Coulomb distortion in the inelastic regime

Patricia Solvignon
Argonne National Laboratory

Work done in collaboration with
Dave Gaskell (JLab) and John Arrington (ANL)

International Workshop on Positrons at Jefferson Lab
JPOS09
March 25-27 2009
Coulomb distortion and two-photon exchange

OPE

\[e \rightarrow e' \]

\[p \rightarrow p' \]

TPE

Exchange of 2 (hard) photons with a single nucleon

Exchange of one or more (soft) photons with the nucleus, in addition to the one hard photon exchanged with a nucleon

Incident (scattered) electrons are accelerated (decelerated) in the Coulomb well of the nucleus.

Opposite effect with positrons
How to correct for Coulomb distortion?

\[\sigma_{tot}^{PWBA} = \sigma_{Mott} \cdot S_{tot}^{PWBA}(|\vec{q}|, \omega, \theta) \]

- Focusing of the electron wave function
- Change of the electron momentum

Effective Momentum Approximation (EMA)

\[E \rightarrow E + \vec{V} \]
\[E_p \rightarrow E_p + \vec{V} \]

\[\begin{align*}
Q_{eff}^2 &= 4(E + \vec{V})(E_p + \vec{V}) \sin^2(\frac{\theta}{2}) \\
S_{tot}^{PWBA}(|\vec{q}|, \omega, \theta) &\rightarrow S_{tot}^{PWBA}(|\vec{q}_{eff}|, \omega, \theta)
\end{align*} \]

1st method

2nd method

\[S_{tot}^{PWBA}(|\vec{q}|, \omega, \theta) \rightarrow S_{tot}^{PWBA}(|\vec{q}_{eff}|, \omega, \theta) \]
\[\sigma_{Mott}^{eff} = 4\alpha^2 \cos^2(\theta/2)(E_p + \vec{V})^2/Q_{eff}^4 \]
\[F_{foc}^i = \frac{E + \vec{V}}{E} \]
\[\sigma_{tot}^{CC} = (F_{foc}^i)^2 \cdot \sigma_{Mott}^{eff} \cdot S_{tot}^{PWBA}(|\vec{q}_{eff}|, \omega, \theta) \]
How to correct for Coulomb distortion?

\[\sigma_{tot}^{PWBA} = \sigma_{Mott} \cdot S_{tot}^{PWBA}(|\vec{q}|, \omega, \theta) \]

DWBA
- Focusing of the electron wave function
- Change of the electron momentum

Effective Momentum Approximation (EMA)

\[Q_{eff}^2 = 4(E + \bar{V})(E_p + \bar{V}) \sin^2\left(\frac{\theta}{2}\right) \]

1st method

2nd method

One-parameter model depending only on the effective potential seen by the electron on average.

\[\sigma_{tot}^{CC} = \sigma_{Mott} \cdot S_{tot}^{PWBA}(|\vec{q}_{eff}|, \omega, \theta) \]

\[\sigma_{tot}^{CC} = (F_{foc}^i)^2 \cdot \sigma_{Mott}^{eff} \cdot S_{tot}^{PWBA}(|\vec{q}_{eff}|, \omega, \theta) \]
Coulomb distortion measurements in quasi-elastic scattering

\[\tilde{k} = k - V(z) \]

\[V(r) = -\frac{3\alpha(Z - 1)}{2R} + \frac{\alpha(Z - 1)}{2R} \left(\frac{r}{R} \right)^2 \]

\[R = 1.1A^{1/3} + 0.86A^{-1/3} \]

Gueye et al., PRC60, 044308 (1999)
Coulomb distortion measurements in quasi-elastic scattering

\[\tilde{k} = k - V(z) \]

\[V(r) = -\frac{3\alpha(Z-1)}{2R} + \alpha(Z-1) \left(\frac{r}{R} \right)^2 \]

\[R = 1.1A^{1/3} + 0.86A^{-1/3} \]

Coulomb potential established in Quasi-elastic scattering regime!
Physics sensitive to Coulomb distortion

Coulomb distortion:
- Not accounted for in typical radiative corrections
- Usually, not a large effect at high energy machines
- Important for $E_p \ll E$

- x>1 experiments
- L/T experiments
- EMC effect
- Color transparency
- In-medium modification on the nucleon FF

About every experiments that used nuclei with $A>12$
Physics sensitive to Coulomb distortion

Coulomb distortion:
- Not accounted for in typical radiative corrections
- Usually, not a large effect at high energy machines
- Important for $E_p << E$

About every experiments that used nuclei with $A > 12$
The EMC effect

Nucleus at rest

(A nucleons = Z protons + N neutrons)

Effects found in several experiments at CERN, SLAC, DESY

\[e^- \gamma^* \rightarrow Z + N \]

\[\sigma_A/\sigma_D \]

EMC (Cu)
BCDMS (Fe)
E139 (Fe)
SLAC E139 results on the EMC effect

SLAC E139:

- Most complete data set: $A=4$ to 197
- Most precise at large x
 - Q^2-independent
 - universal shape
 - magnitude dependent on A
Effect of Coulomb distortion on JLab E03-103 results

A(e,e’) at 5.0 and 5.8 GeV in Hall C

- Targets: H, 2H, 3He, 4He, Be, C, Al, Cu, Au

JLab is at lower energy than SLAC but the luminosity is much higher.

