Setting the Scale for DIS at Large Bjorken x

Simonetta Liuti
University of Virginia

HIx Workshop 2010
Jefferson Lab
October 11th-15th, 2010
Outline

- Review DGLAP evolution at large Bjorken x
 - z-dependent scale gives rise to “large Bjorken x evolution”
- Interplay of TMCs, Large Bjorken x evolution, HigherTwists
- Nuclear corrections at large Bjorken x
- Conclusions/Outlook for the 12 GeV program and beyond...
Interest in Large x Studies

→ Precise determination of PDFs (Jlab + CTEQ studies): extend the domain of validity of PDF global analyses (importance of large x gluons, ...)

→ QCD predictions at $x_{Bj} = 1$ (Ratio F_2^n/F_2^p, ...)

→ Parton-Hadron Duality in DIS at large x_{Bj} monitors the transition in QCD between the “perturbative” region, where factorization applies to the “non-perturbative” region: consequence of factorization theorems in QCD? (J. Collins)

→ Possibility of extracting α_s at low scale (complementary to GDH sum rule analysis by S. Brodsky, J.P. Chen and A. Deur)
Large x_{Bj} at fixed Q^2 implies the continuation of the pQCD curve into the resonance region

$$W^2 = Q^2 \left(\frac{1}{x_{Bj}} - 1 \right) + M^2$$

Main question: how to continue pQCD curve? What defines the pQCD curve?

Suggested approach

(S.L., R. Ent, C. Keppel, I. Niculescu, PRL 2000)

Fix the order of the analysis, e.g. NLO and extend curve $$

$$corrections arise that are more important than at low x_{Bj} and that point at interesting physics (duality)

- TMC
- Large x structure of PQCD evolution equations
- NNLO and higher...
- Higher Twists
- Nuclear corrections (for neutron)
All effects need to be taken into account simultaneously.

\[I_{\text{res}}(Q^2) = \int_{x_{\text{min}}}^{x_{\text{max}}} F_2^{\text{res}}(x, Q^2) \, dx \]

\[M_n(Q^2) = \int_0^1 dx x^{n-2} F_2(x, Q^2), \]

Precise pQCD prediction \(\Rightarrow \)

\[M_n \propto \ln Q^2 + \text{NLOrders...} \]

\(I_n \) and \(M_n \) calculated using CTEQ
Unpolarized Jlab+SLAC data

Polarized HERMES+Jlab+SLAC data

$R_{LT}^{\text{unpol}} = \frac{I_{\text{res}}}{I_{LT}}$

$R_{LT}^{\text{pol}} = \frac{I_{\text{res}}}{I_{LT}}$

- NLO
- NLO+TMC
- NLO+TMC+LxR
- Alekhin (TMC)

TMC
Large x
More recent polarized data (O. Rondon et al.)

\[R_{LT} = \frac{\tilde{\Gamma}_1^{LT}}{\tilde{\Gamma}_1^{pol}} \]

- HERMES, SLAC
- Fatemi 03
- R from Jlab

\[O^2 \ [\text{GeV}^2] \]
Large \times_{Bj} evolution

$\alpha_s = \alpha_s (k^2)$ at each vertex

$$\alpha_s(Q^2) = \frac{4\pi}{\beta_0 \ln(Q^2/\Lambda_{QCD}^2)}$$
In terms of LC variables
\[k = (k^+ = z P^+, k^- = P^- - \ell^-, k_T) \]

\[\hat{s} = (q + k)^2 = 4 k'^2 \]
\[\hat{t} = (k - k')^2 = -2 qk'(1 - \cos \theta) \]
\[\hat{u} = (q - k')^2 = -2 qk'(1 + \cos \theta) \]

\[k_T^2 = \frac{\hat{s} (-\hat{t}) \hat{u}}{\hat{s}(\hat{s} + Q^2)} = \frac{\hat{s} \sin^2 \theta}{4} \]
\[(k_T^{MAX})^2 = \frac{\hat{s}}{4} \]

Invariant mass!

Next, write amplitude for
\[\Upsilon^* p \rightarrow (\text{final quark}) + g + X \]
\[|\text{Amplitude}|^2 \text{ for } \gamma^*P \rightarrow (\text{final quark}) + g + X \propto \]

\[
q(x, Q^2) = \int \frac{dz}{z} \int \frac{Q^2}{4z} dk_T^2 \alpha_S(k_T^2) P_{qq}(z) q \left(\frac{x}{z}, k_T^2 \right)
\]

Disregarding \(z \)-dependence in \(k_T \) integration limit

\[
\frac{dq(x, Q^2)}{d \ln Q^2} = \frac{\alpha_S(Q^2)}{2\pi} \int \frac{dz}{z} P_{qq}(z) q \left(\frac{x}{z}, Q^2 \right)
\]
It matters at large x!

