School of Physics, The University of Edinburgh

Outline

- Approximation theory
© Polynomials versus Rationals
- Symplectic Integrators
- Multiple timescale integrators
- Instabilities
*. Higher-order integrators
- Multiple pseudofermions
- Hasenbusch's trick
- RHMC
- Comparison with R algorithm
* Testimonials from satisfied customers
c Domain Wall fermions
e Wilson-like fermions
- Berlin Wall

Conclusions

Чебышев's theorem

- Чебышев: There is always a unique rational function of any degree (n, d) which minimises

$$
\|r-f\|_{\infty}=\max _{0 \leq x \leq 1}|r(x)-f(x)|
$$

- The error $|r(x)-f(x)|$ reaches its maximum at exactly $n+d+2$ points on the unit interval

Чебышев rationals: Example

- A realistic example of a rational approximation is

$$
\frac{1}{\sqrt{x}} \approx 0.3904603901 \frac{(x+2.3475661045)(x+0.1048344600)(x+0.0073063814)}{(x+0.4105999719)(x+0.0286165446)(x+0.0012779193)}
$$

e This is accurate to within almost 0.1% over the range $[0.003,1]$

- Using a partial fraction expansion of such rational functions allows us to use a multishift linear equation solver, thus reducing the cost significantly.
The partial fraction expansion of the rational function above is
$\frac{1}{\sqrt{x}} \approx 0.3904603901+\frac{0.0511093775}{x+0.0012779193}+\frac{0.1408286237}{x+0.0286165446}+\frac{0.5964845033}{x+0.4105999719}$
© This appears to be numerically stable.

Polynomials v Rationals: Theory

Золотарев's formula has L_{∞} error $\Delta \leq e^{\frac{n}{n s}}$
Optimal L_{2} approximation with weight $\frac{1}{\sqrt{1-x^{2}}}$
is

$$
\sum_{j=0}^{n} \frac{(-)^{j} 4}{(2 j+1) \pi} T_{2 j+1}(x)
$$

- This has L_{2} error of $O(1 / n)$

Optimal L_{∞} approximation cannot be too much better (or it would lead to a better L_{2} approximation)

Polynomials v Rationals: Data

Symplectic Integrators: I

Baker-Campbell-Hausdorff (BCH) formula
© If A and B belong to any (non-commutative) algebra then $e^{A} e^{\beta}=e^{4+B+\delta}$, where δ constructed from commutators of A and B (i.e., is in the Free Lie Algebra generated by $\{A, B\}$)
© More precisely, $\ln \left(e^{A} e^{B}\right)=\sum_{n \geq 1} c_{n}$ where $c_{1}=A+B$ and

$$
C_{n+1}=\frac{1}{n+1}\left\{-\frac{1}{2}\left[c_{n}, A-B\right]+\sum_{m=0}^{\lfloor n / 2 \mid} \frac{B_{2 m}}{(2 m)!} \sum_{\substack{k_{1}, \ldots, k_{2} m \geq 1 \\ k_{1}+\cdots+k_{2 m} m}}\left[c_{k_{1}},\left[\ldots,\left[c_{k_{2 m} \prime} A+B\right] \ldots\right]\right]\right\}
$$

Symplectic Integrators: II

- Explicitly, the first few terms are

$$
\begin{aligned}
& \ln \left(e^{A} e^{B}\right)=\{A+B\}+\frac{1}{2}[A, B]+\frac{1}{12}\left\{\left[A_{1}[A, B]\right]-[B,[A, B]]\right\}-\frac{1}{24}\left[B_{,}[A,[A, B]]\right] \\
&++\frac{1}{120}\left\{\begin{array}{l}
-[A,[A,[A,[A, B]]]]-4[B,[A,[A,[A, B]]]] \\
\\
\\
-6[[A, B],[A,[A, B]]]+4[B,[B,[A,[A, B]]]]\}+\cdots \\
-2[[A, B],[B,[A, B]]]+[B,[B,[B,[A, B]]]]
\end{array}\right\}
\end{aligned}
$$

- In order to construct reversible integrators we use symmetric symplectic integrators
- The following identity follows directly from the BCH formula

$$
\left.\left.\begin{array}{rl}
\ln \left(e^{A / 2} e^{B} e^{A / 2}\right)=\{A+B\}+\frac{1}{24}\{[A,[A, B]]-2[B,[A, B]]\} \\
+ & \left.\begin{array}{l}
7[A,[A,[A,[A, B]]]]+28[B,[A,[A,[A, B]]]] \\
5760
\end{array}+12[[A, B],[A,[A, B]]]+32[B,[B,[A,[A, B]]]]\right\}+\cdots \\
-16[[A, B],[B,[A, B]]]+8[B,[B,[B,[A, B]]]]
\end{array}\right\}\right)
$$

