 - simple method to check the inclusion of large N_c and chiral physics is important

- **Model-independent relations**
 - large set of large N_c consistency relations
 - constrain the longest distance behavior of the system
introduction — baryon models

- Important to check, if large N_c and chiral physics are encoded correctly
 - of course, there is more to modeling QCD than getting large N_c and chiral behavior right
 - however, there is, in principle, infinite number of models
 - simple method to check the inclusion of large N_c and chiral physics is important

- Model-independent relations
 - large set of large N_c consistency relations
 - constrain the longest distance behavior of the system
 - typically fixes how quantities diverge as $m_\pi \to 0$
 - these are unusable for many of the holographic models, since they have been done for $m_\pi = 0$
introduction — baryon models

- Important to check, if large N_c and chiral physics are encoded correctly
 - of course, there is more to modeling QCD than getting large N_c and chiral behavior right
 - however, there is, in principle, infinite number of models
 - simple method to check the inclusion of large N_c and chiral physics is important

- Model-independent relations
 - large set of large N_c consistency relations
 - constrain the longest distance behavior of the system
 - typically fixes how quantities diverge as $m_\pi \to 0$
 - these are unusable for many of the holographic models, since they have been done for $m_\pi = 0$
 - the need for new model-independent relation
model-independent relation

- New model-independent relation

 - use position-space electric and magnetic form factors (Fourier transforms of standard momentum-space ones\(^{(4)}\))

 - finite and well defined even if \(m_\pi = 0\)

model-independent relation

- New model-independent relation
 - use position-space electric and magnetic form factors (Fourier transforms of standard momentum-space ones\(^{(4)}\))
 - finite and well defined even if \(m_\pi = 0\)

\[
\lim_{r \to \infty} \frac{r^2 \tilde{G}^{l=0}_E}{\tilde{G}^{l=0}_M} \frac{\tilde{G}^{l=1}_E}{\tilde{G}^{l=1}_M} = 18
\]

model-independent relation

New model-independent relation

- use position-space electric and magnetic form factors (Fourier transforms of standard momentum-space ones\(^{(4)}\))
- finite and well defined even if \(m_\pi = 0 \)

\[
\lim_{r \to \infty} \frac{r^2 \tilde{G}_E^{l=0} \tilde{G}_E^{l=1}}{\tilde{G}_M^{l=0} \tilde{G}_M^{l=1}} = 18
\]

- isoscalar electric \(\tilde{G}_E^{l=0} \)
- isoscalar magnetic \(\tilde{G}_M^{l=0} \)
- isovector electric \(\tilde{G}_E^{l=1} \)
- isovector magnetic \(\tilde{G}_M^{l=1} \)

The relation was previously derived in the context of chiral soliton models. It is plausible to believe it is model-independent, i.e., it does NOT depend on any details of the model. In the past, all such relations derived in the chiral soliton models turned out (after deeper investigation) to be model independent. The purpose of this work is to prove the relation in a model-independent way. Not all models on the market satisfy it; something is wrong with the Sakai-Sugimoto ("top-down") model. The underlying reason for this appears to be due to a failure of the flat-space instanton approximation.
model-independent relation

- The relation was previously derived in the context of chiral soliton models\(^{(5)}\)

The relation was previously derived in the context of chiral soliton models\(^{(5)}\). It is plausible to believe it is model-independent:

- does NOT depend on any details of the model
- in the past, all such relations derived in the chiral soliton models turned out (after deeper investigation) to be model independent

model-independent relation

• The relation was previously derived in the context of chiral soliton models\(^{(5)}\)

• It is plausible to believe it is model-independent

 • does NOT depend on any details of the model
 • in the past, all such relations derived in the chiral soliton models turned out (after deeper investigation) to be model independent
 • the purpose of this work is to prove the relation in a model-independent way

The relation was previously derived in the context of chiral soliton models\(^{(5)}\).

It is plausible to believe it is model-independent:

- does NOT depend on any details of the model
- in the past, all such relations derived in the chiral soliton models turned out (after deeper investigation) to be model independent
- the purpose of this work is to prove the relation in a model-independent way

Not all models on the market satisfy it.

