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Чебышев’s theorem

The error |r(x) – f(x)| reaches its 
maximum at exactly n+d+2 points 
on the unit interval

( ) ( )
0 1
max

x
r f r x f x

∞ ≤ ≤
− = −

ЧебышевЧебышев: There is always a : There is always a 
unique rational function of any unique rational function of any 
degree (degree (n,dn,d) which minimises ) which minimises 
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Чебышев rationals: Example
A realistic example of a rational approximation is

( ) ( ) ( )
( ) ( ) ( )
x  2.3475661045 x  0.1048344600 x  0.00730638141

0.3904603901
x  0.4105999719 x  0.0286165446 x  0.0012779193x
+ + +

≈
+ + +

Using a partial fraction expansion of such rational functions 
allows us to use a multishift linear equation solver, thus 
reducing the cost significantly.

1 0.0511093775 0.1408286237 0.5964845033
0.3904603901

x  0.0012779193 x  0.0286165446 x  0.4105999719x
≈ + + +

+ + +

The partial fraction expansion of the rational function 
above is

This is accurate to within almost 0.1% over the range [0.003,1]

This appears to be numerically stable.
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Polynomials v Rationals: Theory

Optimal L2 approximation with weight               
is

2

1

1 x−
2 1

0

( ) 4
( )

(2 1)

jn

j
j

T x
j π +

=

−
+∑

Optimal L∞ approximation cannot be too 
much better (or it would lead to a better L2
approximation)

ln
n

e εΔ ≤Золотарев’s formula has L∞ error

This has L2 error of O(1/n)
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Polynomials v Rationals: Data
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If A and B belong to any (non-commutative) algebra 

then     , where δ constructed from 

commutators of A and B (i.e., is in the Free Lie 

Algebra generated by {A,B })

A B A Be e e δ+ +=

Symplectic Integrators: I
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∑ ∑
K

L

K K

More precisely,                         where                 and( )
1

ln A B
n

n

e e c
≥

= ∑ 1c A B= +

Baker-Campbell-Hausdorff (BCH) formula
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Symplectic Integrators: II
Explicitly, the first few terms are

( ) { } [ ] [ ] [ ]{ } [ ]

[ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

1 1 1
2 12 24

1
720

ln , , , , , , , ,

, , , , 4 , , , ,

6 , , , , 4 , , , ,

2 , , , , , , , ,

A Be e A B A B A A B B A B B A A B

A A A A B B A A A B

A B A A B B B A A B

A B B A B B B B A B

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + + − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
⎧ ⎫⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎪
⎪ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤+ − +⎨ ⎬⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦
⎪

⎡ ⎤⎡ ⎤ ⎡ ⎤⎪ ⎡ ⎤ ⎡ ⎤− +⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦⎩

⎪
⎪ +
⎪
⎪
⎭

L

In order to construct reversible integrators we use symmetric 
symplectic integrators

( ) { } [ ] [ ]{ }
[ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

2 2 1
24

1
5760

ln , , 2 , ,

7 , , , , 28 , , , ,

12 , , , , 32 , , , ,

16 , , , , 8 , , , ,

A B Ae e e A B A A B B A B

A A A A B B A A A B

A B A A B B B A A B

A B B A B B B B A B

⎡ ⎤ ⎡ ⎤= + + −⎣ ⎦ ⎣ ⎦

⎧ ⎫⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤+⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎪ ⎪
⎪ ⎪⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤+ + + +⎨ ⎬⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦
⎪ ⎪

⎡ ⎤⎡ ⎤ ⎡ ⎤⎪ ⎪⎡ ⎤ ⎡ ⎤− +⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦⎩ ⎭

L

The following identity follows directly from the BCH formula
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Symplectic Integrators: III

exp exp
d dp dq
dt dt p dt q

τ τ
⎛ ⎞⎧ ⎫∂ ∂⎛ ⎞ ≡ +⎨ ⎬⎜ ⎟⎜ ⎟ ∂ ∂⎝ ⎠ ⎩ ⎭⎝ ⎠

( ) ( ) ( ) ( )21
2,H q p T p S q p S q= + = +

We are interested in finding the classical trajectory in 
phase space of a system described by the Hamiltonian

