Covariant models of Nucleon and Δ
$N - N^*$ Transition Form Factors Workshop

Gilberto Ramalho

Jefferson Lab
CFTP (Instituto Superior Técnico)

Collaborators: Franz Gross, Teresa Peña

Support:
FCT Fundação para a Ciência e a Tecnologia
MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR

October 13, 2008
Outline

1. Motivation
2. Formalism
3. Spectator Quark Model
 - S-state Wave Functions
 - Nucleon: Results
 - NΔ transition: S-state (Results)
4. NΔ transition
 - Delta D-states wave functions
 - NΔ transition (S+D) - Results
 - Comparing QM with DM
5. Conclusions
Covariant quark model to work at high Q^2 regime
Motivation

- Covariant quark model to work at high Q^2 regime
- Can we describe the Nucleon Elastic form factor data with a simple model? [simple \equiv S-wave] Yes
Motivation

- **Covariant quark model** to work at high Q^2 regime
- Can we describe the Nucleon Elastic form factor data with a **simple** model?
 [simple \equiv S-wave] **Yes**
- Can we extend the model (S-wave) to heavier baryons (Δ)?
Motivation

- Covariant quark model to work at high Q^2 regime
- Can we describe the Nucleon Elastic form factor data with a simple model? [simple \equiv S-wave] **Yes**
- Can we extend the model (S-wave) to heavier baryons (Δ)? **Almost**
Motivation

- Covariant quark model to work at high Q^2 regime
- Can we describe the Nucleon Elastic form factor data with a simple model? [simple \equiv S-wave] Yes
- Can we extend the model (S-wave) to heavier baryons (Δ)? Almost
- Can we include systematically high angular momentum states? …
Constituent Quark Model view

- Quark dressed by gluons and $q\bar{q}$ interactions
- Gluon interactions between $q\bar{q}$ ⇒ quark form factors
- Quarks with anomalous magnetic moments κ_u, κ_d
- Nucleon FF can be explained without high angular momentum components

Light Front view

- Baryon states as a sum of Fock states:
 $qqq, qqqg, qqq(q\bar{q})$, ...
- Pointlike quarks
- No anomalous magnetic moments $\kappa_u, \kappa_d = 0$
- High angular momentum required to explain $\kappa_N \neq 0$
Formalism (Wave functions)

Construction of a baryon wave function:

\[\text{Baryon} = \text{quark} \oplus \text{diquark} \]

- Non Relativistic structure; baryon rest frame: \(P = 0 \)
 \(\Rightarrow \text{Relativistic form} \)
- Consider a boost in the \text{z-direction} \
 fixed-axis polarization states
- Initial and final state wave functions defined in a \text{collinear frame} \
 diquark constraint
- Arbitrary Lorentz transformation \(\Lambda \)
 \(\Rightarrow \text{wave function defined in an arbitrary frame} \)
Construction of a baryon wave function:

Baryon = quark \oplus diquark

- **Non Relativistic** structure; baryon rest frame: $\mathbf{P} = 0$
 \Rightarrow Relativistic form

- Consider a boost in the **z-direction**
 fixed-axis polarization states

- **Initial** and **final** state wave functions defined in a **collinear frame**
 diquark constraint

- **Arbitrary** Lorentz transformation Λ
 \Rightarrow wave function defined in an **arbitrary** frame

\Rightarrow **Axial diquark** with **positive parity**: S or D; NO P-states
\Rightarrow
Formalism (Wave functions)

Construction of a baryon wave function:

\[\text{Baryon} = \text{quark} \oplus \text{diquark} \]

- **Non Relativistic** structure; baryon rest frame: \(P = 0 \)
 \(\Rightarrow \) Relativistic form
- Consider a boost in the \(z \)-direction
 fixed-axis polarization states
- Initial and final state wave functions defined in a **collinear frame**
 diquark constraint
- **Arbitrary** Lorentz transformation \(\Lambda \)
 \(\Rightarrow \) wave function defined in an **arbitrary** frame

