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Overview
Visualizations of QCD vacuum structure

Action and Topological Charge densities

Role of Instantons and Anti-instantons
Dynamical mass generation
Accurate algorithms required to reveal these configurations

Centre Vortices
What are they? Why are they interesting?
What happens if they are removed from QCD?

Potential Energy between heavy quarks
Y versus ∆ shape flux-tubes in baryons
Emphasize how the nature of the flux tube revolutionizes the
concept of a constituent-quark.
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One-Loop Fµν F. Bonnet et.al, Phys.Rev.D62:094509,2000
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Two-loop Improvement

O (x) = x
µ

µ

ν

µ

x

µ

ν

+ c
1 2

U (x)(2)

µν

U (x)
c

Generalized to five-loop improvement in
S. O. Bilson-Thompson, D. B. Leinweber and A. G. Williams,
arXiv:hep-lat/0203008.
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Five-Loop Improvement
An O(a4)-improved field-strength tensor is given by the following
sum of Clover contributions Cm×n

µν for m× n loops:

F Imp
µν = k1 C

(1×1)
µν + k2C

(2×2)
µν + k3 C

(1×2)
µν + k4C

(1×3)
µν + k5 C

(3×3)
µν ,

where
k1 = 19/9 − 55 k5 , k2 = 1/36 − 16 k5 ,

k3 = 64 k5 − 32/45 , k4 = 1/15 − 6 k5 ,
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F Imp
µν = k1 C

(1×1)
µν + k2C

(2×2)
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(1×3)
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(3×3)
µν ,

where
k1 = 19/9 − 55 k5 , k2 = 1/36 − 16 k5 ,

k3 = 64 k5 − 32/45 , k4 = 1/15 − 6 k5 ,
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Five-Loop Improvement
An O(a4)-improved field-strength tensor is given by the following
sum of Clover contributions Cm×n

µν for m× n loops:

F Imp
µν = k1 C

(1×1)
µν + k2C

(2×2)
µν + k3 C

(1×2)
µν + k4C

(1×3)
µν + k5 C

(3×3)
µν ,

where
k1 = 19/9 − 55 k5 , k2 = 1/36 − 16 k5 ,

k3 = 64 k5 − 32/45 , k4 = 1/15 − 6 k5 ,

k5 is a tunable free parameter.

Governs O(a6) errors.
When k5 = 1/90, k3 = k4 = 0 providing a 3-loop Fµν .
Setting k5 = 0, provides 4-loop Fµν .
We consider k5 = 1/180, as the 5-loop Fµν .
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2, 3, 4 and 5-Loop Improved Fµν
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Revealing the Structure of Gluon Fields
Consider the Action density

S(x) =
1

2
F ab

µν(x)F ba
µν(x) .

S(x) is a scalar field in four dimensions.
Consider a three-dimensional slice of the lattice.
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Revealing the Structure of Gluon Fields
Consider the Action density

S(x) =
1

2
F ab

µν(x)F ba
µν(x) .

S(x) is a scalar field in four dimensions.
Consider a three-dimensional slice of the lattice.

To view the structure of typical vacuum gluon-field configurations
Render areas of intense action density in red.
Render areas of moderate action density in blue.
Low action-density regions are not rendered to allow us to
see into the gluon field.
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Exposing Long-Distance Physics
Short-distance physics in QCD is well understood.

Interactions are weak at short distances.
Quarks behave as approximately free particles.
Corrections may be estimated via perturbation theory.
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Exposing Long-Distance Physics
Short-distance physics in QCD is well understood.

Interactions are weak at short distances.
Quarks behave as approximately free particles.
Corrections may be estimated via perturbation theory.

This physics may be removed by locally minimizing the action.
Cabibbo-Marinari algorithm identifies the link which
maximally reduces the local action.
Process is called “Cooling.”

Each frame in the animation follows one sweep of Cooling.
All links are updated to locally minimize the action.
Highly-improved lattice operators are utilized.
Both O(a2) and O(a4) errors are removed
O(a6) errors tuned to stabilize nonperturbative phenomena
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Revealing the Structure of Gluon Fields
Consider the Topological Charge density

q(x) =
g2

32π2
εµνρσ F

ab
µν(x)F ba

ρσ(x) .

q(x) is a measure of the winding of the gluon field lines
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Revealing the Structure of Gluon Fields
Consider the Topological Charge density

q(x) =
g2

32π2
εµνρσ F

ab
µν(x)F ba

ρσ(x) .

q(x) is a measure of the winding of the gluon field lines

q(x) is a scalar field in four dimensions.
Consider a three-dimensional slice of the lattice.
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Revealing the Structure of Gluon Fields
Consider the Topological Charge density

q(x) =
g2

32π2
εµνρσ F

ab
µν(x)F ba

ρσ(x) .

q(x) is a measure of the winding of the gluon field lines

q(x) is a scalar field in four dimensions.
Consider a three-dimensional slice of the lattice.