The basic idea of such a symplectic integrator is to write the 
time evolution operator as

ˆexp HH H e
q p p q

ττ
⎛ ⎞⎧ ⎫∂ ∂ ∂ ∂

= − + ≡⎨ ⎬⎜ ⎟∂ ∂ ∂ ∂⎩ ⎭⎝ ⎠

( ) ( )exp S q T p
p q

τ
⎛ ⎞⎧ ⎫∂ ∂′ ′= − +⎨ ⎬⎜ ⎟∂ ∂⎩ ⎭⎝ ⎠
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Symplectic Integrators: IV

Define                      and                       so that Ĥ P Q= +( )P S q
p
∂′≡ −
∂

( )Q T p
q
∂′≡
∂

Since the kinetic energy T is a function only of p and the 
potential energy S is a function only of q, it follows that the 
action of      and       may be evaluated triviallyPe τ Qe τ

( ) ( )( )
( ) ( )( )

: , ,

: , ,

Q

P

e f q p f q T p p

e f q p f q p S q

τ

τ

τ

τ

′+

′−

a

a
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Symplectic Integrators: V
From the BCH formula we find that the PQP symmetric 
symplectic integrator is given by

( )1 1
2 2

/
/

0( ) P PQU e e e
τ δτδτ δττ δτ δτδτ =

( ) [ ] [ ]( ) ( )( )3 51
24exp , , 2 , ,P Q P P Q Q P Q O

τ δτ

δτ δτ δτ⎡ ⎤⎡ ⎤ ⎡ ⎤= + − + +⎣ ⎦ ⎣ ⎦⎣ ⎦

( ) [ ] [ ]( ) ( )( )2 41
24exp , , 2 , ,P Q P P Q Q P Q Oτ δτ δτ⎡ ⎤⎡ ⎤ ⎡ ⎤= + − + +⎣ ⎦ ⎣ ⎦⎣ ⎦

( ) ( )ˆ 2P QHe e Oττ δτ
+′= = +

In addition to conserving energy to O (δτ² ) such symmetric 
symplectic integrators are manifestly area preserving and 
reversible
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Symplectic Integrators: VI

For each symplectic integrator there exists a nearby 
Hamiltonian H’ which is exactly conserved

This is obtained by replacing commutators with Poisson 
brackets in the BCH formula
For the PQP integrator we have

{ }
( ) ( ){ } ( )

2 2 21
24

44 2 2 2 4 61
720

2

6 2 3

H p S S

p S p S S S S S O

δτ

δτ δτ

′′ ′= + −

′ ′′′ ′′ ′ ′′+ − + + − +

Note that H’ cannot be written as the sum of a p-dependent kinetic 
term and a q-dependent potential term
As H’ is conserved, δH is of O(δτ 2) for arbitrary length trajectories 

{ }{ } { }{ }( ) ( )2 41
24 , , 2 , ,H P Q P P Q Q P Q Oδτ δτ′ = + − + +
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Symplectic Integrators: VII

Define                      and                         so that 1 2Ĥ P P Q= + +( )i iP S q
p
∂′≡ −
∂

( )Q T p
q
∂′≡
∂

1 2( , ) ( ) ( ) ( )H q p T p S q S q= + +
Multiple timescales

Split the Hamiltonian into pieces

21 1 11 112 2 2 2
1
2

/

/
SW( ) nn n

n
PP Q QPU e e e e e

τ δτ
δτδτ δτ δτδττ δτδτ

⎛ ⎞⎡ ⎤⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠
=

Introduce a symmetric symplectic integrator of the form

If                   then the instability in the integrator is tickled 

equally by each sub-step

21

2

P P
n

≈

This helps if the most expensive force computation does not 
correspond to the largest force                   
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Integrator Instability: Theory

( ) ( )
( )

