\(\eta \rightarrow 3\pi \) and quark masses

Stefan Lanz

Department of Astronomy and Theoretical Physics, Lund University

International Workshop on Chiral Dynamics,

August 6 – 10, 2012, Jefferson Lab
Outline

1. Introduction
2. Dalitz plot measurements
3. Theoretical work
4. Our dispersive analysis
5. Comparison of results
Introduction

1. Introduction

2. Dalitz plot measurements

3. Theoretical work

4. Our dispersive analysis

5. Comparison of results
Light quark masses

- not directly accessible to experiment due to confinement
- $m_{u,d,s} \ll \text{scale of QCD} \Rightarrow \text{small contribution to hadronic quantities}$
Light quark masses

- not directly accessible to experiment due to confinement
- $m_{u,d,s} \ll \text{scale of QCD} \Rightarrow$ small contribution to hadronic quantities
- Gell-Mann–Oakes–Renner relations:
 - $(\text{meson mass})^2 = (\text{spontaneous } \chi_{SB}) \times (\text{explicit } \chi_{SB})$
Light quark masses

- not directly accessible to experiment due to confinement
- $m_{u,d,s} \ll \text{scale of QCD} \Rightarrow$ small contribution to hadronic quantities
- Gell-Mann–Oakes–Renner relations:
 - $(\text{meson mass})^2 = (\text{spontaneous } \chi_{SB}) \times (\text{explicit } \chi_{SB})$
 - quark condensate $\langle \bar{q}q \rangle$ [Gell-Mann, Oakes & Renner ’68]
Light quark masses

- not directly accessible to experiment due to confinement
- \(m_{u,d,s} \ll \text{scale of QCD} \Rightarrow \text{small contribution to hadronic quantities} \)
- Gell-Mann–Oakes–Renner relations:
 - \((\text{meson mass})^2 = (\text{spontaneous } \chi_{\mathrm{SB}}) \times (\text{explicit } \chi_{\mathrm{SB}}) \)
 - quark condensate \(\langle \bar{q}q \rangle \)
 - quark masses \(m_q \)
Gell-Mann–Oakes–Renner relations

\(m^2_{\pi^+} = B_0 (m_u + m_d) \)
\(m^2_{\pi^0} = B_0 (m_u + m_d) \)
\(m^2_{K^+} = B_0 (m_u + m_s) \)
\(m^2_{K^0} = B_0 (m_d + m_s) \)
\(m^2_{\eta} = B_0 \frac{m_u + m_d + 4m_s}{3} \)
Gell-Mann–Oakes–Renner relations

- $m_{\pi^+}^2 = B_0 (m_u + m_d)$
- $m_{\pi^0}^2 = B_0 (m_u + m_d) + \frac{2\epsilon}{\sqrt{3}} B_0 (m_u - m_d) + \ldots$
- $m_{K^+}^2 = B_0 (m_u + m_s)
- $m_{K^0}^2 = B_0 (m_d + m_s)$
- $m_{\eta}^2 = B_0 \frac{m_u + m_d + 4m_s}{3} - \frac{2\epsilon}{\sqrt{3}} B_0 (m_u - m_d) + \ldots$
Gell-Mann–Oakes–Renner relations

\[m_{\pi^+}^2 = B_0 (m_u + m_d) + \Delta_{em}^{\pi} + \ldots \]

\[m_{\pi^0}^2 = B_0 (m_u + m_d) + \frac{2\varepsilon}{\sqrt{3}} B_0 (m_u - m_d) + \ldots \]

\[m_{K^+}^2 = B_0 (m_u + m_s) + \Delta_{em}^K + \ldots \quad \Delta_{em}^{\pi/K} \sim (35 \text{ MeV})^2 \]

\[m_{K^0}^2 = B_0 (m_d + m_s) \quad \Delta_{em}^{\pi} = \Delta_{em}^K \quad \text{[Dashen '69]} \]

\[m_{\eta}^2 = B_0 \frac{m_u + m_d + 4m_s}{3} - \frac{2\varepsilon}{\sqrt{3}} B_0 (m_u - m_d) + \ldots \]
Gell-Mann–Oakes–Renner relations

- $m_{\pi^+}^2 = B_0(m_u + m_d) + \Delta_{\pi em} + \ldots$
- $m_{\pi^0}^2 = B_0(m_u + m_d) + \frac{2\epsilon}{\sqrt{3}}B_0(m_u - m_d) + \ldots$
- $m_{K^+}^2 = B_0(m_u + m_s) + \Delta_{K em} + \ldots$
- $m_{K^0}^2 = B_0(m_d + m_s)$
- $m_\eta^2 = B_0 \frac{m_u + m_d + 4m_s}{3} - \frac{2\epsilon}{\sqrt{3}}B_0(m_u - m_d) + \ldots$
- $\Rightarrow (m_u - m_d)$ well hidden
Quark masses from the lattice

- More on this from others
- Relations between meson masses and quark masses from QCD
- $m_u - m_d$ needs handle on e.m. effects
 - Input from phenomenology (e.g., Kaon mass difference)
 - Put photons on the lattice
- Recent review from FLAG
What has $\eta \rightarrow 3\pi$ to do with quark masses?