Symplectic Integrators: III

We are interested in finding the classical trajectory in phase space of a system described by the Hamiltonian $H(q, p)=T(p)+S(q)=\frac{1}{2} p^{2}+S(q)$

* The basic idea of such a symplectic integrator is to write the time evolution operator as

$$
\begin{aligned}
\exp \left(\tau \frac{d}{d t}\right) & =\exp \left(\tau\left\{\frac{d p}{d t} \frac{\partial}{\partial p}+\frac{d q}{d t} \frac{\partial}{\partial q}\right\}\right) \\
& =\exp \left(\tau\left\{-\frac{\partial H}{\partial q} \frac{\partial}{\partial p}+\frac{\partial H}{\partial p} \frac{\partial}{\partial q}\right\}\right)=e^{\tau \hat{H}} \\
& =\exp \left(\tau\left\{-S^{\prime}(q) \frac{\partial}{\partial p}+T^{\prime}(p) \frac{\partial}{\partial q}\right\}\right)
\end{aligned}
$$

Symplectic Integrators: IV

- Define $Q \equiv T^{\prime}(p) \frac{\partial}{\partial q}$ and $P \equiv-S^{\prime}(q) \frac{\partial}{\partial p}$ so that $\hat{H}=P+Q$

C Since the kinetic energy T is a function only of p and the potential energy S is a function only of q, it follows that the action of $e^{\tau P}$ and $e^{\tau Q}$ may be evaluated trivially

$$
\begin{aligned}
& e^{\tau Q}: f(q, p) \mapsto f\left(q+\tau T^{\prime}(p), p\right) \\
& e^{\tau P}: f(q, p) \mapsto f\left(q, p-\tau S^{\prime}(q)\right)
\end{aligned}
$$

Symplectic Integrators: V

c From the BCH formula we find that the PQP symmetric symplectic integrator is given by

$$
\begin{aligned}
U_{0}(\delta \tau)^{\tau / \delta \tau} & =\left(e^{\frac{1}{2} \delta \tau P} e^{\delta \tau Q} e^{\frac{1}{2} \delta \tau P}\right)^{\tau / \delta \tau} \\
& =\left(\exp \left[(P+Q) \delta \tau-\frac{1}{24}([P,[P, Q]]+2[Q,[P, Q]]) \delta \tau^{3}+O\left(\delta \tau^{5}\right)\right]\right)^{\tau / \delta \tau} \\
& =\exp \left[\tau\left((P+Q)-\frac{1}{24}([P,[P, Q]]+2[Q,[P, Q]]) \delta \tau^{2}+O\left(\delta \tau^{4}\right)\right)\right] \\
& =e^{\tau \hat{H}^{\prime}}=e^{\tau(P+Q)}+O\left(\delta \tau^{2}\right)
\end{aligned}
$$

* In addition to conserving energy to $O\left(\delta \tau^{2}\right)$ such symmetric symplectic integrators are manifestly area preserving and reversible

Symplectic Integrators: VI

- For each symplectic integrator there exists a nearby Hamiltonian H^{\prime} which is exactly conserved
* This is obtained by replacing commutators with Poisson brackets in the BCH formula
© For the PQP integrator we have

$$
\begin{aligned}
H^{\prime} & =P+Q-\frac{1}{24}\left(\{P,\{P, Q\}\}+2\left\{Q_{1}\{P, Q\}\right\}\right) \delta \tau^{2}+O\left(\delta \tau^{4}\right) \\
& =H+\frac{1}{24}\left\{2 p^{2} S^{\prime \prime}-S^{\prime 2}\right\} \delta \tau^{2} \\
& +\frac{1}{720}\left\{-p^{4} S^{(4)}+6 p^{2}\left(S^{\prime} S^{\prime \prime \prime}+2 S^{\prime \prime 2}\right)-3 S^{\prime 2} S^{\prime \prime}\right\} \delta \tau^{4}+O\left(\delta \tau^{6}\right)
\end{aligned}
$$

