Simulating at Realistic Quark Masses: some recent QCDSF results on Hadronic Structure

M. Göckeler, R. Horsley, Ph. Hägler, A. C. Irving, Y. Nakamura, D. Pleiter, P. E. L. Rakow, A. Schäfer, G. Schierholz, W. Schroers, T. Streuer, H. Stüben, J. M. Zanotti

Regensburg - Edinburgh - München - Liverpool - DESY - ZIB-FU (Berlin)

– QCDSF-UKQCD Collaboration –

[LHP 2006, Jefferson Lab]

(日) (同) (日) (日)

Contents:

• Introduction

- The Problem
- Our present Situation

3

・ロト ・回ト ・ヨト ・ヨト

Contents:

• Introduction

- The Problem
- Our present Situation

• The pseudoscalar decay constants

- (Partially Quenched) Chiral Perturbation Theory
 - * Expectations from LO + NLO χ PT
 - * Practical Implementation
 - * Enhanced Chiral Logarithms
- The Lattice Approach
 - ★ O(a) improvement
 - * Renormalisation
- Results
 - * Enhanced Chiral Logarithms
 - * f_{π^+} / f_{K^+}
 - ★ Continuum extrapolation attempts

< ロ > < 回 > < 回 > < 回 > < 回 >

Contents:

• Introduction

- The Problem
- Our present Situation

• The pseudoscalar decay constants

- (Partially Quenched) Chiral Perturbation Theory
 - * Expectations from LO + NLO χ PT
 - * Practical Implementation
 - Enhanced Chiral Logarithms
- The Lattice Approach
 - ★ O(a) improvement
 - * Renormalisation
- Results
 - * Enhanced Chiral Logarithms
 - * f_{π^+} / f_{K^+}
 - Continuum extrapolation attempts
- Moments of Unpolarised Nucleon Structure Functions
 - The lattice method
 - Results for the first [second] moment
 - Comparisons with previous results
- Moments of Polarised Nucleon Structure Functions
 - Results for g_A
- Conclusions

< ロ > < 回 > < 回 > < 回 > < 回 >

Introduction

• Lattice simulations for QCD give first principle results

э

・ロト ・四ト ・ヨト ・ヨト

Introduction

- Lattice simulations for QCD give first principle results
- but need to have control of [ideally in this order]: 'Limit'
 - Statistical errors, $N_{conf} \sim O(1000)$ $N_{conf} \rightarrow \infty$ $I \rightarrow \infty$
 - Volume: $L \sim 1.5 \text{ fm} \rightarrow 3 \text{ fm}$
 - Scaling violations: $a \sim 0.1 \, \text{fm} \rightarrow 0.04 \, \text{fm}$
 - Chiral extrapolation: $m_{ps} \sim 500 \text{ MeV} \rightarrow 200 \text{ MeV}$ $m_{
 m ps} \rightarrow m_{\pi} = 140 \, {\rm MeV}$
- difficult, need Tflop++ machines to approach the theoretical goal

 $a \rightarrow 0$

Wilson-type fermions

As emphasised by Lüscher

Lat05, hep-lat/0509152

Wilson fermions are:

- Well understood
- Non-perturbative improvement/renormalisation exists
 - 'Clover' variation, discretisation errors are $O(a^2)$
 - (Some) NP Zs known (Schrödinger functional or RI' MOM)
- Much experience with quenched QCD

Problem is that simulations for light quark masses are very costly

Recent advances:

- Faster machines have become available
 - ► Bluegenes (~ Tflop):
 - ★ ZAM (Jülich)
 - * KEK (Tsukuba)
 - ★ EPCC (Edinburgh)
- Improvements in HMC algorithm
 - Hasenbusch (introduce auxilliary mass)
 - 3 time scales (one for Wilson glue, two for Wilson fermions)