\(\Rightarrow \) Axial diquark with **positive parity**: S or D; NO P-states
\(\Rightarrow \) All states satisfies the **Dirac equation**
Spectator Quark Model

Hadronic current

\[J^\mu = 3 \sum_\lambda \int_k \bar{\psi}_f(P_+, k)j^\mu_f \psi_i(P_-, k) \]

Quark current

\[j^\mu_i = j_1 \left(\gamma^\mu - \frac{q_\mu q^\mu}{q^2} \right) + j_2 \frac{i\sigma^{\mu\nu}q_\nu}{2M} \]

\[j_i = \frac{1}{6} f_{i+} + \frac{1}{2} f_{i-\tau_3} \]

Vector Meson Dominance quark ff

Two poles: \(m_v = m_\rho \), \(M_h \sim 2M \)

\(\kappa_\pm \) fixed by \(G_M(0) \)

3-4 parameter to adjust

Nucleon $J = 1/2$: superposition of mixed symmetry states:

$$\psi_N = \frac{1}{\sqrt{2}} \left[\Phi_I^0 \Phi_S^0 + \Phi_I^1 \Phi_S^1 \right] \psi_N(P, k)$$

Φ_I^I: isospin; ϕ_S^{Sz}: spin; ψ_N scalar wave function [PRC 77, 015202 (2008)]
S-state Wave Functions

- **Nucleon** $J = 1/2$: superposition of mixed symmetry states:

 $$\psi_N = \frac{1}{\sqrt{2}} \left[\Phi_I^0 \Phi_S^0 + \Phi_I^1 \Phi_S^1 \right] \psi_N(P, k)$$

 Φ_I^I: isospin; ϕ_S^{sz}: spin; ψ_N scalar wave function [PRC 77, 015202 (2008)]

- **Delta** $J = 3/2$: pure symmetric states

 $$\psi_\Delta = \Phi_I^1 \Phi_S^1 \psi_\Delta(P, k)$$

 ψ_Δ: Δ scalar wave function [EPJ A36, 329 (2008)]
N and Δ spin wave functions

$$\{ \Phi^1_s, \bar{\Phi}^1_s \} \implies \Phi_S(\lambda, \lambda_s) \quad S = 1/2, 3/2$$

$\lambda =$ diquark polarization; $\lambda_s =$ N or Δ spin projections

$$\Phi_{1/2}(\lambda, \lambda_s) = - (\varepsilon^*_{\lambda P})_{\alpha} V_{1/2}^{\alpha}(P, \lambda_s)$$
$$\Phi_{3/2}(\lambda, \lambda_s) = - (\varepsilon^*_{\lambda P})_{\alpha} V_{3/2}^{\alpha}(P, \lambda_s) [RS]$$

3-quark spin state given by ($B = N, \Delta$):

$$V_{S}^{\alpha}(P, \lambda_s) = \sum_{\lambda} \langle \frac{1}{2}\lambda; 1\lambda' | S_{\lambda s} \rangle \varepsilon^\alpha_{\lambda P} u_B(P, \lambda)$$

$$\varepsilon^\alpha_{\lambda P} = \text{fixed-axis polarization states}$$
Diquark polarization states

- Helicity states defined in terms of the \(\mathbf{k} = (E_k, k \sin \theta, 0, k \cos \theta) \)

\[\varepsilon_k(\lambda) \] dependent of \(\theta \)

- Fixed-axis: vector particle is bound to a system with \(\mathbf{P} = (P_0, 0, 0, P) \):

\[
\varepsilon(0) = \frac{1}{M} \begin{bmatrix} P \\ 0 \\ 0 \\ P_0 \end{bmatrix}, \quad \varepsilon(\pm) = \mp \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ 1 \\ \pm i \\ 0 \end{bmatrix}
\]