- $\eta \rightarrow 3\pi$ depends on m_q in special way:
 - violates isospin
 - generated by $\mathcal{L}_{IB} = -\frac{m_u - m_d}{2} (\bar{u}u - \bar{d}d)$
 - $\Delta I = 1$ operator
What has $\eta \to 3\pi$ to do with quark masses?

- $\eta \to 3\pi$ depends on m_q in special way:
 - violates isospin
 - generated by $\mathcal{L}_{IB} = -\frac{m_u - m_d}{2}(\bar{u}u - \bar{d}d)$
 - $\Delta I = 1$ operator

- \Rightarrow decay amplitude proportional to $(m_u - m_d)$

- \Rightarrow measure for strength of isospin breaking in QCD
Electromagnetic corrections

- $Q_u \neq Q_d \Rightarrow$ e.m. interactions break isospin
- \Rightarrow can contribute to $\eta \to 3\pi$
Electromagnetic corrections

- $Q_u \neq Q_d \Rightarrow$ e.m. interactions break isospin

- \Rightarrow can contribute to $\eta \rightarrow 3\pi$

- but: contribution very small

- one-loop contributions known and small

- recent claim that $\eta \rightarrow 3\pi^0$ is mainly e.m. based on incomplete 2-loop calculation

[Sutherland '66, Bell & Sutherland '68]

[Baur, Kambor, Wyler '96, Ditsche, Kubis, Meißen '09]

[Nehme, Zein '11]
Electromagnetic corrections

- $Q_u \neq Q_d \Rightarrow$ e.m. interactions break isospin
- \Rightarrow can contribute to $\eta \rightarrow 3\pi$
- but: contribution very small
- one-loop contributions known and small
- recent claim that $\eta \rightarrow 3\pi^0$ is mainly e.m. based on incomplete 2-loop calculation
- \Rightarrow clean access to $(m_u - m_d)$

[Sutherland '66, Bell & Sutherland '68]

[Baur, Kambor, Wyler '96, Ditsche, Kubis, Meißner '09]

[Nehme, Zein '11]
The quark mass ratio Q

- $A_{\eta \rightarrow 3\pi} \propto B_0(m_u - m_d)$
The quark mass ratio Q

$$A_{\eta \to 3\pi} \propto B_0 (m_u - m_d) = \left\{ \begin{array}{l} \frac{1}{Q^2} \frac{m_K^2 (m_K^2 - m_{\pi}^2)}{m_{\pi}^2} + O(M^3) \\ Q^2 = \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2} \end{array} \right.$$
The quark mass ratio Q

\[A_{\eta \to 3\pi} \propto B_0 (m_u - m_d) = \left\{ \begin{array}{l}
\frac{1}{Q^2} \frac{m_K^2 (m_K^2 - m_\pi^2)}{m_\pi^2} + O(\mathcal{M}^3) \\
-\frac{1}{R} (m_K^2 - m_\pi^2) + O(\mathcal{M}^2) \end{array} \right. \]

- $Q^2 = \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}$
- $R = \frac{m_s - \hat{m}}{m_d - m_u}$
The quark mass ratio Q

$A_{\eta \to 3\pi} \propto B_0(m_u - m_d) = \left\{ \begin{aligned} \frac{1}{Q^2} \frac{m_K^2(m_K^2 - m_{\pi}^2)}{m_{\pi}^2} + O(M^3) \\ -rac{1}{R}(m_K^2 - m_{\pi}^2) + O(M^2) \end{aligned} \right.$

$Q^2 = \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}$

$R = \frac{m_s - \hat{m}}{m_d - m_u}$

define normalised amplitude: $A(s, t, u) = -\frac{1}{Q^2} \frac{m_K^2(m_K^2 - m_{\pi}^2)}{2\sqrt{3}m_{\pi}^2 F_{\pi}^2} M(s, t, u)$

$\Gamma_{\text{exp}} \propto \int |A(s, t, u)| \propto 1/Q^4$
What else is interesting?

- slow convergence of chiral series:

\[
\Gamma_c = 66 \text{ eV} + 94 \text{ eV} + \ldots = 296 \text{ eV}
\]

- current algebra [Cronin ‘67, Osborn & Wallace ‘70]
- one-loop χPT [Gasser & Leutwyler ‘84]

experiment [PDG ‘12]
What else is interesting?

- **slow convergence** of chiral series:

\[\Gamma_c = 66 \text{ eV} + 94 \text{ eV} + \ldots = 296 \text{ eV} \]

- **current algebra**
 - [Cronin ’67, Osborn & Wallace ’70]

- **one-loop \(\chi \)PT**
 - [Gasser & Leutwyler ’84]

- enhanced by **large final state rescattering effects**
 - [Roiesnel & Truong ’81]
What else is interesting?