Unquenched $[n_f = 2]$ Fermions

O(a) improved fermions: 5.20, 5.25, 5.26, 5.29, 5.40 data sets

$2005 \rightarrow 2006 \text{ status}$

β	ĸsea	Volume	Trajectories	Group
5.20	0.1342	$16^3 \times 32$	5100	QCDSF
5.20	0.1350	$16^3 \times 32$	8000	UKQCD
5.20	0.1355	$16^3 \times 32$	8100	UKQCD
5.25	0.1346	$16^3 \times 32$	5800	QCDSF
5.25	0.1352	$16^3 \times 32$	7300	UKQCD
5.25	0.13575	$24^3 \times 48$	6000	QCDSF
5.26	0.1345	$16^3 \times 32$	4100	UKQCD
5.29	0.1340	$16^3 \times 32$	3900	UKQCD
5.29	0.1350	$16^{3} \times 32$	5700	QCDSF
5.29	0.1355	$24^3 \times 48$	2100	QCDSF
5.29	0.1359	$24^3 \times 48$	4900	QCDSF
5.29	0.1362	$24^3 \times 48$	3400	QCDSF
5.29	0.13632	$32^3 \times 64$	1200	QCDSF
5.40	0.1350	$24^3 \times 48$	3800	QCDSF
5.40	0.1356	$24^3 \times 48$	3400	QCDSF
5.40	0.1361	$24^{3} \times 48$	3600	QCDSF
5.40	0.1364	$24^3 \times 48$	2800	QCDSF

<ロ> <四> <四> <三</p>

 $a \sim 0.011 \, \text{fm} \rightarrow 0.07 \, \text{fm}$

LHP 2006, August 1, 2006 6 / 39

-

Force between static quarks – 'force unit/scale', r_0

$$r^2 F(r) \big|_{r=r_0} = 1.65$$

[Sommer, eg hep-ph/9711243]

• scale: r₀ experimental value less well known

- From Cornell potential: $r_0 = 0.5 \text{ fm} \equiv (394.6 \text{ MeV})^{-1}$
- From nucleon mass: $r_0 = 0.467(33) \text{ fm} \equiv (422.5(29.9) \text{ MeV})^{-1}$

(QCDSF-UKQCD Collaboration)

< A i

Pseudoscalar masses

• Consistent linear behaviour: $(r_0 m_{ps})^2 \propto a m_a^{Wl}$

(QCDSF-UKQCD Collaboration)

臣

<ロ> <四> <四> <三</p>

Pseudoscalar decay constants

 $[\mathcal{M}^{q_1 q_2} \equiv \rho s]$ $[\mathcal{A}^{q_1 q_2}_{\mu} \equiv \bar{q_1} \gamma_{\mu} \gamma_5 q]$

$$\langle 0 | \mathcal{A}_{\mu}(0) | \textit{ps}(ec{p})
angle = i \sqrt{2} \textit{f}_{\it{ps}} \textit{p}_{\mu}$$

$$\Gamma(ps^{\pm} \to l^{\pm}\overline{\nu}_{l}) = \frac{G_{F}^{2}}{8\pi} |V_{q_{1}q_{2}}|^{2} f_{ps}^{2} m_{ps} m_{l}^{2} \left(1 - \frac{m_{l}^{2}}{m_{ps}^{2}}\right)^{2}$$

Including radiative corrections give

 $\pi^+ \sim u \bar{d}, \ K^+ \sim u \bar{s}$

$$\begin{aligned} \pi^+ &\to \mu^+ \bar{\nu}_\mu & f_{\pi^+} = 92.42 \pm 0.07 \pm 0.25 \, \text{MeV} \\ K^+ &\to \mu^+ \bar{\nu}_\mu & f_{K^+} = 113.0 \pm 1.0 \pm 0.3 \, \text{MeV} \end{aligned}$$

- 2

・ロト ・回ト ・ヨト ・ヨト

(Partially Quenched) Chiral Perturbation Theory

$$\frac{f_{ps}^{AB}}{f_0} = 1 + \left(\frac{1}{2}n_f\alpha_4 - \frac{1}{2n_f}\right)\chi_S + \left(\frac{1}{2}\alpha_5 + \frac{1}{2n_f}\right)\chi_{AB} + \frac{1}{2n_f}\left(\frac{\chi_A\chi_B - \chi_S\chi_{AB}}{\chi_B - \chi_A}\ln\frac{\chi_A}{\chi_B}\right) - \frac{1}{4}n_f\left(\chi_{AS}\ln\chi_{AS} + \chi_{BS}\ln\chi_{BS}\right)$$

$$\left(\frac{m_{ps}^{AB}}{4\pi f_0}\right)^2 = \chi_{AB} \left[1 + n_f (2\alpha_6 - \alpha_4)\chi_5 + (2\alpha_8 - \alpha_5)\chi_{AB} + \frac{1}{n_f} \frac{\chi_A(\chi_S - \chi_A)\ln\chi_A - \chi_B(\chi_S - \chi_B)\ln\chi_B}{\chi_B - \chi_A}\right]$$

with

$$\chi_{AB} = rac{B_0^{\mathcal{S}}(m_A + m_B)^{\mathcal{S}}}{(4\pi f_0)^2} \qquad A, B \in \{V_1, V_2, S\}$$

