Neutron and Proton Structure Functions and Duality

Simona Malace
Duke University

HiX2010, Jefferson Lab, October 13-15 2010
Overview

Quark-hadron duality: non-trivial phenomenon (see Wally’s talk)

- Manifestation: insight into the dynamic of strong interactions
 Standard tests of quark-hadron duality
- Application: could be used to access kinematic regions otherwise inaccessible
 Use averaged resonance region data to constrain PDFs at large x?

Experimental tests of quark-hadron duality in:

- proton F_2^p structure function
- neutron F_2^n structure function

New method: extract F_2^n from nuclear F_2

- Application of method to smooth curves
- Application of method to data + Quark-Hadron Duality in F_2^n
- Application of method to data: (a lot of) technical details
 S.P. Malace, Y. Kahn, W. Melnitchouk, in preparation

Plans for future
On average, the resonance region data **mimic** the twist-2 pQCD calculation (pQCD + Target Mass corrections)

This happens at a surprisingly low Q^2

“**The successful application of duality to extract known quantities suggests that it should also be possible to use it to extract quantities that are otherwise kinematically inaccessible.**”

(CERN Courier, 2004)

Quark-Hadron Duality: needs to be verified and quantified
Basic test of Duality: the Q^2 behavior of averaged resonance region data when compared to QCD calculations

Example: integrals over RES Region ($W^2 < 4 \text{ GeV}^2$); comparison of data to MRST+TM

Y. Liang et al., nucl-ex/0410027 (2004)

→ 2004: agreement better than 5% at $Q^2 = 0.5 \text{ GeV}^2$ but ~ 18% at $Q^2 = 3.5 \text{ GeV}^2$

→ 2009: deviation of data from MRST+TM increases with Q^2 up to $Q^2 \sim 4.5 \text{ GeV}^2$ then saturates
Kinematics: with increasing Q^2 resonances slide in regions of larger and larger x

PDFs (CTEQ, MRST, MSTW) poorly constrained at large x
It is not surprising then:

--- though RES data **DO** average to MSTW08+TM at $Q^2 = 0.9\ \text{GeV}^2$, $x \sim (0.25,0.7)$

--- RES data **DO NOT** average to MSTW08+TM at $Q^2 = 6.4\ \text{GeV}^2$, $x \sim (0.7,0.95)$

Not a violation of duality but very likely due to an underestimation of large-x strength in the pQCD parametrization
Tests of Quark-Hadron Duality at large x

What should we use for quantitative tests of Duality at large x?

- **Leading Twist (LT) calculations** ↔ PDFs constrained up to $x \sim 0.65 - 0.7$: CTEQ, MRST (MSTW)...

- **Calculations beyond LT** ↔ PDFs constrained up to $x \sim 0.8 - 0.9$

Alekhin et al.

CTEQ6X

Accardi, Christy, Keppel, Melnitchouk, Monaghan, Morfín, Owens, Phys. Rev. D 81, 034016 (2010)

Accardi et al., in preparation
Tests of Quark-Hadron Duality at large x

Resonance region data average to the QCD (beyond LT) calculation

Quantitative Tests of Local Duality

1) Delimit W regions for duality tests

<table>
<thead>
<tr>
<th>Region</th>
<th>W^2_{min}</th>
<th>W^2_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>1.3</td>
<td>1.9</td>
</tr>
<tr>
<td>2nd</td>
<td>1.9</td>
<td>2.5</td>
</tr>
<tr>
<td>3rd</td>
<td>2.5</td>
<td>3.1</td>
</tr>
<tr>
<td>4th</td>
<td>3.1</td>
<td>3.9</td>
</tr>
<tr>
<td>DIS</td>
<td>3.9</td>
<td>4.5</td>
</tr>
</tbody>
</table>

$x = Q^2 / (W^2 + Q^2 - M^2)$

2) F_2 from data and QCD calculation

3) Calculate:

$$\int_{x_m}^{x_M} F_2^{\text{data}}(x, Q^2) \, dx$$

$$\int_{x_m}^{x_M} F_2^{\text{QCD calc.}}(x, Q^2) \, dx$$
Quark-Hadron Duality in Proton F_2^p

$$\int_{x_m}^{x_M} F_2^{p,\text{data}}(x,Q^2)dx \Bigg/ \int_{x_m}^{x_M} F_2^{p,\text{param}}(x,Q^2)dx$$