- possible tension among charged and neutral channel experiments
What else is interesting?

- possible tension among charged and neutral channel experiments
- charged and neutral channel amplitudes are related:
 \[A_n(s, t, u) = A_c(s, t, u) + A_c(t, u, s) + A_c(u, s, t) \]
- ⇒ allows for consistency check among measurements
- more on this later...
What else is interesting?

\[|A_n(s, t, u)|^2 \propto 1 + 2\alpha Z \]

- Crystal Barrel@LEAR (1998) [Abele et al. '98]
- Crystal Ball@BNL (2001) [Tippens et al. '01]
- SND (2001) [Achasov et al. '01]
- WASA@CELSIUS (2007) [Bashkanov et al. '07]
- WASA@COSY (2008) [Adolph et al. '09]
- Crystal Ball@MAMI-B (2009) [Unverzagt et al. '09]
- Crystal Ball@MAMI-C (2009) [Prakhov et al. '09]
- KLOE (2010) [Ambrosino et al. '10]
- PDG average [PDG '12]

\[\eta \rightarrow 3\pi \text{ and quark masses} \]
What else is interesting?

\begin{itemize}
 \item $\chi PT \mathcal{O}(\rho^4)$ [GL '85, Bijnens&Gasser '02]
 \item $\chi PT \mathcal{O}(\rho^6)$ [Bijnens&Ghorbani '07]
 \item Kambor et al. [Kambor et al. '96]
 \item Kampf et al. [Kampf et al. '11]
 \item NREFT [Schneider et al. '11]
 \item GAMS-2000 (1984) [Alde et al. '84]
 \item Crystal Barrel@LEAR (1998) [Abele et al. '98]
 \item Crystal Ball@BNL (2001) [Tippens et al. '01]
 \item SND (2001) [Achasov et al. '01]
 \item WASA@CELSIUS (2007) [Bashkanov et al. '07]
 \item WASA@COSY (2008) [Adolph et al. '09]
 \item Crystal Ball@MAMI-B (2009) [Unverzagt et al. '09]
 \item Crystal Ball@MAMI-C (2009) [Prakhov et al. '09]
 \item KLOE (2010) [Ambrosino et al. '10]
 \item PDG average [PDG '12]
\end{itemize}

\begin{align*}
 \eta \rightarrow 3\pi \text{ and quark masses}
\end{align*}
Kinematics

- $s = (p_{\pi^+} + p_{\pi^-})^2$
- $t = (p_{\pi^0} + p_{\pi^-})^2$
- $u = (p_{\pi^0} + p_{\pi^+})^2$
- $s + t + u = m_{\eta}^2 + 2m_{\pi^+}^2 + m_{\pi^0}^2 \equiv 3s_0$

\Rightarrow only two independent variables
Kinematics

\[s = (p_{\pi^+} + p_{\pi^-})^2 \]

\[t = (p_{\pi^0} + p_{\pi^-})^2 \]

\[u = (p_{\pi^0} + p_{\pi^+})^2 \]

\[s + t + u = m_\eta^2 + 2m_{\pi^+}^2 + m_{\pi^0}^2 \equiv 3s_0 \]

⇒ only two independent variables ,
e.g., \(s \) & \(t - u \propto \cos \theta_s \)
Adler Zero

- soft pion theorem, i.e., valid in $SU(2)$ chiral limit
- decay amplitude has a zero if
 - $p_{\pi^+} \to 0 \iff s = u = 0, \ t = m_\eta^2$
 - $p_{\pi^-} \to 0 \iff s = t = 0, \ u = m_\eta^2$

[Adler ’65]
Adler Zero

- soft pion theorem, i.e., valid in $SU(2)$ chiral limit

- decay amplitude has a zero if
 - $p_{\pi^+} \to 0 \iff s = u = 0, \ t = m_\eta^2$
 - $p_{\pi^-} \to 0 \iff s = t = 0, \ u = m_\eta^2$

- for $m_\pi \neq 0$ Adler zeros at
 - $s = u = \frac{4}{3} m_\pi^2, \ t = m_\eta^2 + m_\pi^2 / 3$
 - $s = t = \frac{4}{3} m_\pi^2, \ u = m_\eta^2 + m_\pi^2 / 3$

- protected by $SU(2)$ chiral symmetry \Rightarrow no $O(m_s)$ corrections
Outline

1. Introduction
2. Dalitz plot measurements
3. Theoretical work
4. Our dispersive analysis
5. Comparison of results
Dalitz plot variables

\[X = \frac{\sqrt{3}}{2m_\eta Q_c} (u - t) \]

\[Y = \frac{3}{2m_\eta Q_c} \left((m_\eta - m_{\pi^0})^2 - s \right) - 1 \]

\[Q_c = m_\eta - 2m_{\pi^+} - m_{\pi^0} \]

\[Z = X^2 + Y^2 \]
KLOE measurement of the charged channel

- only modern high-statistics Dalitz plot measurement

\[\sim 1.3 \times 10^6 \, \eta \rightarrow \pi^+ \pi^- \pi^0 \, \text{events from} \, e^+ e^- \rightarrow \phi \rightarrow \eta \gamma \]