To view the structure of typical vacuum gluon-field configurations
Render areas of positive charge density in red.
Render areas of negative charge density in blue.
Low charge-density regions are not rendered to allow us to
see into the gluon field.
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Instanton Facts
Gluon fields having nontrivial winding represented by the
topological charge Q =

∑

x q(x) = ±1.
Classical solutions to the QCD equations of motion
They live in four dimensions.

They have small finite action, S0 = 8π2/g2

Approximately 10,000 times smaller than the action of a
typical field configuration
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Instanton Facts
Gluon fields having nontrivial winding represented by the
topological charge Q =

∑

x q(x) = ±1.
Classical solutions to the QCD equations of motion
They live in four dimensions.

In isolation, the topological charge density is spherically
symmetric

q(x) = ±
6

π2

ρ4

(x2 + ρ2)4
,

where ρ is a size parameter.
Similarly for the action.

QCD Vacuum, Centre Vortices and Flux Tubes – p.11/50



Instanton Facts
Gluon fields having nontrivial winding represented by the
topological charge Q =

∑

x q(x) = ±1.
Classical solutions to the QCD equations of motion
They live in four dimensions.

In isolation, the topological charge density is spherically
symmetric

q(x) = ±
6

π2

ρ4

(x2 + ρ2)4
,

where ρ is a size parameter.
Similarly for the action.

Revealed in lattice QCD only after extensive cooling.
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The Effective Mass of Quarks
Short-distance physics in QCD is well understood.

Interactions are weak at short distances.
Quarks behave as approximately free particles.
Corrections may be estimated via perturbation theory.

This property of QCD is called asymptotic freedom.
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revealed.
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The Effective Mass of Quarks
Short-distance physics in QCD is well understood.

Interactions are weak at short distances.
Quarks behave as approximately free particles.
Corrections may be estimated via perturbation theory.

This property of QCD is called asymptotic freedom.

At long distances, a rich structure in the QCD vacuum is
revealed.

Quarks and gluons do not propagate as free particles.

The quark acquires an effective mass due to its interaction with
the QCD vacuum.
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Massless Quarks in the QCD Vacuum
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Propagator Spectral Representation
Eigenmodes of the Dirac Operator are defined by

6D | ψi 〉 = λi | ψi 〉 .
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Propagator Spectral Representation
Eigenmodes of the Dirac Operator are defined by

6D | ψi 〉 = λi | ψi 〉 .

The spectral representation of the quark propagator is

S =
1

6D +mq

=
∑

i

| ψi 〉
1

λi +m
〈ψi | .
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Propagator Spectral Representation
Eigenmodes of the Dirac Operator are defined by

6D | ψi 〉 = λi | ψi 〉 .

The spectral representation of the quark propagator is

S =
1

6D +mq

=
∑

i

| ψi 〉
1

λi +m
〈ψi | .

For small quark masses (like the u or d quarks in nature)
Eigenmodes having small eigenvalues, λi, dominate the
nature of how quarks propagate in the QCD vacuum.
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Propagator Spectral Representation
Eigenmodes of the Dirac Operator are defined by

6D | ψi 〉 = λi | ψi 〉 .

The spectral representation of the quark propagator is

S =
1

6D +mq

=
∑

i

| ψi 〉
1

λi +m
〈ψi | .

For λi small, the real scalar field

Pi(x) = 〈x | ψi 〉〈ψi | x 〉 = ψ(x)ψ†(x) ,

describes the probable locations of the quarks in the vacuum as
they propagate.
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Low-lying Eigenmode Density
Low-lying eigenmodes of the Dirac operator are located on the
topological structures giving rise to them.

Each low-lying nondegenerate mode is associated with a single
topological structure.
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What are Centre Vortices?
1. Gauge fix gluon configurations to Maximal Centre Gauge

Bring the links Uµ(x) close to the centre elements of SU(3)

Z = exp
(

2πi
m

3

)

I , with m = −1, 0, 1

On the lattice, search for the gauge transformation Ω

∑

x,µ

∣
∣
∣tr Uµ

Ω(x)
∣
∣
∣

2 Ω
−→ max
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What are Centre Vortices?
1. Gauge fix gluon configurations to Maximal Centre Gauge
2. Project the gluon field to the centre phase

Uµ(x) → Zµ(x) where Zµ(x) = exp

(

2πi
mµ(x)

3

)

, mµ(x) = −1, 0, 1

Implemented by

1

3
tr Uµ

Ω(x) = rµ(x)
︸ ︷︷ ︸

real

exp
(

iϕµ(x)
)

︸ ︷︷ ︸

phase

,

cos

(

ϕµ(x) −
2π

3
mµ(x)