• n_f [= 2] mass degenerate sea, S, quarks; valence, V, quarks • LO + NLO Bernard et al., hep-lat/9306005; Sharpe, hep-lat/9707018 [NNLO - Bijnens hep-lat/0506004] • α_i are LECs evaluated at scale $\mu = \Lambda_{\chi} = 4\pi f_0 \sim 1160$ MeV

(QCDSF-UKQCD Collaboration)

Simulating at Realistic Quark Masses . . .

LHP 2006, August 1, 2006 10 / 39

 $\chi_A \equiv \chi_{AA}$

Practically

- In f_{ps}^{AB} eliminate χ_{AB} in favour of m_{ps}^{AB} (LO result sufficient)
- Re-scale

$$\frac{m_{\rho s}^{AB}}{4\pi f_0} = c_m^S M_{\rho s}^{AB} \qquad \frac{f_{\rho s}^{AB}}{f_0} = c_f^S F_{\rho s}^{AB}$$

for example

$$M^{AB}_{\rho s} = r^S_0 m^{AB}_{\rho s} \quad \leftrightarrow \quad c^S_m = \frac{1}{4\pi r^S_0} \qquad \qquad F^{AB}_{\rho s} = r^S_0 m^{AB}_{\rho s} \quad \leftrightarrow \quad c^S_f = \frac{1}{i_0 r^S_0}$$

where r_0^S is the (force)-scale

For example to give (on expanding to $O(\chi^2)$) the [fit] function

$$\begin{aligned} F_{\rho s}^{V} &= f_{a} + f_{b} (M_{\rho s}^{S})^{2} + f_{c} (M_{\rho s}^{V})^{2} \\ &+ f_{d} \left((M_{\rho s}^{S})^{2} + (M_{\rho s}^{V})^{2} \right) \ln \left((M_{\rho s}^{S})^{2} + (M_{\rho s}^{V})^{2} \right) \end{aligned}$$

for degenerate quark masses A = V, B = V

・ロト ・四ト ・ヨト ・ヨト

E 990

Enhanced Chiral Logarithms

Potential problem

term
$$\propto ((M_{ps}^S)^2 + (M_{ps}^V)^2) \ln ((M_{ps}^S)^2 + (M_{ps}^V)^2)$$

which for fixed $(M_{ps}^S)^2$ does not vary much with $(M_{ps}^V)^2$

• Wish for a term

term
$$\propto (M^S_{
ho s})^2 \ln (M^V_{
ho s})^2$$

• Construct ratio

disadvantage: $A = V \neq B = S$ required

$$R = \frac{F_{ps}^{VS}}{\sqrt{F_{ps}^{V}F_{ps}^{S}}} - 1$$

= $c \left((M_{ps}^{S})^{2} \ln \frac{(M_{ps}^{V})^{2}}{(M_{ps}^{S})^{2}} + (M_{ps}^{S})^{2} - (M_{ps}^{V})^{2} \right)$

for example with r_0 scale

$$c=-\frac{1}{4n_f}\left(\frac{1}{4\pi f_0r_0}\right)^2$$

(QCDSF-UKQCD Collaboration)

- 3

Pion and Kaon decay constants

Degenerate valence quark masses (A = V = B) are sufficient

did not have to be the case

3

・ロト ・四ト ・ヨト ・ヨト

Pion and Kaon decay constants

Degenerate valence quark masses (A = V = B) are sufficient

did not have to be the case

Have

- Sea: $m_q^S \equiv m_{ud} = \frac{1}{2}(m_u + m_d) up/down quarks$
- Valence: *m*_q^V - 3 possible valence quarks
 - * m_s strange quark
 - $\star~m_u = m_{ud} \Delta m_{ud},~m_d = m_{ud} + \Delta m_{ud}$ up/down quarks