[Figure from Ambrosino et al. '08]

Stefan Lanz (Lund University)
KLOE result for Dalitz plot parameters

- Dalitz plot parametrisation:

\[|\mathcal{A}_c(s, t, u)|^2 \propto 1 + aY + bY^2 + cX + dX^2 + eXY + fY^3 + gX^3 + hX^2Y + lXY^2 \]
KLOE result for Dalitz plot parameters

- Dalitz plot parametrisation:

\[|A_c(s, t, u)|^2 \propto 1 + aY + bY^2 + cX + dX^2 + eXY + fY^3 + gX^3 + hX^2Y + lXY^2 \]

- Charge conjugation \(\Rightarrow \) symmetry under \(X \leftrightarrow -X \)
KLOE result for Dalitz plot parameters

- Dalitz plot parametrisation:

\[|A_c(s, t, u)|^2 \propto 1 + aY + bY^2 + cX + dX^2 + eXY + fY^3 + gX^3 + hX^2Y + lXY^2 \]

- charge conjugation \(\Rightarrow \) symmetry under \(X \leftrightarrow -X \)

- \(h \) consistent with zero
KLOE result for Dalitz plot parameters

- Dalitz plot parametrisation:

\[
|A_c(s, t, u)|^2 \propto 1 + aY + bY^2 + cX + dX^2 + eXY + fY^3 + gX^3 + hX^2Y + lXY^2
\]

- charge conjugation \(\Rightarrow \) symmetry under \(X \leftrightarrow -X \)

- \(h \) consistent with zero

- result:

\[
\begin{align*}
 a &= -1.090^{+0.009}_{-0.020} \\
 b &= 0.124 \pm 0.012 \\
 d &= 0.057^{+0.009}_{-0.017} \\
 f &= 0.14 \pm 0.02
\end{align*}
\]
KLOE result for Dalitz plot parameters

- Dalitz plot parametrisation:

 \[|A_c(s, t, u)|^2 \propto 1 + aY + bY^2 + cX + dX^2 + eXY + fY^3 + gX^3 + hX^2Y + lXY^2 \]

- charge conjugation \(\Rightarrow \) symmetry under \(X \leftrightarrow -X \)

- \(h \) consistent with zero

- result:

 \[
 \begin{align*}
 a &= -1.090^{+0.009}_{-0.020} \\
 b &= 0.124 \pm 0.012 \\
 d &= 0.057^{+0.009}_{-0.017} \\
 f &= 0.14 \pm 0.02
 \end{align*}
\]
KLOE result for Dalitz plot parameters

Dalitz plot parametrisation:

\[
|A_c(s, t, u)|^2 \propto 1 + aY + bY^2 + cX + dX^2 + eXY + fY^3 + gX^3 + hX^2Y + lXY^2
\]

charge conjugation symmetry under

\[X \leftrightarrow -X\]

\[h\] consistent with zero

older experiments:

- AGS@BNL
- Princeton-Pennsylvania Accelerator
- Crystal Barrel@LEAR

upcoming analyses:

- WASA@COSY
- KLOE
MAMI-C measurement of the neutral channel

- \(\sim 3 \times 10^6 \eta \rightarrow 3\pi^0 \) events from \(\gamma p \rightarrow \eta p \)
- smallest uncertainties on \(\alpha \)
- similar but independent measurement from MAMI-B

\[
|A_n(s, \ell, u)|^2 \propto 1 + 2\alpha Z + 6\beta Y \left(X^2 - \frac{Y^2}{3} \right) + 2\gamma Z^2
\]

[figure from Prakhov et al. ’09]
MAMI-C measurement of the neutral channel

- $\sim 3 \times 10^6 \eta \rightarrow 3\pi^0$ events from $\gamma p \rightarrow \eta p$
- Smallest uncertainties on α
- Similar but independent measurement from MAMI-B

$|A_n(s, t, u)|^2 \propto 1 + 2\alpha Z + 6\beta Y \left(X^2 - \frac{Y^2}{3} \right) + 2\gamma Z^2$
1. Introduction
2. Dalitz plot measurements
3. Theoretical work
4. Our dispersive analysis
5. Comparison of results
What has been done?