- Note that H^{\prime} cannot be written as the sum of a p-dependent kinetic term and a q-dependent potential term
© As H^{\prime} is conserved, δH is of $O\left(\delta T^{2}\right)$ for arbitrary length trajectories

Symplectic Integrators: VII

- Multiple timescales

© Split the Hamiltonian into pieces $H(q, p)=T(p)+S_{1}(q)+S_{2}(q)$

- Define $Q \equiv T^{\prime}(p) \frac{\partial}{\partial q}$ and $P_{i} \equiv-S_{i}^{\prime}(q) \frac{\partial}{\partial p}$ so that $\hat{H}=P_{1}+P_{2}+Q$
© Introduce a symmetric symplectic integrator of the form
$U_{\mathrm{SW}}(\delta \tau)^{\tau / \delta \tau}=\left(e^{\frac{1}{2} \delta \tau P_{1}}\left[e^{\frac{1}{2 n} \delta \tau Q} e^{\frac{1}{n} \delta \tau P_{2}} e^{\frac{1}{2 n} \delta \tau Q}\right]^{n_{2}} e^{\frac{1}{2} \delta \tau P_{1}}\right)^{\tau / \delta \tau}$
© If $\frac{\|P\|_{1}}{2} \approx \frac{\left\|P_{2}\right\|}{n}$ then the instability in the integrator is tickled equally by each sub-step
- This helps if the most expensive force computation does not correspond to the largest force

Integrator Instability: Theory

- Consider a leapfrog integrator for free field theory
© The evolution is given by

$$
U(\tau)=\left(\begin{array}{cc}
\cos [\kappa(\delta \tau) \tau] & \frac{\sin [\kappa(\delta \tau) \tau]}{\rho(\delta \tau)} \\
-\rho(\delta \tau) \sin [\kappa(\delta \tau) \tau] & \cos [\kappa(\delta \tau) \tau]
\end{array}\right)
$$

v where

$$
\kappa(\delta \tau)=\frac{\cos ^{-1}\left(1-\frac{1}{2} \delta \tau^{2}\right)}{\delta \tau}, \rho(\delta \tau)=\sqrt{1-\frac{1}{4} \delta \tau^{2}}
$$

© This grows/oscillates with exponents

$$
v= \pm \frac{1}{\delta \tau} \operatorname{Re} \ln \left[\frac{1}{2} \delta \tau^{2}-1 \pm \sqrt{\frac{1}{4} \delta \tau^{2}-1}\right]
$$

Integrator Instability: Data

Higher-Order Integrators: I

- Campostrini and Rossi introduced an integrator with arbitrarily high-order errors
* But the longest constituent step is longer than the overall step size, so integrator instabilities are worse
Omelyan introduced an integrator to minimise the $\delta \tau$ error for a given number of sub-steps
* I. P. Omelyan, I. M. Mryglod and R. Folk, Comput. Phys. Commun. 151 (2003) 272
* Tetsuya Takaishi and Philippe de Forcrand, "Testing and tuning new symplectic integrators for Hybrid Monte Carlo algorithm in lattice QCD," hep-lat/0505020

Higher-Order Integrators: II

- These techniques help if the force is extensive (i.e., a bulk effect)
* Because the step size needs to be adjusted so that $V \delta \tau^{n}$ is constant for a fixed HMC acceptance rate
- They do not help if the force is due to one (or a small number) of light modes
* Here the HMC acceptance goes to zero because the symplectic integrator becomes unstable for a single mode
*. Hasenbusch's trick reduces the maximum force if it is due to noise coming from the pseudofermion fields
*. But not if the intrinsic fermionic force contribution is large.
- The volume dependence of the spectral density of the Wilson Dirac operator needs to be investigated

Non-linearity of CG solver

Suppose we want to solve $A^{2} x=b$ for Hermitian A by CG
2 It is better to solve $A x=y, A y=b$ successively
(Condition number $\kappa\left(A^{2}\right)=\kappa(A)^{2}$
C) Cost is thus $2 \kappa(A)<\kappa\left(A^{2}\right)$ in general

- Suppose we want to solve $A x=b$
* Why don't we solve $A^{1 / 2} x=y, A^{1 / 2} y=b$ successively?
- The square root of A is uniquely defined if $A>0$
© This is the case for fermion kernels
All this generalises trivially to $n^{\text {th }}$ roots
* No tuning needed to split condition number evenly

How do we apply the square root of a matrix?