\(\rightarrow \) wave functions with No angular dependence;

Description of Elastic data with a S-wave [Rest frame]

\[\psi_N = \frac{N_0}{(\beta_1 + (P-k)^2) (\beta_2 + (P-k)^2)} \]

Few parameters - - - Model II (3+2)
No explicit pion cloud ... but VMD
N\Delta transition: S-state

- S-states:

\[G_E^* = G_C^* = 0 \]

\[G_M^*(Q^2) = \frac{4}{3\sqrt{3}} \frac{M}{M + M_\Delta} f_v \int \psi_\Delta \psi_N \]
$N\Delta$ transition: S-state

- **S-states:**

 \[G_E^* = G_C^* = 0 \]

 \[G_M^*(Q^2) = \frac{4}{3\sqrt{3}} \frac{M}{M + M_\Delta} f_v \int \psi_\Delta \psi_N \]

- **Cauchy-Schwartz inequality** \(\Rightarrow G_M^*(0) \leq 2.07 \)

 Spectator QM can explain only 70% of the experimental \(G_M^*(0) \)
NΔ transition: S-state

- **S-states:**
 - $G_E^* = G_C^* = 0$
 - $G_M^*(Q^2) = \frac{4}{3\sqrt{3}} \frac{M}{M + M_\Delta} f_v \int \psi_\Delta \psi_N$

- **Cauchy-Schwartz inequality** $\Rightarrow G_M^*(0) \leq 2.07$
 - Spectator QM can explain only 70% of the experimental $G_M^*(0)$
 - Characteristic of Constituent Quark models
NΔ transition: S-state

- **S-states:**

 \[G_E^* = G_C^* = 0 \]

 \[G_M^*(Q^2) = \frac{4}{3\sqrt{3}} \frac{M}{M + M_\Delta} f_v \int \psi_\Delta \psi_N \]

- **Cauchy-Schwartz inequality** \(\Rightarrow G_M^*(0) \leq 2.07 \)

 Spectator QM can explain only 70% of the experimental \(G_M^*(0) \)

- **Characteristic of Constituent Quark models**

 \(G_M^* = G_M^{\text{Bare}} + G_M^\pi \)

- **Quark Model** \(\Rightarrow G_M^{\text{Bare}} \)

 Dynamical Model \(\Rightarrow G_M^\pi \) (Sato-Lee & DMT)
NΔ transition: G_M^* (Bare + Total)
N\Delta transition: G_M^* (Bare + Total)

Bare data: Diaz et al, PRC 75, 015205 (2007)
NΔ transition: G_M^* (Bare predictions)

![Graph showing data and model predictions for $G_M^*/(3G_D)$ vs $Q^2(\text{GeV}^2)$]

- **Data**
- **Bare Data**
- **Model II (Bare)**

Bare data from Diaz et al
$N\Delta$ transition: G^*_M (Full predictions)
NΔ transition: S-state (Valence + Pion cloud)

Valence Quarks (Bare):
\[G_M^B \] set the scale
\[\psi_\Delta = \frac{N_\Delta}{(\alpha_1 + (P-k)^2)(\alpha_2 + (P-k)^2)^2} \]

Sea quarks (Pion Cloud):
\[\frac{G_M^\pi}{3G_D} = \lambda_\pi \left(\frac{\Lambda_\pi^2}{\Lambda_\pi^2 + Q^2} \right)^2 \]
NΔ transition: High Angular Momentum States

Core spin = quark spin + diquark spin

\[S = S_q + S_{dq} \Rightarrow \begin{cases} V_{1/2}^{\alpha}(P, \lambda_s) \\ V_{3/2}^{\alpha}(P, \lambda_s) \end{cases} \]

\[V_S^{\alpha}(P, \lambda_s) = \sum_\lambda \langle \frac{1}{2}; 1 \lambda' | S \lambda_s \rangle \epsilon_{\lambda' P}^{\alpha} u_B(P, \lambda) \quad [S\text{-states}] \]