<table>
<thead>
<tr>
<th></th>
<th>Q</th>
<th>α</th>
<th>tension</th>
</tr>
</thead>
<tbody>
<tr>
<td>e.m. contributions in χPT</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>two-loop χPT</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>non-relativistic EFT</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>analytical dispersive</td>
<td>✓</td>
<td>✓</td>
<td>(✓)</td>
</tr>
<tr>
<td>resummed χPT</td>
<td>✗</td>
<td>(✓)</td>
<td>(✓)</td>
</tr>
<tr>
<td>numerical dispersive</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Theoretical work

NREFT analysis

<table>
<thead>
<tr>
<th>Q</th>
<th>α</th>
<th>tension</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓ ✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

non-relativistic EFT

- expansion in small π three momenta in η rest frame
- explicitly includes two pion rescattering processes
- inputs:
 - $O(p^4) \eta \rightarrow 3\pi$ amplitude from χPT
 - empirical $\pi\pi$ scattering phases
- results only for shape, but not normalisation

[Schneider, Kubis & Ditsche '11]
NREFT analysis

<table>
<thead>
<tr>
<th>Q</th>
<th>α</th>
<th>tension</th>
</tr>
</thead>
<tbody>
<tr>
<td>×</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

- **$\alpha = -0.025 \pm 0.005 \Rightarrow$** correct sign, marginal agreement with experiment
- **tension between charged and neutral channel experiments:**

\[\alpha \leq \frac{1}{4} (b + d - \frac{1}{4} a^2) \]

[Schneider, Kubis & Ditsche '11]

[Bijnens & Ghorbani '07]
NREFT analysis

<table>
<thead>
<tr>
<th>Q</th>
<th>α</th>
<th>tension</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-relativistic EFT</td>
<td>✗</td>
<td>✓</td>
</tr>
</tbody>
</table>

Theoretical work

- $\alpha = -0.025 \pm 0.005 \Rightarrow$ correct sign, marginal agreement with experiment
- tension between charged and neutral channel experiments:
 \[
 \alpha = \frac{1}{4}(b + d - \frac{1}{4}a^2) + \Delta
 \]
- Δ can be calculated in NREFT (no $\eta \rightarrow 3\pi$ input from χPT needed!)

[Schneider, Kubis & Ditsche ’11]
NREFT analysis

<table>
<thead>
<tr>
<th>Q</th>
<th>α</th>
<th>tension</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-relativistic EFT</td>
<td>×</td>
<td>✓</td>
</tr>
</tbody>
</table>

- $\alpha = -0.025 \pm 0.005 \Rightarrow$ correct sign, marginal agreement with experiment
- tension between charged and neutral channel experiments:
 $$\alpha = \frac{1}{4}(b + d - \frac{1}{4}a^2)$$
- Δ can be calculated in NREFT (no $\eta \to 3\pi$ input from χPT needed!)
- from KLOE Dalitz plot parameters: $\alpha = -0.059 \pm 0.007$
- main reason for disagreement: $b_{NREFT} = 0.308 > b_{KLOE} = 0.124$
Dispersive analysis by Kampf et al.

<table>
<thead>
<tr>
<th>Q</th>
<th>α</th>
<th>tension</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
<td>(✓)</td>
</tr>
</tbody>
</table>

analytical dispersive analysis relying on two-loop χPT and KLOE data

- 6 subtraction constants
- two rescattering processes \Rightarrow reproduces two-loop result
Dispersive analysis by Kampf et al.

<table>
<thead>
<tr>
<th>Q</th>
<th>α</th>
<th>tension</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
<td>(✓)</td>
</tr>
</tbody>
</table>

analytical dispersive analysis relying on two-loop χPT and KLOE data

- 6 subtraction constants
- two rescattering processes \Rightarrow reproduces two-loop result
- main result: subtraction constants from fit to KLOE data

 (normalisation fixed by imaginary part of two-loop result along $t = u$)
Dispersive analysis by Kampf et al.

<table>
<thead>
<tr>
<th>Q</th>
<th>α</th>
<th>tension</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
<td>(✓) [Kampf, Knecht, Novotný & Zdráhal '11]</td>
</tr>
</tbody>
</table>

- Adler zero strongly violated ⇒ incompatible
- with SU(2) chiral symmetry

\[Q^2 \alpha \]

\[M(s, 3s_0 - 2s, s) \]

\[s = u \text{ in } m_\pi^2 \]

\[\text{one-loop } \chi \text{PT} \quad \text{KKNZ dispersive} \]
Outline

1. Introduction
2. Dalitz plot measurements
3. Theoretical work
4. Our dispersive analysis
5. Comparison of results
Method

<table>
<thead>
<tr>
<th>Q</th>
<th>α</th>
<th>tension</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

- numerical dispersive

- includes arbitrary number of rescattering processes

[Colangelo, SL, Leutwyler, Pasemar (tbp)]
Method

<table>
<thead>
<tr>
<th>Q</th>
<th>α</th>
<th>tension</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

- numerical dispersive

- includes arbitrary number of rescattering processes

- two main steps:
 - derive & solve dispersion relations
 - fix subtraction constants

[Colangelo, SL, Leutwyler, Passemar (tbp)]