Rational matrix approximation

Functions on matrices
D Defined for a Hermitian matrix by diagonalisation
$\Delta H=U D U^{-1}$
$\Delta f(H)=f\left(U D U^{-1}\right)=U f(D) U^{-1}$
Rational functions do not require diagonalisation
$\alpha H^{m}+\beta H^{n}=U\left(\alpha D^{m}+\beta D^{n}\right) U^{-1}$
*) $H^{-1}=U D^{-1} U^{-1}$

No Free Lunch Theorem

We must apply the rational approximation with each CG iteration
Q $M^{1 / n} \approx r(M)$
© The condition number for each term in the partial fraction expansion is approximately $\kappa(M)$
© So the cost of applying $M^{1 / n}$ is proportional to $\kappa(M)$
© Even though the condition number $\kappa\left(M^{1 / n}\right)=\kappa(M)^{1 / n}$

- And even though $\kappa(r(M))=\kappa(M)^{1 / n}$

So we don't win this way...

Pseudofermions

We want to evaluate a functional integral including the fermionic determinant det M

We write this as a bosonic functional integral over a pseudofermion field with kernel M^{-1}

$$
\operatorname{det} M \propto \int d \phi^{*} d \phi e^{-\phi^{*} M^{-1} \phi}
$$

Multipseudofermions

- We are introducing extra noise into the system by using a single pseudofermion field to sample this functional integral
Q This noise manifests itself as fluctuations in the force exerted by the pseudofermions on the gauge fields
- This increases the maximum fermion force

Q This triggers the integrator instability

- This requires decreasing the integration step size
- A better estimate is det $M=\left[\operatorname{det} M^{1 / n}\right]^{n}$

$$
\operatorname{det} M^{\frac{1}{n}} \propto \int d \phi^{*} d \phi e^{-\phi^{-\frac{1}{n}} \phi}
$$

Hasenbusch's method

- Clever idea due to Hasenbusch
* Start with the Wilson fermion action $M=1-\kappa H$
© Introduce the quantity $M^{\prime}=1-\kappa^{\prime} H$
* Use the identity $M=M^{\prime}\left(M^{\prime-1} M\right)$
© Write the fermion determinant as $\operatorname{det} M=\operatorname{det} M^{\prime} \operatorname{det}\left(M^{\prime-1} M\right)$
* Introduce separate pseudofermions for each determinant
* Adjust κ^{\prime} to minimise the cost
- Easily generalises
- More than two pseudofermions
© Wilson-clover action

Violation of NFL Theorem

So let's try using our $n^{\text {th }}$ root trick to implement multipseudofermions

- Condition number $\kappa(r(M))=\kappa(M)^{1 / n}$
- So maximum force is reduced by a factor of $n_{\kappa}(M)^{1 / n)-1}$
- This is a good approximation if the condition number is dominated by a few isolated tiny eigenvalues
* This is so in the case of interest
- Cost reduced by a factor of $n_{\kappa}(M)(1 / n)-1$
* Optimal value $n_{\mathrm{opt}} \approx \ln \kappa(M)$
© So optimal cost reduction is $(e \ln \kappa) / \kappa$

Rational Hybrid Monte Carlo: I

- RHMC algorithm for fermionic kernel $\left(\mathcal{M}^{+} \mathcal{M}\right)^{\frac{1}{2 n}}$
* Generate pseudofermion from Gaussian heatbath

$$
\begin{gathered}
P(\xi) \propto e^{-\frac{1}{2} \xi^{\dagger} \xi} \quad \chi=\left(\mathcal{M}^{\dagger} \mathcal{M}\right)^{\frac{1}{10} \xi} \\
P(\chi) \propto \int_{-\infty}^{\infty} d \xi e^{-\frac{1}{2} \xi^{2} \xi} \delta\left(\chi-\left(\mathcal{M}^{\dagger} \mathcal{M}\right)^{\frac{1}{n \pi}} \xi\right) \propto e^{-\frac{1}{2} \chi^{\dagger}\left(\mathcal{M}^{\dagger} \mathcal{M}\right)^{-\frac{1}{2 n}} x}
\end{gathered}
$$

e Use accurate rational approximation $r(x) \approx \sqrt[4]{x}$

- Use less accurate approximation for MD, $\tilde{r}(x) \approx \sqrt[2]{x}$
- $\tilde{F}(x) \neq r(x)^{2}$, so there are no double poles
© Use accurate approximation for Metropolis acceptance step