We obtain similar or larger Q^2 values in many cases by going to larger angles such that E_p is smaller.

So Coulomb distortion effects are 'doubly' amplified: lower beam energy and lower fractional E_p.
E03-103 heavy target results

no Coulomb corrections applied

\[\frac{\sigma_A}{\sigma_D} \]

- SLAC E139 (Au)
- JLab E03-103 (Au)

Au Norm. (2.0%)

SLAC Norm. (2.5%)

Preliminary
E03-103 heavy target results

Coulomb corrections applied

\(\frac{\sigma_A}{\sigma_D} \) vs. \(x \)

- **SLAC E139 (Au)**
- **JLab E03-103 (Au)**

- **Au Norm. (2.0%)**
- **SLAC Norm. (2.5%)**

Preliminary
Extrapolation to nuclear matter

Exact calculations of the EMC effect exist for light nuclei and for nuclear matter.

\[
\frac{\sigma_A}{\sigma_d}\text{ is } 0.8 \text{ at } x=0.7
\]

No Coulomb corrections applied

Argonne National Laboratory
Extrapolation to nuclear matter

Exact calculations of the EMC effect exist for light nuclei and for nuclear matter.

\[\frac{\sigma_A}{\sigma_d} \]

\(x = 0.7 \)

Coulomb corrections applied

Non-negligible effects on SLAC data
Extrapolation to nuclear matter

Exact calculations of the EMC effect exist for light nuclei and for nuclear matter.
\[R(x, Q^2) \]

\[
\frac{d\sigma}{d\Omega dE'} = \Gamma \left[\sigma_T(x, Q^2) + \varepsilon \sigma_L(x, Q^2) \right]
\]

\[R(x, Q^2) = \frac{\sigma_L(x, Q^2)}{\sigma_T(x, Q^2)} \]

TPE can affect the \(\varepsilon \) dependence (talk of E. Christy on Thursday)

Coulomb Distortion could have the same kind of impact as TPE, but gives also a correction that is A-dependent.

[Graph with data points and lines]
Meaning of R

\[
\frac{d\sigma}{d\Omega dE'} = \Gamma \left[\sigma_T(x, Q^2) + \varepsilon \sigma_L(x, Q^2) \right]
\]

\[
R(x, Q^2) = \frac{\sigma_L(x, Q^2)}{\sigma_T(x, Q^2)}
\]

In a model with:

a) spin-1/2 partons: R should be small and decreasing rapidly with Q^2

b) spin-0 partons: R should be large and increasing with Q^2

Dasu et al., PRD49, 5641(1994)
FIG. 13. The fits to the differential cross section ratio σ_A/σ_D versus $\epsilon' = \epsilon/(1 + R^D)$ are shown for each (x, Q^2) point. The errors on the cross section include statistical and point-to-point systematic contributions added in quadrature.

Nuclear higher twist effects and spin-0 constituents in nuclei: same as in free nucleons

$\Rightarrow R_A - R_D$
Access to nuclear dependence of R

Dasu et al., PRD49, 5641 (1994)

A non-trivial effect in $R_A - R_D$ arises after applying Coulomb corrections.
Access to nuclear dependence of R

New data from JLab E03-103: access to lower ε

Iron-Copper

![Graph showing the access to nuclear dependence of R for Iron-Copper with and without Coulomb corrections applied.](image-url)

For $x=0.5$,
- No Coulomb corrections applied:
 - $R_x - R_d = -0.0354318 \pm 0.0214851$
- Coulomb corrections applied:
 - $R_x - R_d = -0.0888527 \pm 0.0216907$
Access to nuclear dependence of R

New data from JLab E03-103: access to lower ε

Gold

No Coulomb corrections applied

Coulomb corrections applied

$R_x - R_0 = 0.0673445 \pm 0.0288021$

$R_x - R_0 = -0.0388513 \pm 0.0299763$
Access to nuclear dependence of R

After taking into account the normalization uncertainties from each experiment

Hint of an A-dependence in R in Copper-Iron
dependence of the Coulomb distortion

The ε-dependence of the Coulomb distortion has effect on the extraction of R in nuclei
Summary

- At present, corrections for Coulomb distortion in inelastic regime are done using a prescription for quasi-elastic scattering regime
 - need a measurement of the amplitude of the effect in the inelastic regime
 - need a prescription in the inelastic regime

- Coulomb distortion affects the extrapolation to nuclear matter which is key for comparison with theoretical calculations

- Coulomb distortion has a real impact on the A-dependence of R: clear ϵ -dependence
 - hint of an A-dependence of R: could impact many experiments which used R_P or R_D for R_A
 - could change our conclusion on the spin-0 constituent contents and higher twist effect in nuclei versus free nucleons.
Back-ups
Nucleon only model

Assumptions on the nucleon structure function:
- not modified in medium
- the same on and off the energy shell

\[
\frac{F_2^A(x_A)}{A} = \int_{x_A}^A dy \cdot f_N(y) F_2^N(x_A/y)
\]

Fermi momentum \(\ll M_{\text{nucleon}}\)

\(\Rightarrow\) \(f_N(y)\) is narrowly peaked and \(y \approx 1\)

\[
\frac{F_2^A}{A} \approx F_2^N \Rightarrow \text{no EMC effect}
\]

“… some effect not contained within the conventional framework is responsible for the EMC effect.”