)

︸ ︷︷ ︸

close to zero

mµ

−→ max .
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What are Centre Vortices?
1. Gauge fix gluon configurations to Maximal Centre Gauge
2. Project the gluon field to the centre phase

Uµ(x) → Zµ(x) where Zµ(x) = exp

(

2πi
mµ(x)

3

)

, mµ(x) = −1, 0, 1

3. Vortices are identified by the centre charge

z =
∏

�

Zµ(x) = exp
(

2πi
n

3

)

If mod(n, 3) = 0 no vortex pierces the plaquette
If mod(n, 3) = −1, or 1 a vortex with charge z pierces the
plaquette
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What are Centre Vortices?
1. Gauge fix gluon configurations to Maximal Centre Gauge
2. Project the gluon field to the centre phase

Uµ(x) → Zµ(x) where Zµ(x) = exp

(

2πi
mµ(x)

3

)

, mµ(x) = −1, 0, 1

3. Vortices are identified by the centre charge

z =
∏

�

Zµ(x) = exp
(

2πi
n

3

)

4. Vortices are removed by removing the centre phase

Uµ(x) → U ′
µ(x) = Z∗

µ(x) · Uµ(x),
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Static Quark Potential
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Fit to Full SU(3) potential
Vortex β=4.80
No-Vortex β=4.80
No-Vortex β=4.60
Vortex β=4.60
No-Vortex β=4.38
Vortex β=4.38
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Gluon Propagator
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Centre Vortices and Mass Generation
Dynamical mass generation is associated with

Dynamical Chiral Symmetry Breaking 〈qq〉 6= 0.
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Centre Vortices and Mass Generation
Dynamical mass generation is associated with

Dynamical Chiral Symmetry Breaking 〈qq〉 6= 0.

Dynamical Chiral Symmetry Breaking is associated with a
Finite density of zeromodes of the Dirac Operator, ρ(0),
via the Casher-Banks relation

〈qq〉 = −π ρ(0), as mq → 0
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Centre Vortices and Mass Generation
Dynamical mass generation is associated with

Dynamical Chiral Symmetry Breaking 〈qq〉 6= 0.

Dynamical Chiral Symmetry Breaking is associated with a
Finite density of zeromodes of the Dirac Operator, ρ(0),
via the Casher-Banks relation

〈qq〉 = −π ρ(0), as mq → 0

Topologically non-trivial gauge fields (including instantons)
Give rise to zeromodes

Hence, a link between centre vortices and topology implies a
Link between
centre vortices and dynamical mass generation.
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Gluon Action Evolution

QCD Vacuum, Centre Vortices and Flux Tubes – p.20/50



Gluon Action Evolution
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Gluon Action Evolution
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Quark Propagator Decomposition
In a covariant gauge, Lorentz invariance allows

Saa(ζ; q) ≡ S(ζ; q) =
Z(ζ; q2)

iγ · q +M(q2)
,

M(q2) is the Mass function
Z(ζ; q2) is the Renormalization function
ζ is the renormalization point (3 GeV) with conditions

Z(ζ; ζ2) ≡ 1

M(ζ2) ≡ m(ζ)

For sufficiently large ζ, m(ζ) → mζ , the current quark mass.
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Quark Renormalization Function at m0
q = 78 MeV
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Quark Mass Function at m0

q = 116 MeV
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Quark Mass Function at m0

q = 116 MeV
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Quark Mass Function at m0

q = 78 MeV
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Quark Mass Function at m0

q = 58 MeV
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Infrared Mass Function
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Infrared Mass Function
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LCG Mass Function with m0

q = 29 MeV
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Potential Energy between Heavy Quarks
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Gluon Field Distribution in Mesons
How does the Vacuum respond to the presence of Quarks?

C(~y, ~d) =
〈Q(~x) S(~y + ~x) Q†(~x+ ~d)〉~x

〈Q(~x) Q†(~x+ ~d)〉~x 〈S(~x)〉~x

Q(~x) denotes a quark at position ~x.

Q†(~x+ ~d) denotes an antiquark at position ~x+ ~d.
S(~y + ~x) denotes the action density at position ~y from the quark
at ~x.
〈. . .〉~x denotes average over ~x and gluon field configurations.
If there is no correlation between the action density and the
locations of the quark and antiquark,

C(~y, d) = 1 .
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Baryonic Wilson Loop

