Experimental Overview Generalized Parton Distributions (GPDs)

Latifa Elouadrhiri Jefferson Lab

Lattice Hadron Physics July 31 – August 3, 2006

Outline

Generalized Parton Distributions - a unifying framework of hadron structure

Experiments to access GPDs

Deeply Virtual Compton Scattering
 Deeply Virtual Meson Production

JLab @ 12 GeV – A GPD factory

>Summary

How is the Proton Charge Density Related to its Quark Momentum distribution?

Proton form factors, transverse charge & current densities

Correlated quark momentum and helicity distributions in transverse space - GPDs Structure functions, quark longitudinal momentum & helicity distributions

From Inclusive to Exclusive Scattering

Link to DIS and Elastic Form Factors

Form factors (sum rules)

$$\int dx \sum_{q} \left[H^{q}(x,\xi_{1}) \right] = F_{1}(t) \text{ Dirac f.f.}$$

$$\int dx \sum_{q} \left[E^{q}(x,\xi_{1}) \right] = F_{2}(t) \text{ Pauli f.f.}$$

$$\int dx \sum_{q} \left[E^{q}(x,\xi_{1}) \right] = F_{2}(t) \text{ Pauli f.f.}$$

$$\int dx \widetilde{F}^{q}(x,\xi_{1}) = G_{A,q}(t), \int_{1}^{1} dx \widetilde{E}^{q}(x,\xi_{1}) = G_{P,q}(t)$$

$$H^{q}, E^{q}, \widetilde{H}^{q}, \widetilde{E}^{q}(x,\xi_{1})$$

$$Angular Momentum Sum Rule$$

$$J^{q} = \frac{1}{2} - J^{G} = \frac{1}{2} \int_{-1}^{1} x dx \left[H^{q}(x,\xi,0) + E^{q}(x,\xi,0) \right]_{X. \text{ Ji, Phy.Rev.Lett.78,610(1997)}}$$

Universality of GPDs

How can we determine the GPDs?

Accessing GPDs in exclusive processes

• Deeply virtual Compton scattering (clean probe, flavor blind)

• Hard exclusive meson production (quark flavor filter)

 $ep \rightarrow e' p' \pi \qquad Sensitive \ to \ \widetilde{H}, \ \widetilde{E} \qquad \stackrel{e}{\longrightarrow} \stackrel{e'}{\longrightarrow} \stackrel{\gamma^*}{\longrightarrow} \stackrel{M}{\longrightarrow} \stackrel{\gamma^*}{\longrightarrow} \stackrel{M}{\longrightarrow} \stackrel{\varphi'}{\longrightarrow} \stackrel{P'}{\longrightarrow} \qquad Sensitive \ to \ H, \ E \qquad \stackrel{p}{\longrightarrow} \stackrel{p'}{\longrightarrow} \stackrel{P'}{\longrightarrow} \stackrel{P'}{\longrightarrow} \qquad P'$

• 4 GPDs in leading order, 2 flavors (u, d) \rightarrow 8 measurements

Accessing GPDs through DVCS

Model representation of GPD $H(x,\xi,0)$

Measuring GPDs through polarization

$$\mathbf{A} = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-} = \frac{\Delta\sigma}{2\sigma}$$

Polarized beam, unpolarized target:

$$\Delta \sigma_{LU} \sim \frac{\sin \phi}{F_1 H} + \xi (F_1 + F_2) H + kF_2 E d\phi$$

$$\uparrow$$
Kinematically suppressed

$$\xi = x_{\rm B}/(2-x_{\rm B})$$
$$k = t/4M^2$$

 $H(\xi,t), E(\xi,t)$

Unpolarized beam, longitudinal target:

$$\Delta \sigma_{UL} \sim \frac{\sin \phi \operatorname{Im} \{F_1 \widetilde{H} + \xi(F_1 + F_2)(H + \xi/(1 + \xi)E) - ...\} d\phi}{\widetilde{H}(\xi, t)}$$

Kinematically suppressed

Unpolarized beam, transverse target:

 $\Delta \sigma_{\text{UT}} \sim \frac{\sin \phi}{k} Im \{k(F_2H - F_1E) +\} d\phi$

Kinematically suppressed

Pioneering experiments observe interference

First JLab experiment with GPDs in mind.