[Anisovich & Leutwyler '96]
Our dispersive analysis relies on decomposition

\[M(s, t, u) = M_0(s) + (s - u)M_1(t) + (s - t)M_1(u) + M_2(t) + M_2(u) - \frac{2}{3}M_2(s) \]

[Fuchs, Sazdijan & Stern '93, Anisovich & Leutwyler '96]
Dispersion relations

- relies on decomposition

\[\mathcal{M}(s, t, u) = M_0(s) + (s - u)M_1(t) + (s - t)M_1(u) + M_2(t) + M_2(u) - \frac{2}{3}M_2(s) \]

- dispersion relation for each \(M_i(s) \):

\[M_i(s) = \Omega_i(s) \left\{ P_i(s) + \frac{s^{n_i}}{\pi} \int_{4m^2_\pi}^{\infty} \frac{ds'}{s'^{n_i}} \frac{\sin \delta_i(s') \hat{M}_i(s')}{\Omega_i(s') |(s' - s - i\epsilon)|} \right\} \]

- Omnès function: \(\Omega_i(s) = \exp \left\{ \frac{s}{\pi} \int_{4m^2_\pi}^{\infty} ds' \frac{\delta_i(s')}{s'(s' - s - i\epsilon)} \right\} \)
Our dispersive analysis

Dispersion relations

- relies on decomposition

\[M(s, t, u) = M_0(s) + (s - u)M_1(t) + (s - t)M_1(u) + M_2(t) + M_2(u) - \frac{2}{3}M_2(s) \]

- dispersion relation for each \(M_I(s) \):

\[M_I(s) = \Omega_I(s) \left\{ P_I(s) + \frac{s^{n_I}}{\pi} \int_{4m^2_\pi}^{\infty} \frac{ds'}{s'^{n_I}} \frac{\sin \delta_I(s') \hat{M}_I(s')}{\Omega_I(s') |(s' - s - i\epsilon)|} \right\} \]

- Omnès function: \(\Omega_I(s) = \exp \left\{ \frac{s}{\pi} \int_{4m^2_\pi}^{\infty} ds' \frac{\delta_I(s')}{s'(s' - s - i\epsilon)} \right\} \)

- input needed for
 - \(\pi \pi \) phase shifts
 - subtraction constants

[Fuchs, Sazdijan & Stern '93, Anisovich & Leutwyler '96]

[Anisovich & Leutwyler '96]

[Ananthanarayan, Colangelo, Gasser & Leutwyler '01]

[Omnès '58]
Our dispersive analysis

Dispersion relations

- relies on decomposition
 \[\mathcal{M}(s, t, u) = M_0(s) + (s - u)M_1(t) + (s - t)M_1(u) + M_2(t) + M_2(u) - \frac{2}{3}M_2(s) \]

- dispersion relation for each \(M_i(s) \):
 \[M_i(s) = \Omega_i(s) \left\{ P_i(s) + \frac{s^{n_i}}{\pi} \int_{4\pi^2}^{\infty} \frac{ds'}{s'^{n_i}} \frac{\sin \delta_i(s') \hat{M}_i(s')}{\Omega_i(s')(s' - s - i\epsilon)} \right\} \]

- Omnès function: \(\Omega_i(s) = \exp \left\{ \frac{s}{\pi} \int_{4\pi^2}^{\infty} ds' \frac{\delta_i(s')}{s'(s' - s - i\epsilon)} \right\} \)

- input needed for
 - \(\pi\pi \) phase shifts
 - subtraction constants

[Fuchs, Sazdijan & Stern ’93, Anisovich & Leutwyler ’96]
[Anisovich & Leutwyler ’96]
[Omnès ’58]
[Ananthanarayan, Colangelo, Gasser & Leutwyler ’01]
Taylor coefficients

- \(M_l(s) = a_l + b_l s + c_l s^2 + d_l s^3 + \ldots \)

- Taylor coefficients \(\Leftrightarrow \) subtraction constants
Taylor coefficients

- \[M_l(s) = a_l + b_l s + c_l s^2 + d_l s^3 + \ldots \]

- Taylor coefficients \(\leftrightarrow\) subtraction constants

- \(a_l, b_l, \ldots \in \mathbb{R}\), but \(\alpha_l, \beta_l, \ldots \in \mathbb{C}\)

- Imaginary parts of subtraction constants suppressed

- Splitting into \(M_l(s)\) not unique because of \(s + t + u = m_\eta^2 + 2m_{\pi^+}^2 + m_{\pi^0}^2\)

\[\rightarrow \text{gauge freedom} \] to fix some Taylor coefficients arbitrarily
Matching to one-loop χPT

- Subtraction constants from theory alone:
 - $M_0(s) = a_0 + b_0 s + c_0 s^2 + d_0 s^3 + \ldots$
 - $M_1(s) = a_1 + b_1 s + c_1 s^2 + \ldots$
 - $M_2(s) = a_2 + b_2 s + c_2 s^2 + d_2 s^3 + \ldots$