QCD calculation of Alekhin

S. I. Alekhin, JETP Lett. 82, 628 (2005).

• Within 10%: globally, 4th, 3rd, 2nd
• 1st: special case
 • some models predict stronger violations of duality
 • calculation based on handbag diagram may break at such low W
 • sits at the largest x (QCD fits poorly constrained) => difficult to test duality

Quark-Hadron Duality in Neutron F_2^n

- **Verify quark-hadron duality in F_2^n**
 - Need F_2^n in the resonance region...
 - Could use proton F_2^p and deuteron F_2^d and

New method to extract F_2^n from F_2^p and F_2^d: iterative procedure of solving integral convolution equations

Impulse Approximation:

$$F_2^A(x, Q^2) = \sum_{N=p,n}^{M_A/M} dy f_0^{N/A}(y, \gamma) F_2^N \left(\frac{x}{y}, Q^2 \right)$$

- nuclear F_2
- light-cone momentum distribution of nucleons in nucleus (smearing function)
- nucleon F_2

Smearing Function for F_2^d

Smearing function evaluated in the weak binding approximation, including finite-Q^2 corrections

\[
\sqrt{1 + \frac{4M^2}{Q^2} x^2}
\]
We need F^{n}_2 from:

$$\tilde{F}^{n}_2 = F^d_2 - F^d_2(QE) - \delta^{(off)} F^d_2 - \tilde{F}^p_2$$

$$\tilde{F}^{n,p}_2 = \int_{x}^{M_d/M} dy f(y, \gamma) F^{n,p}_2 \left(\frac{x}{y} \right)$$

Additive extraction method: solve equation iteratively

Additive extraction method: solve equation iteratively

$f(y, \gamma) = N \delta(y - 1) + \delta f(y, \gamma)$

Normalization of smearing function

$\tilde{F}^{n}_2(x) = NF^{n}_2(x) + \int_{x}^{M_d/M} dy \delta f(y, \gamma) F^{n}_2 \left(\frac{x}{y} \right)$

Perturbation

$perturbation$

$F^{n(1)}_2(x) = \left[F^{n(0)}_2(x) \right] + \frac{1}{N} \left[\tilde{F}^{n}_2(x) - \int_{x}^{M_d/M} dy f(y, \gamma) F^{n(0)}_2 \left(\frac{x}{y} \right) \right]$
Application of Method to Smooth Curves

- Monotonic curves: F_2^p and F_2^n input from MRST; F_2^d is simulated using the finite-Q^2 smearing function
 - Additive method applied with initial guess $F_2^{n(0)} = 0$

Fast convergence: extracted $F_2^{n(1)}$ almost indistinguishable from F_2^n input after only 1 iteration (smearing function sharply peaked around $y = 1$)

Application of Method to Smooth Curves

Curves with resonant structures: F_2^n input from MAID

- Additive method applied with initial guess $F_2^{n(0)} = 0$

After 1 or 2 iterations: resonant peaks clearly visible; after 5 iterations extracted result very close to “true” result

Application of Method to Smooth Curves

Essential to take into account Q^2 effects in the smearing function

- Additive method ($F_2^{n(0)} = 0$): Q^2-dependent smearing function and Q^2-independent smearing function

After 10 iterations: extraction with Q^2-dependent smearing function converges to the input; extraction with Q^2-independent smearing function does not

Application of Method to Data

Use proton and deuteron data at fixed Q^2 (matched kinematics)

$$
\tilde{F}_2^n(x) = F_2^d(x) - F_2^{d(QE)} - \delta^{(off-shell)}(x) F_2^d(x) - \tilde{F}_2^p(x)
$$

Data:

SLAC at $Q^2 = 0.6, 0.9, 1.7, 2.4$ GeV2

JLab (Hall C E00-116) at $Q^2 = 4.5, 5, 5.5, 6.2, 6.4$ GeV2

- data at fixed Q^2 =>
 bin-centering at cross section level using 2 different models

Application of Method to Data

\[\tilde{F}_2^n(x) = F_2^d(x) - F_2^{d(QE)} - \delta^{(\text{off-shell})} F_2^d(x) - \tilde{F}_2^p(x) \]

QE: extracted from data using model (form factors + smearing function)

Off-shell corrections:
- upper limit from model \(~1.5\%
- subtract \(\frac{1}{2}\) of model prediction
- assign 100\% uncertainty to correction
- contributes \(< 2\%\) to total uncertainty on \(F_2^n\)