Total angular momentum \(J = 3/2 \):

\[J = L + S \Rightarrow \begin{cases} S \quad (0, \frac{3}{2}) \\ D3 \quad (2, \frac{3}{2}) \\ D1 \quad (2, \frac{1}{2}) \end{cases} \]
N\Delta transition: D-states \((L = 2)\)

D-state operator:

\[
D^{\alpha\beta} = \tilde{k}^\alpha \tilde{k}^\beta - \frac{\tilde{k}^2}{3} \left(g^{\alpha\beta} - \frac{P^\alpha P^\beta}{M_B^2} \right) \\
\approx Y_2^m \text{ (Rest frame)}
\]

Core-spin projectors

\[
P_{1/2}^{\alpha\beta} + P_{3/2}^{\alpha\beta} = g^{\alpha\beta} - \frac{P^\alpha P^\beta}{M_B^2} \xrightarrow{NR} -\delta^{ij}
\]

[M. Benmerrouche et al PRC 39, 2339 (1989)]

D-state:

\[
W_D^\alpha = D_\beta^{\alpha}(P, k) V_{3/2}^\beta(P) \leftarrow \text{S-state} \\
= (P_{1/2})_{\beta}^{\alpha} W_D^\beta + (P_{3/2})_{\beta}^{\alpha} W_D^\beta \\
\left\{ \begin{array}{c}
D1\text{–state} \\
D3\text{–state}
\end{array} \right.
\]
NΔ transition: States vs Form Factors

Simple current

\[J^\mu = 3j_1 \sum_\lambda \int_k \bar{\Psi}_\Delta \gamma^\mu \psi_N + 3j_2 \sum_\lambda \int_k \bar{\Psi}_\Delta \frac{i \sigma^{\mu\nu} q^\nu}{2M} \psi_N \]

Modified current

\[J_R^\mu = 3j_1 \sum_\lambda \int_k \bar{\Psi}_\Delta \left(\gamma^\mu - \frac{\dot{q} q^\mu}{q^2} \right) \psi_N + 3j_2 \sum_\lambda \int_k \bar{\Psi}_\Delta \frac{i \sigma^{\mu\nu} q^\nu}{2M} \psi_N \]

Equivalent prescriptions if \(\sum_\lambda \int_k \bar{\Psi}_\Delta \psi_N = 0 \) (all \(Q^2 \))

[orthogonal states]

Discuss \(S, D3 \) and \(D1 \) states
NΔ transition: States S and D3

States \((0, \frac{3}{2})\) and \((2, \frac{3}{2})\) are orthogonal to \((0, \frac{1}{2}) \equiv N\)

Current:

\[
J^\mu = 3j_1 \sum_\lambda \int_k \bar{\Psi}_\Delta \gamma^\mu \psi_N + 3j_2 \sum_\lambda \int_k \bar{\Psi}_\Delta \frac{i\sigma^{\mu\nu} q_\nu}{2M} \psi_N
\]

Using the Dirac equation:

\[
q_\mu J^\mu = 3j_1 \sum_\lambda \int_k \bar{\Psi}_\Delta \partial^I \psi_N = 3(M_\Delta - M) j_1 \sum_\lambda \int_k \bar{\Psi}_\Delta \psi_N
\]

Current conserved

It can also be shown that

\[
q_\mu J^\mu \propto G^*_C(Q^2)
\]

Conclusion: S and D3 states \(\Rightarrow G^*_C = 0\)
NΔ transition: State D1

State \((2, \frac{1}{2})\) is not orthogonal to \((0, \frac{1}{2})\)

In principle:
\[q_\mu J^\mu = 3(M_\Delta - M) \sum_\lambda \int_k \bar{\Psi}_\Delta \psi_N \neq 0. \]