- Polarized electrons, E = 5.75 GeV
- Q² up to 5.5 GeV²
- x_B from 0.2 to 0.6

- Hadronic invariant mass W < 2.8 GeV

A first view at kinematical dependencies

$$\Delta \sigma_{LU} \sim \frac{\sin \phi}{1} \operatorname{Im} \{F_1 H + \xi (F_1 + F_2) H - t/4m^2 F_2 E\} d\phi$$

Measurements with polarized target will constrain the polarized GPDs and combined with beam SSA measurements would allow precision measurement of unpolarized GPDs.

First DVCS measurement with spin-aligned target

Unpolarized beam, longitudinally spin-aligned target:

$$\Delta \sigma_{UL} \sim \frac{\sin \phi}{1} \operatorname{Im} \{F_1 \widetilde{H} + \xi (F_1 + F_2) H + ... \} d\phi$$

Dedicated DVCS experiment at JLab Hall-A, 2004 - 2005

HRS + PbF₂ + Plastic scintillator H(e,e' γ p) D(e,e' γ N)N

Plastic scintillator array

Dedicated CLAS DVCS experiment

p

GPDs - Flavor separation

Photons cannot separate u/d quark contributions.

 $M = \rho^{0}/\rho^{+}, \omega \text{ select H, E, for u/d}$ quarks $M = \pi, \eta, K \text{ select H, E}$

Cross section $\sigma_L (\gamma^*_L p \rightarrow p \rho_L^0)$

In the past few years, we have made a start in the quest to unravel the Structure of the Proton.

What does the future hold?

Overview of 12 GeV Physics Program

Hall C – precision determination of valence quark properties in nucleons and nuclei

Hall A – short range correlations, form factors, hyper-nuclear physics, future new experiments

Initial Physics Program in Hall B at 12 GeV

□ GPD's and 3D-Imaging of the Nucleon

□ Valence Quark Distributions

General Form Factors and Resonance Excitations

Hadrons in the Nuclear Medium

Hadron Spectroscopy with quasi-real Photons

Deeply Virtual Exclusive Processes -Kinematics Coverage of the 12 GeV Upgrade

DVCS/BH-Beam Asymmetry

 $E_{e} = 11 \text{ GeV}$

With large acceptance, measure large Q^2 , x_B , t ranges simultaneously.

$$\begin{array}{l} A(Q^2, x_B, t) \\ \Delta \sigma(Q^2, x_B, t) \\ \sigma (Q^2, x_B, t) \end{array}$$

CLAS12 - DVCS/BH- Beam Asymmetry

CLAS12 - DVCS/BH Beam Asymmetry

CLAS12 - DVCS/BH Target Asymmetry

 $e \vec{p} \rightarrow ep\gamma$

Longitudinally polarized target

 $\Delta \sigma \sim \sin \phi \operatorname{Im} \{ F_1 \widetilde{H} + \xi (F_1 + F_2) H \dots \} d \phi$

Exclusive ρ^0 production on transverse target

K. Goeke, M.V. Polyakov, M. Vanderhaeghen, 2001

Double DVCS (DDVCS)

Summary

- DVCS beam spin asymmetries was extracted from two different CLAS data sets and for two different samples and was used to study GPDs.
- DVCS target spin asymmetry was extracted and compared with GPD based predictions (in publication).
- Studies of the exclusive π^0 background performed. Beam and target SSA extracted.
- High luminosity, polarized CW beam, wide kinematic and geometric acceptance allow studies of exclusive meson production in hard scattering kinematics, providing data needed to study GPDs.

Upgraded JLab: Combination of full acceptance, (CLAS12) and high luminosity detector will provide high precision measurements of 3D PDFs in the valence region.

Deeply Virtual Compton Scattering

JLab Upgrade to 12 GeV

GPD H from expected DVCS A_{LU} data

Other kinematics measured concurrently

CLAS12 - DVCS/BH Target Asymmetry