- use only TC up to s^2
Matching to one-loop χPT

- Subtraction constants from theory alone:
 - $M_0(s) = a_0 + b_0 s + c_0 s^2 + d_0 s^3 + \ldots$
 - $M_1(s) = a_1 + b_1 s + c_1 s^2 + \ldots$
 - $M_2(s) = a_2 + b_2 s + c_2 s^2 + d_2 s^3 + \ldots$

- use only TC up to s^2
- gauge 4 TC to tree level value
Matching to one-loop χPT

- Subtraction constants from theory alone:
 - $M_0(s) = a_0 + b_0 s + c_0 s^2 + d_0 s^3 + \ldots$
 - $M_1(s) = a_1 + b_1 s + c_1 s^2 + \ldots$
 - $M_2(s) = a_2 + b_2 s + c_2 s^2 + d_2 s^3 + \ldots$

- Use only TC up to s^2

- Gauge 4 TC to tree level value

- Set 4 TC to one-loop value
Matching to one-loop χPT

- Subtraction constants from theory alone:
 - $M_0(s) = a_0 + b_0 s + c_0 s^2 + d_0 s^3 + \ldots$
 - $M_1(s) = a_1 + b_1 s + c_1 s^2 + \ldots$
 - $M_2(s) = a_2 + b_2 s + c_2 s^2 + d_2 s^3 + \ldots$

- use only TC up to s^2

- gauge 4 TC to tree level value

- set 4 TC to one-loop value

⇒ dispersive, one loop
Matching to one-loop χPT

- Subtraction constants from theory alone:
 - $M_0(s) = a_0 + b_0 s + c_0 s^2 + d_0 s^3 + \ldots$
 - $M_1(s) = a_1 + b_1 s + c_1 s^2 + \ldots$
 - $M_2(s) = a_2 + b_2 s + c_2 s^2 + d_2 s^3 + \ldots$

- Use χPT at low energy
- Gauge \rightarrow tree level value
- Set χPT to one-loop value

\Rightarrow dispersive, one loop
Fit to data

- use data to further constrain subtraction constants:

 - $M_0(s) = a_0 + b_0 s + c_0 s^2 + d_0 s^3 + \ldots$

 - $M_1(s) = a_1 + b_1 s + c_1 s^2 + \ldots$

 - $M_2(s) = a_2 + b_2 s + c_2 s^2 + d_2 s^3 + \ldots$

- gauge 4 TC to tree level value

- set 4 TC to one-loop value
Fit to data

- Use data to further constrain subtraction constants:
 - $M_0(s) = a_0 + b_0 s + c_0 s^2 + d_0 s^3 + \ldots$
 - $M_1(s) = a_1 + b_1 s + c_1 s^2 + \ldots$
 - $M_2(s) = a_2 + b_2 s + c_2 s^2 + d_2 s^3 + \ldots$

- Gauge 4 TC to tree level value
- Set 4 TC to one-loop value
- Fix 2 TC from fit to data
Fit to data

- use data to further constrain subtraction constants:
 - \(M_0(s) = a_0 + b_0 s + c_0 s^2 + d_0 s^3 + \ldots \)
 - \(M_1(s) = a_1 + b_1 s + c_1 s^2 + \ldots \)
 - \(M_2(s) = a_2 + b_2 s + c_2 s^2 + d_2 s^3 + \ldots \)

- gauge 4 TC to tree level value
- set 4 TC to one-loop value
- fix 2 TC from fit to data
- gauge 1 TC such that \(\delta_2 = 0 \)
Fit to data

- use data to further constrain subtraction constants:
 - $M_0(s) = a_0 + b_0 s + c_0 s^2 + d_0 s^3 + \ldots$
 - $M_1(s) = a_1 + b_1 s + c_1 s^2 + \ldots$
 - $M_2(s) = a_2 + b_2 s + c_2 s^2 + d_2 s^3 + \ldots$

- gauge 4 TC to tree level value
- set 4 TC to one-loop value
- fix 2 TC from fit to data
- gauge 1 TC such that $\delta_2 = 0$
- \Rightarrow dispersive, fit to KLOE
Our dispersive analysis

Results

Dalitz distribution for $\eta \rightarrow \pi^+ \pi^- \pi^0$

![Graph showing the Dalitz distribution for $\eta \rightarrow \pi^+ \pi^- \pi^0$. The graph compares the one-loop chiral perturbation theory (χPT) prediction with the KLOE preliminary data. The red line represents the one-loop χPT, and the black line represents the KLOE data. The y-axis represents $\Gamma(0, Y)$, and the x-axis represents Y. The graph shows the deviation of the χPT prediction from the KLOE data.]
Dalitz distribution for $\eta \rightarrow \pi^+ \pi^- \pi^0$

- one-loop χPT
- KLOE
- dispersive, one loop

$p_{0, Y}$

Stefan Lanz (Lund University)
Dalitz distribution for $\eta \rightarrow \pi^+ \pi^- \pi^0$
Dalitz distribution for $\eta \rightarrow 3\pi^0$

\[\Gamma(Z) \]