There is a chance that \(G_C^* \neq 0\); but \(q_\mu J^\mu \neq 0\)

Imposing current conservation

\[J^\mu_R = 3j_1 \sum_\lambda \int_k \bar{\Psi}_\Delta \left(\gamma^\mu - \frac{\partial q^\mu}{q^2} \right) \psi_N + 3j_2 \sum_\lambda \int_k \bar{\Psi}_\Delta \frac{i\sigma^{\mu\nu} q_\nu}{2M} \psi_N \]

\[q_\mu J^\mu_R = 0, \quad G_C^* \propto \frac{1}{Q^2} \sum_\lambda \int_k \bar{\Psi}_\Delta \psi_N \]

To avoid divergence as \(Q^2 \rightarrow 0\):

\[\sum_\lambda \int_k \bar{\Psi}_\Delta \psi_N \sim Q^2 \quad [\text{Orthogonality}] \]
N\Delta transition (S+ D states)

Adding all angular momentum components:

Configuration: \((L, S)\)

\[
\begin{align*}
\Psi_N & \rightarrow \Psi_\Delta \\
S (0, \frac{3}{2}) & \rightarrow G_M^* \\
D3 (2, \frac{3}{2}) & \rightarrow G_M^*, G_E^* \\
D1 (2, \frac{1}{2}) & \rightarrow \bar{G}_M^*, \bar{G}_E^*, G_C^*
\end{align*}
\]

\(\bar{G}_M^*, \bar{G}_E^* = 0 \quad \text{when} \quad Q^2 = 0\)
NΔ transition: S+D3+D1

S-state

<table>
<thead>
<tr>
<th>Term</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_M^S</td>
<td>$4\eta I_S$</td>
</tr>
<tr>
<td>G_E^S</td>
<td>0</td>
</tr>
<tr>
<td>G_C^S</td>
<td>0</td>
</tr>
</tbody>
</table>

$$I_S = \int_k \phi_N \phi_S$$

$$\eta = \frac{2}{3\sqrt{3}} \frac{M}{M + M_\Delta} f_v$$

$$f_v = f_{1-} + \frac{2M}{M + M_\Delta} f_{2-}$$

$$f_C = f_{1-} - \frac{Q^2}{2M(M + M_\Delta)} f_{2-}$$

D3-state

<table>
<thead>
<tr>
<th>Term</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_M^{D3}</td>
<td>$-2\eta I_{D3}$</td>
</tr>
<tr>
<td>G_E^{D3}</td>
<td>$-2\eta I_{D3}$</td>
</tr>
<tr>
<td>G_C^{D3}</td>
<td>0</td>
</tr>
</tbody>
</table>

D1-state

<table>
<thead>
<tr>
<th>Term</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_M^{D1}</td>
<td>ηI_{D1}</td>
</tr>
<tr>
<td>G_E^{D1}</td>
<td>$-\eta I_{D1}$</td>
</tr>
<tr>
<td>G_C^{D1}</td>
<td>$\frac{4MM_\Delta}{\sqrt{3}} f_C \frac{I_{D1}}{Q^2}$</td>
</tr>
</tbody>
</table>

$$I_{D1} = \int_k b \phi_N \phi_{D1}$$

$$b \approx \sqrt{\frac{4\pi}{5}} k^2 Y_2(\hat{k})$$

Orthogonality between Nucleon (S-state) and Δ D1 state:

$$I_{D1} \sim Q^2 \text{ as } Q^2 \rightarrow 0$$
\(R_{EM} = - \frac{G_E^*(Q^2)}{G_M^*(Q^2)}, \quad R_{SM} = - \frac{|q|_{\Delta} G_C^*(Q^2)}{2M_{\Delta} G_M^*(Q^2)} \)
\[R_{EM} = - \frac{G_E^*(Q^2)}{G_M^*(Q^2)}, \]
\[R_{SM} = - \frac{|q|_\Delta G_C^*(Q^2)}{2M_\Delta G_M^*(Q^2)} \]