The relation was previously derived in the context of chiral soliton models\(^{(5)}\). It is plausible to believe it is model-independent:

- does NOT depend on any details of the model
- in the past, all such relations derived in the chiral soliton models turned out (after deeper investigation) to be model independent
- the purpose of this work is to prove the relation in a model-independent way

Not all models on the market satisfy it:

- something is wrong with Sakai-Sugimoto ("top-down") model
- the underlying reason for this appears to be due to a failure of the flat-space instanton approximation\(^{(6)}\)

Interesting properties

- **all** low-energy constants, normalization of currents, sign and Fourier transform conventions **cancel**
- universal number and power of r remain
Interesting properties

- all low-energy constants, normalization of currents, sign and Fourier transform conventions cancel

- universal number and power of r remain

- calculable in a closed form for $m_\pi = 0$
model-independent relation

\[
\lim_{r \to \infty} r^2 \frac{\tilde{G}^{l=0}_E \tilde{G}^{l=1}_E}{\tilde{G}^{l=0}_M \tilde{G}^{l=1}_M} = 18
\]

- Interesting properties
 - **all** low-energy constants, normalization of currents, sign and Fourier transform conventions **cancel**
 - universal number and power of \(r \) remain
 - calculable in a closed form for \(m_\pi = 0 \)
 - does depend on the ordering of large \(N_c \) and chiral limits
model-independent relation

\[\lim_{r \to \infty} \frac{r^2 \tilde{G}_E^{l=0}}{G_M^{l=0}} \frac{\tilde{G}_E^{l=1}}{G_M^{l=1}} = 18 \]

- Interesting properties
 - **all** low-energy constants, normalization of currents, sign and Fourier transform conventions **cancel**
 - universal number and power of \(r \) remain
 - calculable in a closed form for \(m_\pi = 0 \)
 - does depend on the ordering of large \(N_c \) and chiral limits

- The relation is proved in the large \(N_c \) chiral perturbation theory
Features of large $N_c \chi$PT

- baryon mass is parametrically large (of order N_c) — heavy baryon approximation
Features of large $N_c \chi$PT

- Baryon mass is parametrically large (of order N_c) — heavy baryon approximation
- Pion loops contribute to the leading order — longest distance behavior is given by the currents connected to the pion loops with smallest possible number of pions
features of large N_c χPT

- baryon mass is parametrically large (of order N_c) — heavy baryon approximation
- pion loops contribute to the leading order — longest distance behavior is given by the currents connected to the pion loops with smallest possible number of pions
- large N_c also eliminates diagrams suppressed by factor $1/N_c$
Features of large $N_c \chi$PT

- Baryon mass is parametrically large (of order N_c) — heavy baryon approximation.
- Pion loops contribute to the leading order — longest distance behavior is given by the currents connected to the pion loops with smallest possible number of pions.
- Large N_c also eliminates diagrams suppressed by factor $1/N_c$.
- Large N_c consistency relations implies that the Δ is degenerate with nucleon (generally whole tower of $I = J$ isobars) — Δ must be included in the calculation.
 - Mass difference $\Delta = M_\Delta - M_N$ is of order $1/N_c$ and serves as a new low energy constant.
inputs of the calculation

- **Features of large \(N_c \) \(\chi \)PT**
 - baryon mass is parametrically large (of order \(N_c \)) — heavy baryon approximation
 - pion loops contribute to the leading order — longest distance behavior is given by the currents connected to the pion loops with smallest possible number of pions
 - large \(N_c \) also eliminates diagrams suppressed by factor \(1/N_c \)
 - large \(N_c \) consistency relations implies that the \(\Delta \) is degenerate with nucleon (generally whole tower of \(I = J \) isobars) — \(\Delta \) must be included in the calculation
 - mass difference \(\Delta = M_\Delta - M_N \) is of order \(1/N_c \) and serves as a new low energy constant
 - the form of pion-baryon-baryon’ vertex is determined by the large \(N_c \) consistency relations
inputs of the calculation

- Feynman rules for vertices
 - photon-two pions: $\epsilon_{a3b} A_\mu (p_a^\mu + p_b^\mu)$
 - key for isovector current, see ϵ_{a3b}
Feynman rules for vertices

- Photon-two pions: \(\epsilon_{a3b} A_\mu (p^\mu_a + p^\mu_b) \)
 - Key for isovector current, see \(\epsilon_{a3b} \)

- Photon-three pions: \(\frac{1}{12 \pi^2 f_3^2} \epsilon_{abc} \epsilon^{\mu \nu \kappa \lambda} A_\mu p^\nu_a p^\kappa_b p^\lambda_c \)
 - Key for isoscalar current, see \(\epsilon_{abc} \)
inputs of the calculation