Rational Hybrid Monte Carlo: II

- Apply rational approximations using their partial fraction expansions
Denominators are all just shifts of the original fermion kernel
C All poles of optimal rational approximations are real and positive for cases of interest (Miracle \#1)
© Only simple poles appear (by construction!)
Use multishift solver to invert all the partial fractions using a single Krylov space
c. Cost is dominated by Krylov space construction, at least for $O(20)$ shifts

Result is numerically stable, even in 32-bit precision
Q All partial fractions have positive coefficients (Miracle \#2)

- MD force term is of the usual form for each partial fraction - Applicable to any kernel

Comparison with R algorithm: I

Binder cumulant of chiral condensate, B_{4}, and RHMC acceptance rate A from a finite temperature study ($2+1$ flavour naïve staggered fermions, Wilson gauge action, $V=8^{3} \times 4, m_{\text {ud }}=0.0076$, $m_{\mathrm{s}}=0.25, \mathrm{~T}=1.0$)

Algorithm	δt	A	B_{4}
R	0.0019		$1.56(5)$
R	0.0038		$1.73(4)$
RHMC	0.055	84%	$1.57(2)$

Comparison with R algorithm: II

Naïve Staggered Fermions, $N_{f}=3, \mathrm{~V}=8^{3} \times 4$
© Binder cumulant increases as step-size is reduced

- Step-size extrapolation is vital for R algorithm
© 25% reduction in critical quark mass at $\delta \tau=\frac{1}{2} m_{\ell}$
© 20% change in renormalized quark mass
- "An exact algorithm is mandatory" (de Forcrand-Philipsen)

Comparison with R algorithm: III

RHMC vs. HMDR, p4fat3 $\mathrm{m}_{\mathrm{q}}=0.01 .8^{3} \times 4$
RHMC vs. HMDR. p4fat7, $\mathrm{m}_{\mathrm{q}}=0.1,8^{3} \times 4$

- RBC-Bielefeld
- P4 staggered fermions
© RHMC allows an $\mathrm{O}(10)$ increase in step-size
© Speedup greater as $\mathrm{m}_{\ell} \rightarrow 0$

Comparison with R algorithm: IV

- Wuppertal-Budapest
- Stout smeared staggered, $\mathrm{V}=16^{4}, \mathrm{~m}_{\mathrm{T}}=320 \mathrm{MeV}$

ง Subtraction required for equation of state and order of the transition
ค At $\delta \tau \simeq \frac{2}{3} m_{\ell}$ finite step-size error \sim magnitude of subtraction
© RHMC is order of magnitude faster than the R algorithm

- Order of transition in continuum limit at physical quark masses for the first time

Comparison with R algorithm: V

The different masses at which domain wall results were gathered, together with the step-sizes δt, acceptance rates A, and plaquettes $P \quad\left(V=16^{3} \times 32 \times 8\right.$, DBW2 gauge action, $\beta=0.72$)

Algorithm	$m_{u d}$	m_{s}	δt	A	P
R	0.04	0.04	0.01		$0.60812(2)$
R	0.02	0.04	0.01		$0.60829(1)$
R	0.02	0.04	0.005		0.60817
RHMC	0.04	0.04	0.02	65.5%	$0.60779(1)$
RHMC	0.02	0.04	0.0185	69.3%	$0.60809(1)$

The step-size variation of the plaquette with $m_{u d}=0.02$

Comparison with R algorithm: VI

The integrated autocorrelation time of the $13^{\text {th }}$ time-slice of the pion propagator from the domain wall test, with $m_{u d}=0.04$

Multipseudofermions with multiple timescales

- Semiempirical observation: The largest force from a single pseudofermion does not come from the smallest shift

Shift $[\ln (\beta)]$

$$
\frac{1}{\sqrt{x}} \approx 0.3904603901+\frac{0.0511093775}{x+0.0012779193}+\frac{0.1408286237}{x+0.0286165446}+\frac{0.5964845033}{x+0.4105999719}
$$

Performance Comparison

$V=24^{3} \times 32, \beta=5.6, N_{f}=2$, Wilson fermions
Cost in units of $A_{p l a q} \times N_{M V} \times 10^{4}$

K	RHMC	Urbach et al.	Orth et al.
0.15750	9.6	9.0	19.1
0.15800	29.9	17.4	128
0.15825	52.5	56.5	-

DWF (RBRC-UKQCD)