( ) ( ) ( )

sin
cos

sin cos

( )U
κ δτ τ

κ δτ τ
ρ δτ

ρ δτ κ δτ τ κ δτ τ

τ
⎛ ⎞⎡ ⎤⎣ ⎦⎡ ⎤⎜ ⎟⎣ ⎦
⎜ ⎟
⎜ ⎟⎡ ⎤ ⎡ ⎤− ⎣ ⎦ ⎣ ⎦⎝ ⎠

=

Consider a leapfrog integrator for free field theory
The evolution is given by

( ) ( ) ( )
1 21

2 21
4

cos 1
, 1

δτ
κ δτ ρ δτ δτ

δτ

− −
= = −

where

2 21 1
2 4

1
Re ln 1 1ν δτ δτ

δτ
⎡ ⎤= ± − ± −
⎣ ⎦

This grows/oscillates with exponents
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Integrator Instability: Data
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Higher-Order Integrators: I

Campostrini and Rossi introduced an 
integrator with arbitrarily high-order errors

But the longest constituent step is longer than the overall 
step size, so integrator instabilities are worse

Omelyan introduced an integrator to minimise 
the δτ error for a given number of sub-steps

I. P. Omelyan, I. M. Mryglod and R. Folk, Comput. Phys. 
Commun. 151 (2003) 272

Tetsuya Takaishi and Philippe de Forcrand, “Testing and tuning 
new symplectic integrators for Hybrid Monte Carlo algorithm in 
lattice QCD,” hep-lat/0505020

http://arxiv.org/PS_cache/hep-lat/pdf/0505/0505020.pdf
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Higher-Order Integrators: II

These techniques help if the force is extensive (i.e., a 
bulk effect)

Because the step size needs to be adjusted so that V δτ n is 
constant for a fixed HMC acceptance rate

They do not help if the force is due to one (or a small 
number) of light modes

Here the HMC acceptance goes to zero because the symplectic 
integrator becomes unstable for a single mode

Hasenbusch's trick reduces the maximum force if it is due to noise 
coming from the pseudofermion fields
But not if the intrinsic fermionic force contribution is large.

The volume dependence of the spectral density of 
the Wilson Dirac operator needs to be investigated
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Non-linearity of CG solver

Suppose we want to solve A2x=b for 
Hermitian A by CG

It is better to solve Ax=y, Ay=b successively
Condition number κ(A2) = κ(A)2

Cost is thus 2κ(A) < κ(A2) in general

Suppose we want to solve Ax=b
Why don’t we solve A1/2x=y, A1/2y=b successively?

The square root of A is uniquely defined if A>0
This is the case for fermion kernels

All this generalises trivially to nth roots
No tuning needed to split condition number evenly

How do we apply the square root of a matrix?
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Rational matrix approximation

Functions on matrices
Defined for a Hermitian matrix by diagonalisation
H = U D U -1

f (H) = f (U D U -1) = U f (D) U -1

Rational functions do not require 
diagonalisation

α H m + β H n = U (α D m + β D n) U -1

H -1 = U D -1 U -1
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No Free Lunch Theorem

We must apply the rational approximation 
with each CG iteration

M1/n ≈ r(M)
The condition number for each term in the partial 
fraction expansion is approximately κ(M)
So the cost of applying M1/n is proportional to κ(M)
Even though the condition number κ(M1/n)=κ(M)1/n

And even though κ(r(M))=κ(M)1/n

So we don’t win this way…
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Pseudofermions

We want to evaluate a functional integral 
including the fermionic determinant det M

1

det MM d d e φ φφ φ
−∗−∗∝ ∫

We write this as a bosonic functional integral 
over a pseudofermion field with kernel M -1
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Multipseudofermions

We are introducing extra noise into the system by 
using a single pseudofermion field to sample this 
functional integral

This noise manifests itself as fluctuations in the force exerted by 
the pseudofermions on the gauge fields
This increases the maximum fermion force
This triggers the integrator instability
This requires decreasing the integration step size

11

det
nMnM d d e φ φφ φ

−∗−∗∝ ∫

A better estimate is det M = [det M1/n]n
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Hasenbusch’s method