$k_{T}^{2}=Q^{2}=10\ \text{GeV}^{2}$

z-dependent limit
As a consequence...

\[
\alpha_S(Q^2) \rightarrow \alpha_S[Q^2(1-z)] \approx \alpha_S(Q^2) - \frac{1}{2}\beta_0 \ln(1-z) \left(\alpha_S(Q^2)\right)^2
\]

This takes care of the large log term in the Wilson coefficient \(f \).

(NLO, MS-bar)

\[
F_2^{NS}(x, Q^2) = \frac{\alpha_s}{2\pi} \sum_q \int_x^1 dz \, C_{NS}(z) \, q_{NS}(x/z, Q^2), \quad (24)
\]

\[
C_{NS}(z) = \delta(1-z) + \left\{ C_F \left(\frac{1+z^2}{1-z} \right) + \left[\ln \left(\frac{1-z}{z} \right) - \frac{3}{2} \right] + \frac{1}{2} (9z+5) \right\}
\]

The scale that allows one to annihilate the effect of the large \(\ln(1-z) \) terms at large \(x \) at NLO is the invariant mass, \(W^2 \)

Equivalent to a resummation of these terms up to NLO
Work in progress based on recent analysis by A. Accardi, J. Qiu, JHEP (2008) that extends range of validity of TMCs approach without introducing mismatches between the x and ξ ranges.

\[
F_{T,L}(x_B, Q^2, m_N^2) = \int_{\xi}^{\xi/x_B} dx \frac{dx}{x} h_{f|T,L}(\bar{x}_f, Q^2) \varphi_f(x, Q^2). \quad (18)
\]

Instead of 1

Joint large x evolution and new TMCs approach.
Once PQCD is taken into account, extract HTs

\[H(x) = F_{LT}^{LT}(x) C_{HT}(x) \quad \rightarrow \text{additive form} \]

\[F_2^{\text{exp}} = F_{\text{PQCD}}(1 + C(x)/Q^2) \]
Large x resummation
Nuclei

✓ Are HTs isospin dependent? Deviations from PQCD effects

\[C_p - C_n \]

In addition…. \(\alpha_s \) needs to be continued at very low \(Q^2 \)

\[
\alpha_s(Q^2) \rightarrow \alpha_s \left(Q^2 \frac{1-z}{z} \right)
\]

S.L. work in progress

Use this “positively” to

Extract \(\alpha_s \) at low scale
Towards the Jlab 12 GeV program....
The very large and accurate Jlab Hall C set of data has shown that parton hadron duality can be studied in detail: Q^2, W^2 and longitudinal variables dependences have been analyzed thoroughly.

\Rightarrow Observation of similarity between “high” and “low” energy cross sections at the core of strong interaction theory.

\Rightarrow Theoretical background: starts from Finite Energy Sum Rules (FESR)

Dolen, Horn and Schmid, PR166(1968)

$$S_n = \frac{1}{N^{n+1}} \int_0^N \nu^n \text{Im} F d\nu = \sum \frac{\beta N^\alpha}{(\alpha+n+1)\Gamma(\alpha+1)}.$$

\Rightarrow Is there an interpretation within QCD?

Shifman (2005), Bigi and Uraltsev (2004)

Is there a more general implication from factorization theorems of QCD? Interplay of ISI and FSI Frankfurt (this workshop)
All experimental measurements should be compared...

\[\gamma p \rightarrow \pi^+ n \]

\[eA \rightarrow eX \]

\(\tau \rightarrow \nu + \text{hadrons} \)

M. Shifman, hep-th/0009131

L.Y. Zhu et al., PRL 91 (2003) 022003,
L.Y. Zhu et al., PRC 71 (2005) 044603
Data (2)

$e^+ - e^- \rightarrow \text{hadrons}$

$I. \text{Niculescu et al., PRL 85 (2000) 1182,}$
$I. \text{Niculescu et al., PRL 85 (2000) 1186}$
Data (3)

\[e \rightarrow p^{\pm} \rightarrow e \rightarrow X \]

J. Airapetian et al., PRL 90 (2003) 092002

\[e \rightarrow p^{\pm} \rightarrow e \rightarrow X \]

R. Fatemi et al., PRL 91 (2003) 222002

\[\frac{A^{\text{res}}_1}{A^{\text{DIS}}_1} \geq 1.11 \pm 0.16 \pm 0.18 \text{ for } Q^2 > 1.6 \text{ GeV}^2 \]

Strong violation of duality for \(Q^2 < 1.1 \text{ GeV}^2 \)
Conclusions

• At $x \rightarrow 1$ we consider two independent scales, W^2 and Q^2
• PQCD evolution is governed by W^2
• This has consequences
 – Account of TMCs
 – Parton-Hadron Duality
 – Extraction of α_s