- **Feynman rules for vertices**

 - **photon-two pions**: \(\epsilon_{a3b} A_\mu (p_\mu^a + p_\mu^b) \)
 - key for isovector current, see \(\epsilon_{a3b} \)

 - **photon-three pions**: \(\frac{1}{12\pi^2 f_\pi^3} \epsilon_{abc} \epsilon^{\mu\nu\kappa\lambda} A_\mu p_\nu^a p_\kappa^b p_\lambda^c \)
 - key for isoscalar current, see \(\epsilon_{abc} \)

 - **pion-baryon-baryon**: \(\frac{g_A}{2f_\pi} \sqrt{\frac{2J(B') + 1}{2J(B) + 1}} \tau_a^{BB'} \sigma_i^{BB'} p_i \)
 - determined by the consistency relations of large \(N_c \) QCD
 - matrices \(\tau^{BB'} (\sigma^{BB'}) \) act in isospin (spin) space, they are a generalization of Pauli matrices, which appear in the pion-nucleon-nucleon vertex
Coupling matrices

\[
\tau_1^{(NN)} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \tau_2^{(NN)} = i \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad \tau_3^{(NN)} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
\]

\[
\tau_1^{(N\Delta)} = \begin{pmatrix} -\sqrt{\frac{3}{2}} & 0 \\ 0 & -\sqrt{\frac{1}{2}} \end{pmatrix}, \quad \tau_2^{(N\Delta)} = i \begin{pmatrix} \sqrt{\frac{3}{2}} & 0 \\ 0 & \sqrt{\frac{1}{2}} \end{pmatrix}, \quad \tau_3^{(N\Delta)} = \begin{pmatrix} 0 & 0 \\ \sqrt{2} & 0 \\ 0 & \sqrt{2} \end{pmatrix}
\]

\[
\tau_1^{(\Delta N)} = \begin{pmatrix} \frac{\sqrt{3}}{2} & 0 & -\frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & -\frac{\sqrt{3}}{2} \end{pmatrix}, \quad \tau_2^{(\Delta N)} = i \begin{pmatrix} \frac{\sqrt{3}}{2} & 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & \frac{\sqrt{3}}{2} \end{pmatrix}, \quad \tau_3^{(\Delta N)} = \ldots
\]

\[
\tau_1^{(\Delta\Delta)} = \begin{pmatrix} 0 & \sqrt{\frac{3}{5}} & 0 & 0 \\ \sqrt{\frac{3}{5}} & 0 & \frac{2}{\sqrt{5}} & 0 \\ 0 & \frac{2}{\sqrt{5}} & 0 & \sqrt{\frac{3}{5}} \\ 0 & 0 & \sqrt{\frac{3}{5}} & 0 \end{pmatrix}, \quad \tau_2^{(\Delta\Delta)} = i \begin{pmatrix} 0 & -\sqrt{\frac{3}{5}} & 0 & 0 \\ \sqrt{\frac{3}{5}} & 0 & -\frac{2}{\sqrt{5}} & 0 \\ 0 & \frac{2}{\sqrt{5}} & 0 & -\sqrt{\frac{3}{5}} \\ 0 & 0 & \sqrt{\frac{3}{5}} & 0 \end{pmatrix}, \quad \tau_3^{(\Delta\Delta)} = \ldots
\]
Feynman rules for vertices

- photon-two pions: $\epsilon_{a3b} A_\mu (p_a^\mu + p_b^\mu)$
 - key for isovector current, see ϵ_{a3b}
- photon-three pions: $\frac{1}{12\pi^2 f_\pi^3} \epsilon_{abc} \epsilon^{\mu\nu\kappa\lambda} A_\mu p_{a\nu} p_{b\kappa} p_{c\lambda}$
 - key for isoscalar current, see ϵ_{abc}
- pion-baryon-baryon: $\frac{g_A}{2f_\pi} \sqrt{\frac{2J(B') + 1}{2J(B) + 1}} \tau_a^{(BB')} \sigma_i^{(BB')} p_i$
 - determined by the consistency relations of large N_c QCD
 - matrices $\tau^{(BB')}$ ($\sigma^{(BB')}$) act in isospin (spin) space, they are a generalization of Pauli matrices, which appear in the pion-nucleon-nucleon vertex