Valence Quark insufficient to explain \(G_C^* \) data
\[R_{EM} = - \frac{G_E^*(Q^2)}{G_M^*(Q^2)}, \quad R_{SM} = -\frac{|q|_\Delta G_C^*(Q^2)}{2M_\Delta G_M^*(Q^2)} \]

Valence Quark insufficient to explain G_C^* data

⇒ Include Sea Quark effects [Pion Cloud]
N\Delta transition: Pion Cloud - Simple Model

Pion Cloud effects in G_{E}^* and G_{C}^*?

Large N_c limit, low Q^2:

$$G_{C}^\pi(Q^2) = \sqrt{\frac{2M}{M_\Delta}} MM_{\Delta} \frac{G_{En}(Q^2)}{Q^2}$$

$$G_{E}^\pi(Q^2) = \left(\frac{M}{M_\Delta}\right)^{3/2} \frac{M^2_\Delta - M^2}{2\sqrt{2}} \frac{G_{En}(Q^2)}{Q^2}$$

[Buchmann et al; Pascalutsa and Vanderhaeghen]

No adjustable parameters

Nucleon: Pion Cloud $\Rightarrow G_{En} \neq 0$

N\Delta: $G_{C}^*, G_{E}^* \propto G_{En}$: represents Pion Cloud
N\Delta transition (S+D3+D1): Pion Cloud
N\Delta transition (S+D3+D1): Valence Quarks

\begin{align*}
\text{Valence Pion Cloud} \\
\text{Valence} & \quad \text{Pion Cloud}
\end{align*}
$N\Delta$ transition (S+D3+D1): Valence Q + Pion Cloud
N\Delta transition (S+D3+D1): Valence Q + Pion Cloud (2)

Model consistent with MAID analysis of CLAS data (Jlab)
Drechsel et. al., EPJA 34, 69 (2007)
Pion cloud dominant
Pion cloud dominant

Small D-state mixture improves the description of the data
(1% D3-state; 4% D1-state)
NΔ transition (S+D3+D1): Valence Q + Pion Cloud

- **Pion cloud dominant**
- **Small D-state mixture improves the description of the data**
 (1% D3-state; 4% D1-state)

Limitations?
Does it make any sense to use the pion cloud parametrization for $Q^2 \sim 3$ GeV2?

Conclusion:
We need to consider consistent description of the pion cloud.
N\Delta transition (S+D3+D1): Valence parametrization

Is the valence quark model appropriated (for G_C^*)?

The answer depends of the contribution of the pion cloud
But... valence QM calibrated by the data
Can we trust in the data?
NΔ transition: Data analysis (low Q^2)

Is the Data consistent at low Q^2?
Is the Data consistent at low Q^2?
NΔ transition: Data analysis (high Q^2)

It is important to know the Q^2 dependence of the data for high Q^2.

![Graph showing R_{SM} vs Q^2 for different models: Valence, Pion Cloud, MAID analysis, and Predictions for CLAS.](graph.png)
Quark models
- Consistent (correct normalization)
- Incomplete (no pion cloud)
N\Delta transition: comparing QM with DM

- **Quark models**
 - Consistent (correct normalization)
 - Incomplete (no pion cloud)

- **Dynamical Models**
Quark models
- Consistent (correct normalization)
- Incomplete (no pion cloud)

Dynamical Models
- Hadrons as degrees of freedom (pion included)
Quark models
- Consistent (correct normalization)
- Incomplete (no pion cloud)

Dynamical Models
- Hadrons as degrees of freedom (pion included)
- Bare contribution adjusted phenomenologically
Quark models
- Consistent (correct normalization)
- Incomplete (no pion cloud)

Dynamical Models
- Hadrons as degrees of freedom (pion included)
- Bare contribution adjusted phenomenologically