2+1 Flavour determinant
$\left(\frac{\operatorname{det} \mathcal{M}_{t}^{\dagger} \mathcal{M}_{l}}{\operatorname{det} \mathcal{M}_{P V}^{\dagger} \mathcal{M}_{P V}}\right)\left(\frac{\operatorname{det} \mathcal{M}_{s}^{\dagger} \mathcal{M}_{s}}{\operatorname{det} \mathcal{M}_{P V}^{\dagger} \mathcal{M}_{P V}}\right)^{\frac{1}{2}}=\left(\frac{\operatorname{det} \mathcal{M}_{\ell}^{\dagger} \mathcal{M}_{\ell}}{\operatorname{det} \mathcal{M}_{s}^{\dagger} \mathcal{M}_{s}}\right)\left(\frac{\operatorname{det} \mathcal{M}_{s}^{\dagger} \mathcal{M}_{s}}{\operatorname{det} \mathcal{M}_{P V}^{\dagger} \mathcal{M}_{P V}}\right)^{\frac{3}{2}}$

- Mass (Hasenbusch) preconditioning using s quark
- Use multiple timescale integrator
© Gauge, triple strange, light
- CG count reduced by factor of 10
- CPU time reduced by factor of 6
- Light quarks cost about 10% of total
- Cost has weak mass dependence

2+1 ASQTAD Staggered Fermions

Mass preconditioning using squark

$$
\operatorname{det} \mathcal{M}_{l}^{\frac{1}{l}} \mathcal{M}_{s}^{\frac{1}{t}}=\left(\frac{\operatorname{det} \mathcal{M}_{l}}{\operatorname{det} \mathcal{M}_{s}}\right)^{\frac{1}{2}} \operatorname{det} \mathcal{M}_{s}^{\frac{3}{3}}
$$

Mass is just a shift for staggered fermions

$$
\begin{aligned}
S_{F}=\phi_{l}^{\dagger}\left(\frac{\mathcal{M}_{s}}{\mathcal{M}_{l}}\right)^{\frac{1}{2}} \phi_{l} & +\phi_{s}^{\dagger} \mathcal{M}_{s}^{-\frac{3}{4}} \phi_{s}=\phi_{l}^{\dagger}\left(\frac{\mathcal{M}_{l}+\delta m^{2}}{\mathcal{M}_{l}}\right)^{\frac{1}{2}} \phi_{l}+\phi_{s}^{\dagger} \mathcal{M}_{s}^{-\frac{3}{4}} \phi_{s} \\
& =\phi_{l}^{\dagger} r_{1}\left(\mathcal{M}_{l}\right) \phi_{l}+\phi_{s}^{\dagger} r_{2}\left(\mathcal{M}_{s}\right) \phi_{s}
\end{aligned}
$$

2+1 ASQTAD Staggered Fermions

- Use multiple timescales
* Gauge, triple strange, light
- Dominant cost from triple strange
* Operator derivative cost » CG cost
* Further mass preconditioning detrimental
- Use $n^{\text {th }}$ root trick on triple strange
* Optimum solution uses mass preconditioning and nth root trick
* Test at current run parameters

$$
\text { - } V=24^{3} \times 64, \beta=6.76,
$$

$m_{\ell}=0.005, m_{s}=0.05$

* Speed up factor 8 over R algorithm and exact

Berlin Wall

- Comparison of cost of fermion algorithms
$* N_{f}=2+1$ DWF RHMC (RBC-UKQCD)
* $N_{f}=2$ mass preconditioned Wilson (Urbach et al.)
* $N_{f}=2$ mass preconditioned Clover (QCDSF)
*) $N_{f}=2+1$ mass preconditioned Clover + RHMC (Wuppertal-Jülich)
* $N_{f}=2$ mass preconditioned Twisted Mass (ETM)
* $N_{f}=2+1$ ASQTAD R (MILC)
* $N_{f}=2+1$ ASQTAD RHMC (Clark-Kennedy)
- All data scaled to $V=24^{3} \times 40, a=0.08$
- Cost for generating 10^{3} independent configurations
* Independent plaquette measurements

Berlin Wall

Conclusions (RHMC)

Advantages of RHMC
© Exact

* No step-size errors; no step-size extrapolations
- Significantly cheaper than the R algorithm
- Allows easy implementation of Hasenbusch (multipseudofermion) acceleration
* Combination of both can be helpful
© Further improvements possible
- Such as multiple timescales for different terms in the partial fraction expansion
Disadvantages of RHMC
© ???