Feynman rules for propagators
inputs of the calculation

- **Feynman rules for vertices**
 - photon-two pions: $\epsilon_{a3b} A_{\mu}(p_a^{\mu} + p_b^{\mu})$
 - key for isovector current, see ϵ_{a3b}
 - photon-three pions: $\frac{1}{12\pi^2 f_3^2} \epsilon_{abc} \epsilon^{\mu\nu\kappa\lambda} A_{\mu} p_{a\nu} p_{b\kappa} p_{c\lambda}$
 - key for isoscalar current, see ϵ_{abc}
 - pion-baryon-baryon: $g_A \frac{n_{\pi}}{2f_{\pi}} \sqrt{\frac{2J(B')}{{J(B')}+1}} \tau_a^{(BB')} \sigma_i^{(BB')} p_i$
 - determined by the consistency relations of large N_c QCD
 - matrices $\tau^{(BB')} (\sigma^{(BB')})$ act in isospin (spin) space, they are a generalization of Pauli matrices, which appear in the pion-nucleon-nucleon vertex

- **Feynman rules for propagators**
 - pions: $\Delta_\pi(k) = \frac{i}{k^2 - m_{\pi}^2 + i\epsilon}$
 - fully relativistic propagators for pions, in the end $m_{\pi} \to 0$
Feynman rules for vertices

- photon-two pions: $\epsilon_{a3b} A_\mu (p_a^\mu + p_b^\mu)$
 - key for isovector current, see ϵ_{a3b}
- photon-three pions: $\frac{1}{12\pi^2 f_\pi^3} \epsilon_{abc} \epsilon^{\mu\nu\kappa\lambda} A_\mu p_\nu p_\kappa p_\lambda$
 - key for isoscalar current, see ϵ_{abc}
- pion-baryon-baryon: $\frac{g_A}{2f_\pi} \sqrt{\frac{2J(B') + 1}{2J(B) + 1}} \tau_a^{(B'B')} \sigma_i^{(BB')} p_i$
 - determined by the consistency relations of large N_c QCD
 - matrices $\tau^{(BB')}$ ($\sigma^{(BB')}$) act in isospin (spin) space, they are a generalization of Pauli matrices, which appear in the pion-nucleon-nucleon vertex

Feynman rules for propagators

- pions: $\Delta^\pi (k) = \frac{i}{k^2 - m_\pi^2 + i\epsilon}$
 - fully relativistic propagators for pions, in the end $m_\pi \to 0$
- baryons: $\Delta^N (k) = \frac{i}{k^0 + i\epsilon}$, $\Delta^\Delta (k) = \frac{i}{k^0 - \Delta + i\epsilon}$
 - non-relativistic propagators for baryons
diagrams to consider

- Isovector
diagrams to consider

- Isovector

- two pion loop with either nucleon or delta in the intermediate state
- totally two diagrams to be taken into account
diagrams to consider

- Isovector
 - two pion loop with either nucleon or delta in the intermediate state
 - totally two diagrams to be taken into account

- Isoscalar
diagrams to consider

- **Isovector**
 - two pion loop with either nucleon or delta in the intermediate state
 - totally two diagrams to be taken into account

- **Isoscalar**
 - three pion loop with nucleons and deltas in the intermediate states
 - totally four diagrams to be taken into account
result

- Position-space form factors
 - evaluating diagrams, Fourier transforming, setting \(m_\pi = 0 \), extracting longest distance part:
Position-space form factors

- evaluating diagrams, Fourier transforming, setting $m_\pi = 0$, extracting longest distance part:

$$\lim_{r \to \infty} \tilde{G}_E^{l=0} = \frac{3^3}{2^9 \pi^5} \frac{1}{f_\pi^3} \left(\frac{g_A}{f_\pi} \right)^3 \frac{1}{r^9}$$

$$\lim_{r \to \infty} \tilde{G}_M^{l=0} = \frac{3}{2^9 \pi^5} \frac{1}{f_\pi^3} \left(\frac{g_A}{f_\pi} \right)^3 \frac{\Delta}{r^7}$$

$$\lim_{r \to \infty} \tilde{G}_E^{l=1} = \frac{1}{2^4 \pi^2} \left(\frac{g_A}{f_\pi} \right)^2 \frac{\Delta}{r^4}$$

$$\lim_{r \to \infty} \tilde{G}_M^{l=1} = \frac{1}{2^5 \pi^2} \left(\frac{g_A}{f_\pi} \right)^2 \frac{1}{r^4}$$
Position-space form factors