Quark Models should be used as input of Dynamical Models
G_M^B dominates over $G_M^\pi \Rightarrow$ QM should be used as input
Conclusions

- Covariant spectator S-state wave functions for N and Δ
 - Explains Nucleon data
 - Main contribution of NΔ ($\sim 60\%$ of G_M^*)
 - Consistent with CQM and Dynamical Models
Conclusions

- Covariant **spectator S-state** wave functions for N and Δ
 - Explains Nucleon data
 - Main contribution of NΔ ($\sim 60\%$ of G^*_M)
 Consistent with CQM and Dynamical Models
- **Systematic** inclusion of angular momentum states
Conclusions

- Covariant **spectator S-state** wave functions for N and Δ
 - Explains Nucleon data
 - Main contribution of NΔ (∼ 60% of G^*_M)
 Consistent with CQM and Dynamical Models
- **Systematic** inclusion of angular momentum states
- **D-states in Δ**: NΔ transition
Conclusions

- Covariant spectator S-state wave functions for N and \(\Delta \)
 - Explains Nucleon data
 - Main contribution of N\(\Delta \) (\(\sim 60\% \) of \(G_M^* \))
 Consistent with CQM and Dynamical Models

- Systematic inclusion of angular momentum states
- D-states in \(\Delta \): N\(\Delta \) transition
 - Predicts non-zero contributions for E2 and C2
 Insufficient to explain data
Conclusions

- Covariant spectator S-state wave functions for N and Δ
 - Explains Nucleon data
 - Main contribution of NΔ (∼ 60% of G_M^*)
 - Consistent with CQM and Dynamical Models

- Systematic inclusion of angular momentum states

- D-states in Δ: NΔ transition
 - Predicts non-zero contributions for E2 and C2
 - Insufficient to explain data
 - Pion Cloud dominant
 - [Valence Quarks D-states improves description of G_C^*]
Conclusions

- **Covariant spectator S-state wave functions for N and Δ**
 - Explains Nucleon data
 - Main contribution of NΔ (∼ 60% of G^*_M)
 Consistent with CQM and Dynamical Models

- **Systematic inclusion of angular momentum states**

- **D-states in Δ: NΔ transition**
 - Predicts non-zero contributions for E_2 and C_2
 Insufficient to explain data
 - Pion Cloud dominant
 [Valence Quarks D-states improves description of G^*_C]

- **Future:**
 - Clarify the model dependence of the Data analysis
Conclusions

- Covariant spectator S-state wave functions for N and Δ
 - Explains Nucleon data
 - Main contribution of NΔ (∼ 60% of G_M^*)
 Consistent with CQM and Dynamical Models

- Systematic inclusion of angular momentum states

- D-states in Δ: NΔ transition
 - Predicts non-zero contributions for E2 and C2
 Insufficient to explain data
 - Pion Cloud dominant
 [Valence Quarks D-states improves description of G_C^*]

- Future:
 - Clarify the model dependence of the Data analysis
 - Consistent inclusion of the pion cloud
Conclusions

- Covariant spectator S-state wave functions for N and Δ
 - Explains Nucleon data
 - Main contribution of NΔ (~ 60% of G^*_M)
 Consistent with CQM and Dynamical Models

- Systematic inclusion of angular momentum states
- D-states in Δ: NΔ transition
 - Predicts non-zero contributions for E2 and C2
 Insufficient to explain data
 - Pion Cloud dominant
 [Valence Quarks D-states improves description of G^*_C]

- Future:
 - Clarify the model dependence of the Data analysis
 - Consistent inclusion of the pion cloud
 - Quark Models should be used as input of Dynamical Models
GR, M.T. Peña and F. Gross,

D-state effects in the electromagnetic NΔ transition

to be submitted ... !!!!
References

- GR, M.T. Peña and F. Gross, D-state effects in the electromagnetic NΔ transition to be submitted ... !!!!

