Differential Study of Nuclear Effects in Hadronization by DIS

K. Wang

University of Virginia

ECT* Workshop, Trento

(Parton propagation through strongly interacting matter)

(September, 2005)
Overview:
Study hadronization in \(A(e, e'[\pi, K])X \), on \(^2\text{H}, ^{12}\text{C}, ^{64}\text{Cu}, \) and \(^{184}\text{W}, \) by the attenuation of hadron yield

\[
R(\nu, z, P_T, Q^2) = \frac{dN^h(A)}{N_e(A)dz} \frac{dN^h(D)}{N_e(D)dz}
\]

* Main objective-
 Provide precise data for understanding hadronization mechanism, study propagation of quarks and hadrons \textit{under specific kinematic conditions}.
 → \text{small acceptance detectors};
 → \text{essential to QCD}.

* Additional objective-
 Input to RHIC data interpretation, jet quenching
 → Is QGP recreated at RHIC?
Hadronization by DIS

\[e' \gamma^v e \rightarrow \text{nucleon} \rightarrow \pi \]

- Quark propagation
- Hard scattering
- Hadronisation
Multi-variable process

dependence on:
A
$Q^2, \nu, (x)$
z, P_T

$z = \frac{E_h}{\nu}$
Multi-mechanism and multi-effect process

Induced gluon radiation
LPM--Landau-Pomeranchuk-Migdal effect
Pt broadening (Cronin effect)

C

Cu

W

target nucleon

spectators

hadron
Space-time evolution of hot matter

\[P_T (\text{RHIC}) \leftrightarrow v (\text{DIS}) \]
High P_T suppression in Au-Au collision, in comparison with dA data. Bathe (PHENIX).
Previous data:

<table>
<thead>
<tr>
<th>data</th>
<th>beam</th>
<th>E_0 (GeV)</th>
<th>ν (GeV)</th>
<th>Q^2 (GeV/c2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FNL</td>
<td>μ</td>
<td>490</td>
<td>>100</td>
<td>0.1-150</td>
</tr>
<tr>
<td>EMC</td>
<td>μ</td>
<td>175</td>
<td>>10</td>
<td>>2</td>
</tr>
<tr>
<td>SLAC</td>
<td>e^-</td>
<td>20.5</td>
<td>>4</td>
<td>0.35-5</td>
</tr>
<tr>
<td>HERMES</td>
<td>e^+</td>
<td>27</td>
<td>7-23</td>
<td><2.5</td>
</tr>
<tr>
<td>HERMES</td>
<td>e^+</td>
<td>12</td>
<td>2.5-9</td>
<td><0.9</td>
</tr>
<tr>
<td>CLAS</td>
<td>e^-</td>
<td>5.7</td>
<td>3-5</td>
<td>1.5-5</td>
</tr>
<tr>
<td>HRS*</td>
<td>e^-</td>
<td>6</td>
<td>4</td>
<td>2.8, 4.2</td>
</tr>
</tbody>
</table>

Data required at lower ν AND higher Q^2's:
DIS is dominating and factorization is valid.
Data required on larger A nuclei (184W):
stronger attenuation and test of models.
Data required at various P_T's and high z:
sensitive to different dynamics.
Sources of the attenuation?

HERMES hadronization inside nucleus;
Wang quark-medium interaction;
Kopeliovich colorless pre-hadronic state.
Flavor dependence is required.
Higher precision at large z is required.
The first major goal:

Determine
Whether the hadron is produced inside the nucleus.

Lower ν— shorter formation length;
larger difference in σ_π and σ_K.
Larger A— longer traversing path.
PID— Different attenuation for π^+ and K^+ if they are formed inside the medium.
The second major goal:

Kopeliovich: Data required on variation with z, direct measure of formation length. Large A - stronger effect.
Dynamic features

Multi-variable (Q^2, ν, z, P_T, A);
Multi-mechanism (quark, color-dipole, and hadron propagation);
Multi-effects (gluon radiation, LPM, P_T broadening).

Requirements:
Higher Q^2 and larger Q^2 range;
Large $z = E_h/\nu$;
Data at smaller bins;
Particle ID.
Kinematic selectivity

In order to -

disentangle the dependence on each variable,
distinguish one effect from the other,
identify one mechanism from the other,

Specific data sets are required concentrated at a fixed selective kinematic region with small bins. These data will be complementary to that from large acceptance detector.
Dilema

On one hand, we like to selectively take data at higher Q^2, this will require to measure electrons at larger angle;

On the other hand, at high Q^2, the leading hadron will favor smaller forward angles.

Solution:
Using separate detectors for electrons and hadrons. While setting the electron arm at larger angle, leaving the hadron arm more toward forward direction.
Detector setup

- Target
- Beam
- Electron
- Hadron

Focus at high Q^2
Focus at large z
P_T selection
π, K, p separation
High luminosity
Detector Description

<table>
<thead>
<tr>
<th></th>
<th>Hall A</th>
<th>Hall C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HRS</td>
<td>MAD</td>
</tr>
<tr>
<td>P_c (GeV/c)</td>
<td>4.3</td>
<td>7.5</td>
</tr>
<tr>
<td>ΔP (%)</td>
<td>±5</td>
<td>±15</td>
</tr>
<tr>
<td>δP (%)</td>
<td>0.02</td>
<td>0.1</td>
</tr>
<tr>
<td>$\Delta \Omega$ (msr)</td>
<td>12</td>
<td>28</td>
</tr>
</tbody>
</table>
$Q^2 - \nu$ Phase at 12 GeV
Projected attenuation ratio $R(\nu)$ with 12 GeV beam, at different Q^2, z and PID;
HERMES data: $z > 0.5$, all Q^2 and P_T (blue).
Summary:
Hadronization can be studied with small acceptance detectors by SIDIS from light to heavy nuclei at high Q^2, large z.

Select data at isolated high Q^2;
Select data at large z;
Select data at large P_T;

More sensitive to different effects;
More sensitive to the response of variable change.