- evaluating diagrams, Fourier transforming, setting $m_\pi = 0$, extracting longest distance part:

$$
\lim_{r \to \infty} \tilde{G}_E^{l=0} = \frac{3^3}{2^9 \pi^5} \frac{1}{f_\pi^3} \left(\frac{g_A}{f_\pi} \right)^3 \frac{1}{r^9} \\
\lim_{r \to \infty} \tilde{G}_M^{l=0} = \frac{3}{2^9 \pi^5} \frac{1}{f_\pi^3} \left(\frac{g_A}{f_\pi} \right)^3 \frac{\Delta}{r^7}
$$

$$
\lim_{r \to \infty} \tilde{G}_E^{l=1} = \frac{1}{2^4 \pi^2} \left(\frac{g_A}{f_\pi} \right)^2 \frac{\Delta}{r^4} \\
\lim_{r \to \infty} \tilde{G}_M^{l=1} = \frac{1}{2^5 \pi^2} \left(\frac{g_A}{f_\pi} \right)^2 \frac{1}{r^4}
$$

Model-independent relation

$$
\lim_{r \to \infty} \frac{r^2 \tilde{G}_E^{l=0} \tilde{G}_E^{l=1}}{\tilde{G}_M^{l=0} \tilde{G}_M^{l=1}} = 18
$$
Position-space form factors

- evaluating diagrams, Fourier transforming, setting $m_\pi = 0$, extracting longest distance part:

$$\lim_{r \to \infty} \tilde{G}_E^{I=0} = \frac{3^3}{2^9 \pi^5} \frac{1}{f^3_\pi} \left(\frac{g_A}{f_\pi} \right)^3 \frac{1}{r^9}$$

$$\lim_{r \to \infty} \tilde{G}_M^{I=0} = \frac{3}{2^9 \pi^5} \frac{1}{f^3_\pi} \left(\frac{g_A}{f_\pi} \right)^3 \frac{\Delta}{r^7}$$

$$\lim_{r \to \infty} \tilde{G}_E^{I=1} = \frac{1}{2^4 \pi^2} \left(\frac{g_A}{f_\pi} \right)^2 \frac{\Delta}{r^4}$$

$$\lim_{r \to \infty} \tilde{G}_M^{I=1} = \frac{1}{2^5 \pi^2} \left(\frac{g_A}{f_\pi} \right)^2 \frac{1}{r^4}$$

Model-independent relation

$$\lim_{r \to \infty} \frac{r^2 \tilde{G}_E^{I=0} \tilde{G}_E^{I=1}}{\tilde{G}_M^{I=0} \tilde{G}_M^{I=1}} = 18$$ holds!

- as advertised, all low-energy constants canceled
comment about the presence of Δs

- For isovector form factors

\[
\begin{align*}
\tau_a^{(NN)} \tau_b^{(NN)} &= \delta_{ab} I_\tau + i \epsilon_{abc} \tau_c , \\
\tau_a^{(\Delta N)} \tau_b^{(N\Delta)} &= -\sqrt{2} \delta_{ab} I_\tau + \frac{i}{\sqrt{2}} \epsilon_{abc} \tau_c
\end{align*}
\]

- matrix structure for iso-space (same for the spin space matrices σ):
comment about the presence of Δs

- For isovector form factors

 \[\tau_a^{(NN)} \tau_b^{(NN)} = \delta_{ab} I_\tau + i \epsilon_{abc} \tau_c, \quad \tau_a^{(\Delta N)} \tau_b^{(N\Delta)} = -\sqrt{2} \delta_{ab} I_\tau + \frac{i}{\sqrt{2}} \epsilon_{abc} \tau_c \]

- Matrix structure for iso-space (same for the spin space matrices σ):

 \[\tau_a^{(NN)} \tau_b^{(NN)} = \delta_{ab} I_\tau + i \epsilon_{abc} \tau_c \]

 - for example, look at isoscalar - vector amplitude
 \[\approx 1 \times 1 + (-\sqrt{2} \times 1/\sqrt{2}) = 0 \]

 - cancel in the leading order in $1/N_c$ expansion, proportional to Δ
comment about the presence of Δs