Clever idea due to Hasenbusch
Start with the Wilson fermion action M=1 - κH
Introduce the quantity M’=1 - κ’H
Use the identity M = M’(M’ -1M)
Write the fermion determinant as det M = det M’ det (M’ -1M)
Introduce separate pseudofermions for each determinant
Adjust κ’ to minimise the cost

Easily generalises
More than two pseudofermions
Wilson-clover action
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Violation of NFL Theorem

So let’s try using our nth root trick to 
implement multipseudofermions

Condition number κ(r(M))=κ(M)1/n

So maximum force is reduced by a factor of nκ(M)(1/n)-1

This is a good approximation if the condition number is 
dominated by a few isolated tiny eigenvalues
This is so in the case of interest

Cost reduced by a factor of nκ(M)(1/n)-1

Optimal value nopt ≈ ln κ(M)
So optimal cost reduction is (e lnκ) /κ



Tuesday, 01 August 2006 A D Kennedy 25

Rational Hybrid Monte Carlo: I

Generate pseudofermion from Gaussian heatbath

RHMC algorithm for fermionic kernel ( )
1

2† nMM

†1
2( )P e ξ ξξ −∝ ( )χ ξ=

1
4† nMM

( ) ( )
1

1 † †1 2†1
4 22 †( )

n
nP d e e χ χξ ξχ ξ δ χ ξ

−∞ −−

−∞

⎛ ⎞∝ − ∝⎜ ⎟∫
⎝ ⎠

MM
MM

Use accurate rational approximation ≈ 4( ) nr x x

Use less accurate approximation for MD, ≈% 2( ) nr x x

, so there are no double poles2( ) ( )r x r x≠%

Use accurate approximation for Metropolis acceptance step
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Rational Hybrid Monte Carlo: II
Apply rational approximations using their partial fraction 
expansions
Denominators are all just shifts of the original fermion kernel

All poles of optimal rational approximations are real and positive for cases of 
interest (Miracle #1)
Only simple poles appear (by construction!)

Use multishift solver to invert all the partial fractions using a 
single Krylov space

Cost is dominated by Krylov space construction, at least for O(20) shifts

Result is numerically stable, even in 32-bit precision
All partial fractions have positive coefficients (Miracle #2)

MD force term is of the usual form for each partial fraction
Applicable to any kernel
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Comparison with R algorithm: I

Algorithm δt A B4

R 0.0019 1.56(5)

R 0.0038 1.73(4)

RHMC 0.055 84% 1.57(2)

Binder cumulant of chiral condensate, 
B4, and RHMC acceptance rate A from 
a finite temperature study (2+1 flavour 
naïve staggered fermions, Wilson 
gauge action, V = 83×4, mud = 0.0076, 
ms = 0.25, τ= 1.0)
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Comparison with R algorithm: II

20% change in renormalized quark mass

“An exact algorithm is mandatory” (de Forcrand-Philipsen)

1
2mδτ =25% reduction in critical quark mass at 

Naïve Staggered Fermions, Nf = 3, V = 83 x 4
Binder cumulant increases as step-size is reduced
Step-size extrapolation is vital for R algorithm
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Comparison with R algorithm: III

RBC-Bielefeld
P4 staggered fermions
RHMC allows an O(10) increase in step-size
Speedup greater as mℓ→ 0
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Comparison with R algorithm: IV

Wuppertal—Budapest
Stout smeared staggered, V = 164, mπ = 320 MeV

Subtraction required for equation of state and order of the transition
At                   finite step-size error ~ magnitude of subtraction2

3mδτ
RHMC is order of magnitude faster than the R algorithm
Order of transition in continuum limit at physical quark masses for the first time
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Comparison with R algorithm: V

Algorithm mud ms δt A P

R 0.04 0.04 0.01 0.60812(2)

R 0.02 0.04 0.01 0.60829(1)

R 0.02 0.04 0.005 0.60817

RHMC 0.04 0.04 0.02 65.5% 0.60779(1)

RHMC 0.02 0.04 0.0185 69.3% 0.60809(1)

The different masses at which domain wall 
results were gathered, together with the 
step-sizes δt, acceptance rates A, and 
plaquettes P   (V  = 163×32×8, DBW2 
gauge action, β = 0.72)