 $K^+ \sim u\overline{s}, \ \pi^+ \sim u\overline{d}$

イロト 不得 とうき とうとう ほう

Pion and Kaon decay constants

Degenerate valence quark masses (A = V = B) are sufficient

did not have to be the case

Have

- Sea: $m_q^S \equiv m_{ud} = \frac{1}{2}(m_u + m_d) up/down quarks$
- ► Valence: $m_q^V - 3$ possible valence quarks * m_s - strange quark * $m_u = m_{ud} - \Delta m_{ud}$, $m_d = m_{ud} + \Delta m_{ud} - up/down quarks$
- Again manipulate structural form of LO + NLO equations to give

$$F_{\pi^{+}} = f_{a} + (f_{b} + f_{c} + 2f_{d} \ln 2)M_{\pi^{+}}^{2} + 2f_{d}M_{\pi^{+}}^{2} \ln M_{\pi^{+}}^{2} + O((\Delta m_{ud})^{2})$$

$$F_{K^{+}} = f_{a} + \left(f_{b} + f_{d}\left(\ln 2 - \frac{2}{n_{f}^{2}}\right)\right)M_{\pi^{+}}^{2} + \left(f_{c} + f_{d}\frac{2}{n_{f}^{2}}\right)M_{K^{+}}^{2}$$

$$+ f_{d}\left(1 - \frac{1}{n_{f}^{2}}\right)M_{\pi^{+}}^{2} \ln M_{\pi^{+}}^{2} + f_{d}\left(M_{K^{+}}^{2} + \frac{1}{n_{f}^{2}}M_{\pi^{+}}^{2}\right)\ln\left(2M_{K^{+}}^{2} - M_{\pi^{+}}^{2}\right)$$

$$+ O(\Delta m_{ud})$$

- B

(日) (同) (日) (日)

The Lattice Approach \mathcal{A}_{μ} is an O(a) improved operator:

 $[A_{\mu} = \overline{q}_1 \gamma_{\mu} \gamma_5 q_2, P = \overline{q}_1 \gamma_5 q_2]$

$$egin{aligned} \mathcal{A}_{\mu} &= Z_{A} \mathcal{A}_{\mu}^{\scriptscriptstyle MP} \qquad \mathcal{A}_{\mu}^{\scriptscriptstyle MP} &= \left(1 + rac{1}{2} b_{A} (am_{q_{1}} + am_{q_{2}})
ight) \left(\mathcal{A}_{\mu} + c_{A} a \partial_{\mu} P
ight) \ & \left\langle 0 | \mathcal{A}_{4} | ps
ight
angle &= rac{f_{
hos}}{\sqrt{2}} m_{
hos} \end{aligned}$$

Compute

$$C_{\mathcal{O}_1\mathcal{O}_2}(t) = \langle \mathcal{O}_1(t)\mathcal{O}_2^{\dagger}(0)\rangle \equiv A_{\mathcal{O}_1\mathcal{O}_2}\left[e^{-m_{ps}t} + \tau_1\tau_2 e^{-m_{ps}(T-t)}\right]$$

where

$$A_{\mathcal{O}_{1}\mathcal{O}_{2}} = \frac{1}{2m_{ps}} \langle 0|\mathcal{O}_{1}|ps\rangle \langle 0|\mathcal{O}_{2}|ps\rangle^{*}$$

giving

$$f_{
ho s} = Z_A \left(1 + rac{1}{2} b_A (am_{q_1} + am_{q_2})
ight) \left(f_{
ho s}^{(0)} + c_A a f_{
ho s}^{(0)}
ight)$$

with

$$f_{\rho s}^{(0)} = -\sqrt{\frac{2}{m_{\rho s}}} \frac{A_{A_4 P}^{LS}}{\sqrt{A_{\rho p}^{LS}}} \qquad \frac{a f_{\rho s}^{(1)}}{f_{\rho s}^{(0)}} = a m_{\rho s} \frac{A_{\rho p}^{LS}}{A_{A_4 P}^{LS}}$$

- 12

白 ト イヨト イヨト

Renormalisation, Improvement Coefficients

- c_A NP determination, ALPHA: hep-lat/0505026
- b_A only known perturbatively, use TI-BPT but expect $b_A a m_q \ll 1$
- Z_A