- For isovector form factors

\[\tau_a^{(NN)} \tau_b^{(NN)} = \delta_{ab} I_\tau + i \epsilon_{abc} \tau_c, \quad \tau_a^{(\Delta N)} \tau_b^{(N\Delta)} = -\sqrt{2} \delta_{ab} I_\tau + \frac{i}{\sqrt{2}} \epsilon_{abc} \tau_c \]

- Matrix structure for iso-space (same for the spin space matrices σ):

- For example, look at isoscalar - vector amplitude

\[\approx 1 \times 1 + (-\sqrt{2} \times 1/\sqrt{2}) = 0 \]

- Cancel in the leading order in $1/N_c$ expansion, proportional to Δ

- Isoscalar-vector ($\tilde{G}^l_{M=0} = 0$) and isovector-scalar ($\tilde{G}^l_{E=1}$) channels, the amplitudes subtract exactly in the leading order in $1/N_c$ (where $\Delta = 0$)

- For isoscalar-scalar ($\tilde{G}^l_{E=0}$) and isovector-vector ($\tilde{G}^l_{M=1}$) channels, Δ in the intermediate state only leads to a multiplicative factor
If chiral limit is taken prior to the large N_c limit, only nucleons need to be considered in the intermediate states.
If chiral limit is taken prior to the large N_c limit, only nucleons need to be considered in the intermediate states:

- cartoon picture (diagrams without $\Delta(s)$ + diagrams with $\Delta(s)$)

\[
\approx e^{-m_\pi r} + e^{-m_\pi r} e^{-\Delta r}
\]

limit $N_c \to \infty$

\[
\approx e^{-m_\pi r} + e^{-m_\pi r}
\]

limit $m_\pi \to 0$

\[
\approx 1 + 1
\]

limit $r \to \infty$

\[
\approx 1 + 1
\]
If chiral limit is taken prior to the large N_c limit, only nucleons need to be considered in the intermediate states

- cartoon picture (diagrams without $\Delta(s)$ + diagrams with $\Delta(s)$)

\[
\lim_{N_c \to \infty} \approx e^{-m_\pi r} + e^{-m_\pi r} e^{-\Delta r}
\]

\[
\lim_{m_\pi \to 0} \approx e^{-m_\pi r} + e^{-m_\pi r}
\]

\[
\lim_{r \to \infty} \approx 1 + 1
\]

\[
\lim_{N_c \to \infty} \approx 1 + 0
\]
If chiral limit is taken prior to the large N_c limit, only nucleons need to be considered in the intermediate states.

- cartoon picture (diagrams without $\Delta(s)$ + diagrams with $\Delta(s)$)

$$\approx e^{-m_\pi r} + e^{-m_\pi r} e^{-\Delta r}$$

- limit $N_c \to \infty$
 $$\approx e^{-m_\pi r} + e^{-m_\pi r}$$

- limit $m_\pi \to 0$
 $$\approx 1 + 1$$

- limit $r \to \infty$
 $$\approx 1 + 1$$

$$\lim_{N_c \to \infty} \lim_{r \to \infty} \lim_{m_\pi \to 0} \frac{r^2 \tilde{G}_E^{l=0} \tilde{G}_E^{l=1}}{\tilde{G}_M^{l=0} \tilde{G}_M^{l=1}} = 9$$
The relation \[\lim_{r \to \infty} r^2 \frac{G_E^{I=0}}{G_M^{I=0}} \frac{G_E^{I=1}}{G_M^{I=1}} = 18 \] was proven in large $N_c \chi$PT

- provided that the large N_c limit is taken at the outset of the problem.
The relation

\[\lim_{r \to \infty} \frac{r^2 \, \tilde{G}_{E}^{I=0} \, \tilde{G}_{E}^{I=1}}{G_{M}^{I=0} \, G_{M}^{I=1}} = 18 \]

was proven in large \(N_c \chi\text{PT} \) provided that the large \(N_c \) limit is taken at the outset of the problem.

It may serve as an honest model-independent constrain on baryon models based on large \(N_c \) and chiral physics.

- it was shown to hold for:
 - Skyrme model\(^{(5)}\)
 - "bottom-up" holographic model\(^{(5)}\)
 - "top-down" holographic model (if treated properly)\(^{(6)}\)

work was supported by the U.S. Dep. of Energy through grant DE-FG02-93ER-40762