Smith & Miller, PRC 65, 015211 (2002)
Nucleons and pions model

Pion cloud is enhanced and pions carry an access of plus momentum:

\[P^+ = P_N^+ + P_{\pi}^+ = M_A \]

and using \(P_{\pi}^+ / M_A = 0.04 \) is enough to reproduce the EMC effect.

But excess of nuclear pions \(\Rightarrow \) enhancement of the nuclear sea.

But this enhancement was not seen in nuclear Drell-Yan reaction.

Another class of models

Interaction between nucleons

Model assumption:
- Nucleon wavefunction is changed by the strong external fields created by the other nucleons

Model requirements:
- Momentum sum rule
- Baryon number conservation
- Vanishing of the structure function at $x<0$ and $x>A$
- Should describe the DIS and DY data
EMC effect in nuclear matter

No Coulomb corrections applied

\[\frac{\sigma_A}{\sigma_D} \]

Sick & Day, PLB274 (1992)

All world data
EMC effect in nuclear matter

Coulomb corrections applied

Sick & Day, PLB274 (1992)
All world data (cc)
EMC effect in nuclear matter

Coulomb corrections applied

- Sick & Day, PLB274 (1992)
- All world data (cc)
- Including E03-103 prel. (cc)
- Smith & Miller, PRL91, 212301 (2003)
World data re-analysis

<table>
<thead>
<tr>
<th>Experiments</th>
<th>E (GeV)</th>
<th>A</th>
<th>x-range</th>
<th>Pub. 1st author</th>
</tr>
</thead>
<tbody>
<tr>
<td>CERN-EMC</td>
<td>280</td>
<td>56</td>
<td>0.050-0.650</td>
<td>Aubert</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12,63,119</td>
<td>0.031-0.443</td>
<td>Ashman</td>
</tr>
<tr>
<td>CERN-BCDMS</td>
<td>280</td>
<td>15</td>
<td>0.20-0.70</td>
<td>Bari</td>
</tr>
<tr>
<td></td>
<td></td>
<td>56</td>
<td>0.07-0.65</td>
<td>Benvenuti</td>
</tr>
<tr>
<td>CERN-NMC</td>
<td>200</td>
<td>4,12,40</td>
<td>0.0035-0.65</td>
<td>Amaudruz</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>6,12</td>
<td>0.00014-0.65</td>
<td>Arneodo</td>
</tr>
<tr>
<td>SLAC-E61</td>
<td>4-20</td>
<td>9,27,65,197</td>
<td>0.014-0.228</td>
<td>Stein</td>
</tr>
<tr>
<td>SLAC-E87</td>
<td>4-20</td>
<td>56</td>
<td>0.075-0.813</td>
<td>Bodek</td>
</tr>
<tr>
<td>SLAC-E49</td>
<td>4-20</td>
<td>27</td>
<td>0.25-0.90</td>
<td>Bodek</td>
</tr>
<tr>
<td>SLAC-E139</td>
<td>8-24</td>
<td>4,9,12,27,40,56,108,197</td>
<td>0.089-0.8</td>
<td>Gomez</td>
</tr>
<tr>
<td>SLAC-E140</td>
<td>3.7-20</td>
<td>56,197</td>
<td>0.2-0.5</td>
<td>Dasu</td>
</tr>
<tr>
<td>DESY-HERMES</td>
<td>27.5</td>
<td>3,14,84</td>
<td>0.013-0.35</td>
<td>Airapetian</td>
</tr>
</tbody>
</table>
A or density dependence?

Density calculated assuming a uniform sphere of radius: $R_e (r=3A/4\pi R_e^3)$
The structure of the nucleon

Deep inelastic scattering: probe the constituents of the nucleon, i.e. the quarks and the gluons

4-momentum transfer squared

\[Q^2 = -q^2 = 4EE'\sin^2 \frac{\theta}{2} \]

Invariant mass squared

\[W^2 = M^2 + 2M\nu - Q^2 \]

Bjorken variable

\[x = \frac{Q^2}{2M\nu} \]

\[
\frac{d^2\sigma}{d\Omega dE'} = \sigma_{\text{Mott}} \left[\frac{1}{\nu} F_2(x,Q^2) + \frac{2}{M} F_1(x,Q^2)\tan^2 \frac{\theta}{2} \right]
\]