The step-size variation of the 
plaquette with mud =0.02
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Comparison with R algorithm: VI

The integrated 
autocorrelation time of 
the 13th time-slice of 
the pion propagator 
from the domain wall 
test, with mud = 0.04
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Multipseudofermions with multiple timescales

Semiempirical observation: The 
largest force from a single 
pseudofermion does not come 
from the smallest shift

1 0.0511093775 0.1408286237 0.5964845033
0.3904603901

x  0.0012779193 x  0.0286165446 x  0.4105999719x
≈ + + +

+ + +

For example, look at the 
numerators in the partial 
fraction expansion we exhibited 
earlier

Use a coarser timescale for 
expensive smaller shifts
Invert small shifts less 
accurately

Cannot use chronological inverter 
with multishift solver anyhow

0%

25%

50%

75%

100%

-13 -10 -8.5 -7.1 -5.8 -4.4 -3.1 -1.7 -0.3 1.5

Shift [ln(β)]

Residue (α)
L² Force
α/(β+0.125)
CG iterations
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Performance Comparison

κ RHMC Urbach et al. Orth et al.

0.15750 9.6 9.0 19.1

0.15800 29.9 17.4 128

0.15825 52.5 56.5 ̶

V = 243 x 32, β = 5.6, Nf = 2, Wilson fermions

Cost in units of Aplaq x NMV x 104
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DWF (RBRC—UKQCD)

Mass (Hasenbusch) preconditioning using s quark
Use multiple timescale integrator

Gauge, triple strange, light

CG count reduced by factor of 10
CPU time reduced by  factor of 6
Light quarks cost about 10% of total
Cost has weak mass dependence

1 3
2 2† † † †

† † † †

det det det det
det det det det

s s s s

PV PV PV PV s s PV PV

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜=⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
MM MM MM MM
M M M M MM M M

2+1 Flavour determinant
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2+1 ASQTAD Staggered Fermions

Mass is just a shift for staggered fermions
1
2

3
4† †s

F s s sS φ φ φ φ−⎛ ⎞⎟⎜= +⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
M

M
M

1
2

3
4† †

s s s
mδφ φ φ φ−⎛ ⎞+ ⎟⎜= +⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

2M
M

M

( ) ( )† †
1 2s s sr rφ φ φ φ= +M M

1
2detdet det

dets s
s

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

311
4 42

M
M M M

M

Mass preconditioning using s quark
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2+1 ASQTAD Staggered Fermions

Use multiple timescales
Gauge, triple strange, light

Dominant cost from triple 
strange

Operator derivative cost » CG 
cost
Further mass preconditioning 
detrimental

Use n th root trick on triple 
strange

Optimum solution uses mass 
preconditioning and n th root 
trick
Test at current run parameters

V = 243 × 64,  β = 6.76,
mℓ = 0.005, ms = 0.05

Speed up factor 8 over R 
algorithm and exact



Tuesday, 01 August 2006 A D Kennedy 38

Berlin Wall

Comparison of cost of fermion algorithms
Nf = 2+1 DWF RHMC (RBC-UKQCD)
Nf = 2 mass preconditioned Wilson (Urbach et al.)
Nf = 2 mass preconditioned Clover (QCDSF)
Nf = 2+1 mass preconditioned Clover + RHMC (Wuppertal-Jülich)
Nf = 2 mass preconditioned Twisted Mass (ETM)
Nf = 2+1 ASQTAD R (MILC)
Nf = 2+1 ASQTAD RHMC (Clark-Kennedy)

All data scaled to V = 243 × 40, a = 0.08
Cost for generating 103 independent configurations

Independent plaquette measurements
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Berlin Wall
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Conclusions (RHMC)

Advantages of RHMC
Exact

No step-size errors; no step-size extrapolations
Significantly cheaper than the R algorithm
Allows easy implementation of Hasenbusch
(multipseudofermion) acceleration

Combination of both can be helpful
Further improvements possible

Such as multiple timescales for different terms in the partial 
fraction expansion

Disadvantages of RHMC
???
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