ALPHA - Schrödinger Functional - hep-lat/0505026

QCDSF - RI'-MOM - hep-lat/0603028

A first peek at the sea quark results:

э

<ロ> <四> <四> <三</p>

Enhanced Chiral Logarithms

Recall:

$$R = \frac{(r_0^S f_{ps}^{VS})}{\sqrt{(r_0^S f_{ps}^V)(r_0^S f_{ps}^S)}} - 1$$

giving

$$R = c \left((r_0^S m_{ps}^S)^2 \ln \frac{(r_0^S m_{ps}^V)^2}{(r_0^S m_{ps}^S)^2} + (r_0^S m_{ps}^S)^2 - (r_0^S m_{ps}^V)^2 \right)$$

with

$$c = -\frac{1}{4n_f} \left(\frac{1}{4\pi f_0 r_0}\right)^2 = \begin{cases} -0.0144 & r_0 = 0.5 \text{ fm} \\ -0.0165 & r_0 = 0.467 \text{ fm} \end{cases}$$

 $f_0 \approx 92.4 \, {\rm MeV}$

- 2

・ロト ・回ト ・ヨト ・ヨト

• Some signs of activity for smaller quark mass $\leq m_s$

• But note y-axis scale - have subtracted 1, so really a very small effect

(QCDSF-UKQCD Collaboration)

3

★@> ★ E> ★ E>

Recall:

$$\begin{aligned} r_0^S f_{\rho s}^V &= f_a + f_b (r_0^S m_{\rho s}^S)^2 + f_c (r_0^S m_{\rho s}^V)^2 \\ &+ f_d \left((r_0^S m_{\rho s}^S)^2 + (r_0 m_{\rho s}^V)^2 \right) \ln \left((r_0^S m_{\rho s}^S)^2 + (r_0^S m_{\rho s}^V)^2 \right) \end{aligned}$$

- Do not expect much influence from the chiral logarithms
- f_a, f_b, f_c, f_d taken as fit coefficients (and then extrapolated to a² → 0)
 Then gives r₀f_{π⁺}, r₀f_{K⁺}:

$$\begin{split} r_0 f_{\pi^+} &= f_a + (f_b + f_c + 2f_d \ln 2)(r_0 m_{\pi^+})^2 + 2f_d (r_0 m_{\pi^+})^2 \ln(r_0 m_{\pi^+})^2 \\ r_0 f_{K^+} &= f_a + \left(f_b + f_d \left(\ln 2 - \frac{2}{n_f^2} \right) \right) (r_0 m_{\pi^+})^2 + \left(f_c + f_d \frac{2}{n_f^2} \right) (r_0 m_{K^+})^2 \\ &+ f_d \left(1 - \frac{1}{n_f^2} \right) (r_0 m_{\pi^+})^2 \ln(r_0 m_{\pi^+})^2 + f_d \left((r_0 m_{K^+})^2 + \frac{1}{n_f^2} (r_0 m_{\pi^+})^2 \right) \ln \left(2(r_0 m_{K^+})^2 - (r_0 m_{\pi^+})^2 \right) \end{split}$$

• Practically eliminate f_a in terms of $r_0 f_{\pi^+}$ or $r_0 f_{K^+}$

3

(a)

 $\beta = 5.29$

臣

 $\beta = 5.40$

3

(日) (四) (日) (日) (日)

'Continuum Limit' for $r_0 f_{\pi^+}$, $r_0 f_{K^+}$

LHP 2006, August 1, 2006 22 / 39

E

(日) (四) (日) (日) (日)

f_{π^+}, f_{K^+} :

Taking as an example the $\beta = 5.29$ results gives

 $r_0 = 0.5 \, \text{fm}$

$$f_{\pi^+} = 70 \pm 3 \text{ MeV}$$

 $f_{K^+} = 85 \pm 3 \text{ MeV}$

Compare

 $\begin{array}{lll} f_{\pi^+} &=& 92.42 \pm 0.07 \pm 0.25 \ {\rm MeV} \\ f_{K^+} &=& 113.0 \pm 1.0 \pm 0.3 \ {\rm MeV} \end{array}$

so about a 20% discrepancy

- Some evidence of chiral logarithms, influence is problematic
- Values of decay constants too small in comparison with experiment Perhaps partially due to scale setting:

$$\frac{f_{K^+}}{f_{\pi^+}} = 1.219 \qquad \left(\frac{f_{K^+}}{f_{\pi^+}}\right)_{expt} = 1.223$$