- Preliminary
- One-loop χPT
- MAMI-C

Stefan Lanz (Lund University)
Dalitz distribution for $\eta \rightarrow 3\pi^0$
Dalitz distribution for $\eta \to 3\pi^0$
Our dispersive analysis

Results

But: electromagnetic corrections

- dispersive amplitude in isospin limit ⇒ needs to be accounted for in fits:
 - Dalitz plot distribution: kinematic effects most important (position of cusps)
 - decay rate: kinematic effects not enough (size of phase space)
But: electromagnetic corrections

- dispersive amplitude in isospin limit ⇒ needs to be accounted for in fits:
 - Dalitz plot distribution: kinematic effects most important (position of cusps)
 - decay rate: kinematic effects not enough (size of phase space)

- small effect on Q, but branching ratio is off

- roughly estimate e.m. effects on Γ
 ⇒ e.m. corrections can amend BR

[Gullström et al. '09, Ditsche et al. '09]
But: electromagnetic corrections

- dispersive amplitude in isospin limit \Rightarrow needs to be accounted for in fits:
 - Dalitz plot distribution: kinematic effects most important (position of cusps)
 - decay rate: kinematic effects not enough (size of phase space)

- small effect on Q, but branching ratio is off

- roughly estimate e.m. effects on Γ
 \Rightarrow e.m. corrections can amend BR

[Gullström et al. '09, Ditsche et al. '09]

- needs to be improved
Outline

1. Introduction
2. Dalitz plot measurements
3. Theoretical work
4. Our dispersive analysis
5. Comparison of results
Comparison of results

Comparison of Q

- Dispersive (Walker) [Anisovich & Leutwyler '96, Walker '98]
- Dispersive (Kambor et al.) [Kambor et al. '96]
- Dispersive (Kampf et al.) [Kampf et al. '11]

- $\chi_{\text{PT}} \mathcal{O}(p^4)$ [Gasser & Leutwyler '85, Bijnens & Ghorbani '07]
- $\chi_{\text{PT}} \mathcal{O}(p^6)$ [Bijnens & Ghorbani '07]

- No Dashen violation [Weinberg '77]
- With Dashen violation [Anant et al. '04, Kastner & Neufeld '08]

Q values:
- 20
- 21
- 22
- 23
- 24
Comparison of Q

<table>
<thead>
<tr>
<th>Year</th>
<th>Methodology</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>dispersive (Walker)</td>
<td>Anisovich & Leutwyler '96, Walker '98</td>
</tr>
<tr>
<td>21</td>
<td>dispersive (Kambor et al.)</td>
<td>Kambor et al. '96</td>
</tr>
<tr>
<td>22</td>
<td>dispersive (Kampf et al.)</td>
<td>Kampf et al. '11</td>
</tr>
<tr>
<td>23</td>
<td>$\chi_{PT} \mathcal{O}(p^4)$</td>
<td>Gasser & Leutwyler '85, Bijnens & Ghorbani '07</td>
</tr>
<tr>
<td>24</td>
<td>$\chi_{PT} \mathcal{O}(p^6)$</td>
<td>Bijnens & Ghorbani '07</td>
</tr>
</tbody>
</table>

- **No Dashen violation** [Weinberg '77]
- **With Dashen violation** [Anant et al. '04, Kastner & Neufeld '08]

Dispersive, one loop

Dispersive, fit to KLOE

Preliminary
Comparison of results

\[\alpha \]

\[\chi \text{PT } \mathcal{O}(\rho^4) \text{ [GL '85, Bijnens&Gasser '02]} \]
\[\chi \text{PT } \mathcal{O}(\rho^6) \text{ [Bijnens&Ghorbani '07]} \]
Kambor et al. [Kambor et al. '96]
Kampf et al. [Kampf et al. '11]
NREFT [Schneider et al. '11]

GAMS-2000 (1984) [Alde et al. '84]
Crystal Barrel@LEAR (1998) [Abele et al. '98]
Crystal Ball@BNL (2001) [Tippens et al. '01]
SND (2001) [Achasov et al. '01]
WASA@CELSIUS (2007) [Bashkanov et al. '07]
WASA@COSY (2008) [Adolph et al. '09]
Crystal Ball@MAMI-B (2009) [Unverzagt et al. '09]
Crystal Ball@MAMI-C (2009) [Prakhov et al. '09]
KLOE (2010) [Ambrosino et al. '10]
PDG average [PDG '10]
Comparison of α
Conclusion & Outlook

- $\eta \rightarrow 3\pi$ very well suited to gain information on isospin breaking in QCD
- Dispersion relations allow to treat rescattering effects properly
- Dispersive treatment significantly improves one-loop result
- Neutral channel slope parameter can be understood based on charged channel data
- No clear sign of a tension among experiments
- More careful treatment of electromagnetic effects needed