PSfrag replacements

τ

εabc

εa′b′c′

U1

U2

U3
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Quark Coordinates

(x, y) Coordinates (lattice units) Distance (fm)
# Q1 Q2 Q3 F 〈rs〉 〈dqq〉

1 (1, 0) (−1, 1) (−1,−1) (−0.42, 0) 0.15 0.35
2 (2, 0) (−1, 2) (−1,−2) (0.15, 0) 0.27 0.54
3 (3, 0) (−1, 2) (−1,−2) (0.15, 0) 0.31 0.69
4 (3, 0) (−2, 3) (−2,−3) (−0.27, 0) 0.42 0.89
5 (4, 0) (−3, 4) (−3,−4) (−0.69, 0) 0.57 1.24
6 (5, 0) (−4, 5) (−4,−5) (−1.11, 0) 0.72 1.58
7 (7, 0) (−4, 6) (−4,−6) (−0.54, 0) 0.88 1.93
8 (8, 0) (−4, 7) (−4,−7) (0.04, 0) 0.99 2.12
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T- and Y-Shape Source Paths

PSfrag replacements

Q1

Q2

Q3

O x

y

PSfrag replacements

Q1

Q2

Q3

O

x

y

y
x

QCD Vacuum, Centre Vortices and Flux Tubes – p.36/50



Gluon Field Distribution in Baryons
How does the Vacuum respond to the presence of Quarks?

C(~y;~r1, ~r2, ~r3; τ) =

〈
W3Q(~r1, ~r2, ~r3; τ)S(~y, τ/2)

〉

〈
W3Q(~r1, ~r2, ~r3; τ)

〉 〈
S(~y, τ/2)

〉

If there is no correlation between the action density and the
locations of the quarks,

C(~y, ~r1, ~r2, ~r3; τ) = 1 .
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Gluon Field Distribution in Baryons
How does the Vacuum respond to the presence of Quarks?

C(~y;~r1, ~r2, ~r3; τ) =

〈
W3Q(~r1, ~r2, ~r3; τ)S(~y, τ/2)

〉

〈
W3Q(~r1, ~r2, ~r3; τ)

〉 〈
S(~y, τ/2)

〉

If there is no correlation between the action density and the
locations of the quarks,

C(~y, ~r1, ~r2, ~r3; τ) = 1 .

Similar results are observed for ~E2 and ~B2 separately.
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30-sweep T-shape Source
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30-sweep Y-shape Source
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Effective Potential at τ = 1 → 2τ = 1 → 2τ = 1 → 2

0 0.5 1 1.5 2 2.5 3
Length of the piece of string in fm

1

1.5

2

2.5

3
a 

V 3Q

Y
T (original node)
T (node moved 1 LU)
T (node moved 1 then 2 LU)
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Flux Tube Cross Section
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Cross Section Fit
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Baryonic Ground State Properties
Flux-tube radius is 0.38(3) fm .
Vacuum-field action suppressed by 7.2(6)%.
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Baryonic Ground State Properties
Flux-tube radius is 0.38(3) fm .
Vacuum-field action suppressed by 7.2(6)%.

Flux-tube node is 25% larger at 0.47(2) fm.
Vacuum-field action suppression is 15(3)% larger at 8.1(7)%.
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The Heart of the Atom
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The Structure of the Nucleon
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Information on the Web
The software used to create the animations is

Advanced Visual System’s AVS/Express
http://www.avs.com/

Many of these animations are available on the web.

http://www.physics.adelaide.edu.au/theory/staff/leinweber
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Flux Tubes in SU(2) Gauge Theory

G.S. Bali, K. Schilling and C. Schlichter (Wuppertal U.)
Phys. Rev. D51 (1995) 5165
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Enhancement or Expulsion?
It is common to express the correlation as

CS(~y, ~d) =
〈Q(~x) S(~y + ~x) Q†(~x+ ~d)〉~x

〈Q(~x) Q†(~x+ ~d)〉~x
− 〈S(~x)〉~x
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Enhancement or Expulsion?
It is common to express the correlation as

CS(~y, ~d) =
〈Q(~x) S(~y + ~x) Q†(~x+ ~d)〉~x
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Enhancement or Expulsion?
It is common to express the correlation as

CS(~y, ~d) =
〈Q(~x) S(~y + ~x) Q†(~x+ ~d)〉~x
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But the Minkowski action is

SM (~x) =
1
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tr
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The sign of the correlation may be selected freely.

QCD Vacuum, Centre Vortices and Flux Tubes – p.49/50



Gluon Field Distribution in Mesons
How does the Vacuum respond to the presence of Quarks?

C(~y, ~d) =
〈Q(~x) S(~y + ~x) Q†(~x+ ~d)〉~x

〈Q(~x) Q†(~x+ ~d)〉~x 〈S(~x)〉~x

Q(~x) denotes a quark at position ~x.

Q†(~x+ ~d) denotes an antiquark at position ~x+ ~d.
S(~y + ~x) denotes the action density at position ~y from the quark
at ~x.
〈. . .〉~x denotes average over ~x and gluon field configurations.
If there is no correlation between the action density and the
locations of the quark and antiquark,

C(~y, d) = 1 .
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