Moments of Unpolarised Nucleon Structure Functions

$$\int_0^1 dx x^{n-2} F^{\scriptscriptstyle N\!\scriptscriptstyle S}(x,Q^2) = f E^{\scriptscriptstyle S}_{F;v_n}\left(\frac{M^2}{Q^2},g^{\scriptscriptstyle S}(M)\right) v^{\scriptscriptstyle S}_n(g^{\scriptscriptstyle S}(M))$$

• Matrix elements v_n are given by

$$\langle N(\vec{p}) | \left[\mathcal{O}_q^{\{\mu_1 \cdots \mu_n\}} - \operatorname{Tr} \right] | N(\vec{p}) \rangle^{\mathcal{S}} \equiv 2 v_n^{(q) \mathcal{S}} [p^{\mu_1} \cdots p^{\mu_n} - \operatorname{Tr}]$$

- Matrix elements can be measured on the lattice
- Results have to be renormalised either to RGI form or in a scheme (e.g. MS) and scale (e.g. 2 GeV)
 Use NP RI'-MOM scheme and then convert via RGI to MS scheme
- Extrapolation to chiral and continuum limit

(a)

Operators

where

$$\mathcal{O}_{q;\mu_1\cdots\mu_n}^{\mathsf{\Gamma}} = \overline{q} \Gamma_{\mu_1\cdots\mu_i} \stackrel{\leftrightarrow}{D}_{\mu_{i+1}} \cdots \stackrel{\leftrightarrow}{D}_{\mu_n} q$$

 v_{2a} , v_{2b} are different representations of the same continuum operator

- 2

・ロト ・回ト ・ヨト ・ヨト

Determining the matrix element

$$R_{\Gamma}(t, au;ec{p};\mathcal{O}) = rac{C_{\Gamma^{unpol}}(t, au;ec{p};\mathcal{O})}{C_{\Gamma^{unpol}}(t;ec{p})}$$

For $0 \ll \tau \ll t \ll \frac{1}{2}N_T$ gives bare matrix elements v_n :

$$\begin{split} &R_{\Gamma unpol}(t,\,\tau;\vec{p}_{1};\mathcal{O}_{V_{2a}}) &= ip_{1}v_{2a} \\ &R_{\Gamma unpol}(t,\,\tau;\vec{p};\mathcal{O}_{V_{2b}}) &= -\frac{E_{\vec{p}}^{2}+\frac{1}{3}\vec{p}^{2}}{E_{\vec{p}}}v_{2b} \\ &R_{\Gamma unpol}(t,\,\tau;\vec{p}_{1};\mathcal{O}_{V_{3}}) &= -p_{1}^{2}v_{3} \\ &R_{\Gamma unpol}(t,\,\tau;\vec{p}_{1};\mathcal{O}_{V_{4}}) &= E_{\vec{p}_{1}}p_{1}^{2}v_{4} \end{split}$$

・ロト ・回ト ・ヨト ・ヨト

Non-singlet:
$$v_{n;NS} \equiv v_n^{(u)} - v_n^{(d)}$$

- E

3

Results: v_{2b}

(QCDSF-UKQCD Collaboration)

◆□ → < 部 → < 速 → < 速 → < 速 → < 速 → < 2 < ? Q (*)</p>
LHP 2006, August 1, 2006 28 / 39

3

<ロ> <四> <四> <三</p>

Results: v₃

3

(日) (四) (日) (日) (日)

- \star is the MRS phenomenological result
- v_{2a}, v_{2b} in reasonable agreement
 - can have $O(a^2)$ differences
- $\vec{p} \neq 0$
 - ▶ v_{2a} , v_3 require $\vec{p} \neq \vec{0}$, so more noisy [This is worse for v_4]

No real bending down to the phenomenological result - for 400 - 350 MeV pseudoscalar masses [$n_f = 2$ clover fermions]

How does this compare with other results?