Application of Method to Data

- F_2^n extraction: initial guess $F_2^{n(0)} = F_2^p$; number of iterations = 2

- F_2^n in resonance region: 3 resonant enhancements (fall with Q^2 at ~ rate as for F_2^p)

- F_2^d reconstructed from F_2^p(data) and F_2^n(extraction) ~ F_2^d(data) after 2 iterations

Study dependence of result on number of iterations: compare extractions with 2 and 3 iterations

Small change in F_2^n between iteration 2 and 3

Extracted F_2^n changes to bring F_2^d reconstructed closer to F_2^d data; small differences between iteration 2 and 3

$\frac{(F_2^n (\text{it.}=2) - F_2^n (\text{it.}=3))}{\sigma_{F_2^n}}$

$\frac{(F_2^d (\text{data}) - F_2^d (\text{recon.}))}{\sigma_{F_2^d}}$

S.P. Malace, Y. Kahn, W. Melnitchouk, in preparation
Application of Method to Data

- Study dependence of result on initial guess $F_2^{n(0)}$: compare F_2^n extracted with 2 different inputs for initial guess: $F_2^{n(0)} = F_2^p$ vs $F_2^{n(0)} = F_2^p / 2$

- After 2 iterations: only 6% of all data lay outside a 2σ range

- Exercise caution with number of iterations: irregularities in data result in increased scattered in F_2^n with increasing number of iterations

S.P. Malace, Y. Kahn, W. Melnitchouk, in preparation
Comparison to BoNuS Data

- Plots by Nathan Baillie

BoNuS: F_2^n data

MALACE: F_2^n extracted from F_2^p and F_2^d

BOSTED

Thanks to Nate, Sebastian 😊 and the BoNuS Collaboration
Comparison: data to ABKM
S. Alekhin, J. Blumlein, S. Klein, S. Moch.

- 2nd and 3rd RES regions: agreement within 15-20%, on average

- 1st RES region: agreement worsens at the highest Q^2 (corresponds to the largest x)

- globally remarkable agreement: within 10%

S.P. Malace, Y. Kahn, W. Melnitchouk,
Confirmation of duality in both proton and neutron \(\Rightarrow \) phenomenon not accidental but a general property of nucleon structure functions

\[
\int F_2(\text{data}) dx / \int F_2(\text{QCD} = \text{Alekhin}) dx
\]

Use averaged resonance region data \((W^2 > 1.9 \text{ GeV}^2)\) to extend PDFs extraction to the largest \(x\)
Quark-Hadron Duality: Application

- **Stage 1 (last few decades):** LT calculations ⇔ PDFs constrained up to $x \sim 0.7$ (CTEQ, MRST(MSTW), GRV, etc.)

- **Stage 2 (last decade):** calculations beyond LT ⇔ PDFs constrained up to $x \sim 0.8-0.9$
 - Alekhin *et al.*
 - CTEQ6X
 - Accardi *et al.*, in preparation

- **Stage 3:** future
A. Accardi, S.P. Malace, in preparation

\[
\int_{x_m}^{x_M} F_2^{p,\text{data}}(x, Q^2) dx \bigg/ \int_{x_m}^{x_M} F_2^{p,\text{param}}(x, Q^2) dx
\]

- Study sensitivity of quark-hadron duality ratios to various prescriptions for inclusion of:
 - Higher Twist: additive vs multiplicative; HT(proton) same or different than HT(neutron)
 - Target Mass Corrections: OPE, CF...

 etc.

\[
W^2 = (1.3, 1.9) \text{ GeV}^2
\]

\[
W^2 = (1.9, 2.5) \text{ GeV}^2
\]

\[
W^2 = (2.5, 3.1) \text{ GeV}^2
\]

\[
W^2 = (3.1, 3.9) \text{ GeV}^2
\]
A. Accardi, S.P. Malace, in preparation

Study applicability of QCD calculation at low values of W; criterion: separation between target jet and current jet
Extend proton and deuteron F_2 structure function precision measurements to larger x and Q^2 in the resonance region and beyond up to $W^2 \sim 9 \text{ GeV}^2$, $Q^2 \sim 17 \text{ GeV}^2$ and $x \sim 0.99$.

![Graphs showing $M_{p,d}(\text{data})/M_{p,d}(\text{CTEQ6L})$ versus Q^2 for different W^2 values.](image_url)
Extra Slides
$Q^2: (4.52, 7.38) \text{ GeV}^2$

- E00-116
- CTEQX
- Alekhin09