(a)

Results: v_{2b} for quenched clover ($\geq m_s$)

3

<ロ> <四> <四> <三</p>

• χ PT e.g. Detmold et al: [hep-lat/0103006]

 $[x = r_0 m_{ps}]$

$$w_{2;NS}(x) = a_2 x^2 + b_2 \left(1 - c x^2 \ln \frac{x^2}{(x^2 + (r_0 \Lambda_{\chi})^2)} \right)$$

- Expect: $c = (3g_A^2 + 1)/(4\pi r_0 f_\pi)^2 \sim 0.28$, qu, or 0.67, QCD, $\Lambda_\chi \sim 1 {
 m GeV}$
- Find: $c \sim$ 4.4, $\Lambda_{\chi} \sim$ 300 MeV

3

<ロ> <四> <四> <三</p>

Results: v_{2b} for (quenched) overlap

[MS scheme at 2 GeV,]

• $\beta \approx 8.0 \sim \text{Wilson } \beta \sim 5.9$

• O(1000) configurations, $16^3 \times 32$ lattice (Wilson up to $32^3 \times 48$ lattice)

(a)

Tentative conclusion:

- For $(r_0 m_{ps})^2 \sim 1$ or $m_{ps} \sim 400 \, {
 m MeV}$ flat
- For $(r_0 m_{ps})^2 \sim 0.7$ or $m_{ps} \sim 350 \, {
 m MeV}$ no real evidence of bending
- Last two overlap fermion results:
 - $(r_0 m_{ps})^2 \sim 0.56 \text{ or } m_{ps} \sim 300 \text{ MeV}$
 - $(r_0 m_{ps})^2 \sim 0.34$ or $m_{ps} \sim 250 \, {
 m MeV}$

some bending (?)

Need to get below $m_{ps} \sim 300 \,\text{MeV}$ (and perhaps use chiral fermions)

- B

< □ > < □ > < □ > < □ > < □ > < □ >

Moments of Polarised Nucleon Structure Functions

Axial Charge - Bjorken Sum rule

$$\int_{0}^{1} dx g_{1}^{p-n}(x, Q^{2}) = \frac{1}{6} E_{g_{1};a_{0};NS}(Q^{2})(\underbrace{\Delta u - \Delta d}_{g_{A}})$$

• Matrix element given by

$$\langle \vec{p}, \vec{s} | \overline{q} \gamma^{\mu} \gamma_5 q | \vec{p}, \vec{s} \rangle = 2 s^{\mu} \Delta q^{\mathcal{S}}(\mathcal{M})$$

Can be found from ratio:

$$[\vec{p} = \vec{0} \text{ possible}]$$

$$R_{\Gamma^{pol}}(t,\tau;\vec{p};\mathcal{A}_{\mu}) = \begin{cases} -\frac{\vec{p}\cdot\vec{s}}{m_{N}E_{\vec{p}}}\Delta q_{bare} & \mu = 4\\ \frac{i}{m_{N}}\left(\frac{m_{N}}{E_{\vec{p}}}\vec{s} + \frac{\vec{p}\cdot\vec{s}}{E_{\vec{p}}(E_{\vec{p}}+m_{N})}\vec{p}\right)_{i}\Delta q_{bare} & \mu = i \end{cases}$$

• Renormalization requires Z_A (cf f_{ps})

- B

Results: g_A

• Certainly no sign of an upward trend

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ♪ < □ ♪ < □ ∧ < ○ </p>
LHP 2006, August 1, 2006 37 / 39

Strange Quark Mass - a potential problem

<ロ> <四> <四> <三</p>

Conclusions

Use of

- 2-flavour QCD [O(a) improved]
- Light quarks down to $m_q/m_s \sim rac{1}{4}$
- a down to \sim 0.07 fm

gives

- *f_{ps}*:
 - Some evidence of chiral logarithms, influence is problematic
 - Values of decay constants too small in comparison with experiment [perhaps partially due to scale setting (?)]
- V₂, V₃, g_A:
 - Still no sign of approach to phenomenological values
 - Little difference to quenched QCD
 - Apparently need $m_{ps} \lesssim 300 \, {
 m MeV}$
 - Need large data sets

'New Horizons':

- $\beta = 5.70, 32^3 \times 64, 48^3 \times 64$ lattices
- $m_{ps}\sim 400~{
 m MeV}-250~{
 m MeV}$
- *a* ≲ 0.05 fm

- 34

<ロ> (日) (日) (日) (日) (日)