

Nucleon Structure from Dynamical DWF

Huey-Wen Lin

Columbia University

in collaboration with

Tom Blum, Konstantinos Orginos, Shigemi Ohta and Shoichi Sasaki

-1-

Outline

- Introduction
 - Isovector charge and structure functions
 - Lattice implementation
- Numerical results
 - Actions and parameters
 - Review of quenched RBC results
 - Ratios
 - Nonperturbative renormalization
 - Renormalized quantities
- Conclusion and Outlook

Nucleon Isovector Charge

• Nucleon axial charge:

$$\langle p|A^{\dagger}_{\mu}(0)|n\rangle = \overline{u}_p[\gamma_{\mu}\gamma_5 g_A(q^2) - iq_{\mu}\gamma_5 g_P(q^2)]u_n$$

• Nucleon vector charge:

$$\langle p|V^{\dagger}_{\mu}(0)|n
angle = \overline{u}_p[\gamma_{\mu}g_V(q^2) - q_{\mu}\sigma_{\mu\nu}g_T(q^2)]u_n$$

• Well measured experimentally g_A/g_V from neutron β decay \Rightarrow Good test of our understanding of nucleon structure

Moments of Structure Functions

• Deep Inelastic Scattering:

$$\sigma \sim L^{\mu\nu} W_{\mu\nu},$$

$$W_{\mu\nu} = i \int d^4x e^{iqx} \langle N|T\{J^{\mu}(x), J^{\nu}(0)\}|N\rangle,$$

• The symmetric, unpolarized, spin-average:

$$W^{\{\mu\nu\}}(x,Q^2) = \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right)F_1(x,Q^2) + \left(p^{\mu} - \frac{\nu}{q^2}q^{\mu}\right)\left(p^{\nu} - \frac{\nu}{q^2}q^{\nu}\right)\frac{F_2(x,Q^2)}{\nu},$$

• The anti-symmetric, polarized:

$$W^{[\mu\nu]}(x,Q^2) = i\epsilon^{\mu\nu\rho\sigma}q_{\rho}\left(\frac{s_{\sigma}}{\nu}(g_1(x,Q^2) + g_2(x,Q^2)) - \frac{q \cdot sp_{\sigma}}{\nu^2}g_2(x,Q^2)\right).$$

Moments of Structure Functions (Cont.)

• Polarized

$$2\int dx \, x^n g_1(x, Q^2) = \sum_{q=u,d} e_{1,n}^{(q)} (\mu^2/Q^2, g(\mu)) \langle x^n \rangle_{\Delta} q$$

$$2\int dx \, x^n g_2(x, Q^2) = \frac{n}{(n+1)} \sum_{q=u,d} \left[2e_{2,n}^{(q)} (\mu^2/Q^2, g(\mu)) d_n^q(\mu) + e_{1,n}^{(q)} (\mu^2/Q^2, g(\mu)) \langle x^n \rangle_{\Delta} q \right]$$

• Unpolarized

$$2\int dx \, x^{n-1} F_1(x, Q^2) = \sum_{q=u,d} c_{1,n}^{(q)}(\mu^2/Q^2, g(\mu)) \langle x^n \rangle_q$$
$$\int dx \, x^{n-2} F_2(x, Q^2) = \sum_{q=u,d} c_{2,n}^{(q)}(\mu^2/Q^2, g(\mu)) \langle x^n \rangle_q$$

- e_1 , e_2 , c_1 , c_2 are the Wilson coefficients
- $\langle x^n \rangle_q$, $\langle x^n \rangle_{\Delta} q$, d_n are the forward nucleon matrix elements

Implementation on the Lattice

• Interpolating field

$$J_{\alpha}\left(\vec{p},t\right) = \sum_{\vec{x},a,b,c} e^{i\vec{p}\cdot\vec{x}} \epsilon^{abc} \left[u_{a}^{T}(y_{1},t)C\gamma_{5}d_{b}(y_{2},t) \right] u_{c,\alpha}(y_{3},t)\phi(y_{1}-x)\phi(y_{2}-x)\phi(y_{3}-x)$$

• Two-point correlation function

$$C_{2\text{pt}}\left(\overrightarrow{p},t\right) = \sum_{\alpha,\beta} \left(\frac{1+\gamma_4}{2}\right)_{\alpha\beta} \langle J_{\beta}\left(\overrightarrow{p},t\right) \overline{J}_{\alpha}\left(\overrightarrow{p},0\right) \rangle$$

• Three-point correlation function

$$C_{\text{3pt}}^{\Gamma,\mathcal{O}}\left(\overrightarrow{p},t,\tau\right) = \sum_{\alpha,\beta} \Gamma^{\alpha,\beta} \langle J_{\beta}\left(\overrightarrow{p},t\right) \mathcal{O}(\tau) \overline{J}_{\alpha}\left(\overrightarrow{p},0\right) \rangle$$

• Operators

unpolarized
$$\mathcal{O}_{\mu_1\mu_2...\mu_n}^q = \left(\frac{i}{2}\right)^{n-1} \overline{q} \gamma_{\mu_1} \stackrel{\leftrightarrow}{D}_{\mu_2} \cdots \stackrel{\leftrightarrow}{D}_{\mu_n} q - \text{trace} \qquad \Gamma = \frac{1+\gamma_4}{2}$$

polarized $\mathcal{O}_{\sigma\mu_2...\mu_n}^{5q} = \left(\frac{i}{2}\right)^n \overline{q} \gamma_{\sigma} \gamma_5 \stackrel{\leftrightarrow}{D}_{\mu_2} \cdots \stackrel{\leftrightarrow}{D}_{\mu_n} q - \text{trace} \qquad \Gamma = \frac{1+\gamma_4}{2} i \gamma_5 \gamma_k$

Implementation on the Lattice

• List of operators (ignore disconnected diagram contribution)

Domain Wall Fermions

• Formulation

$$D_{x,s;x',s'} = \delta_{x,x'} D_{s,s'}^{\perp} + \delta_{s,s'} D_{x,x'}^{\parallel}$$

HE CITY OF NEW YORK

OLUMBIA UNIVERSITY

- Controllable chiral symmetry breaking with L_s \Rightarrow No complicated operator mixing
- Automatic O(a) off-shell improvement
 ⇒ Easy to implement RI/MOM NPR
 ⇒ No extra O(a) off-shell improved on either the action nor the operators

Gauge Action Choices

• $O(a^2)$ -improved gauge actions:

$$S_g = \frac{\beta}{3} \operatorname{ReTr}\left((1 - 8 c_1) \left(1 - \underbrace{1}_{0}\right) + c_1 \left(1 - \underbrace{1}_{0}\right)\right)$$

- Constraint: $c_0 + 8c_1 = 1$
- Candidates:
 - Doubly blocked Wilson 2 (DBW2) with $c_1 = -1.40686$
 - Iwasaki action with $c_1 = -0.331$
- Why DBW2?
 - Smaller $m_{\rm res}$
- Why not?
 - Suppress topology change
 - Scaling issues

RBCK Finite Volume Study

- 3 volumes: (1.2 fm)³, (1.5 fm)³, (2.4 fm)³ presented
- m_{π} ranges 395-765 MeV

Blum, Ohta, Orginos, Sasaki '03

Huey-Wen Lin @ 3rd LHP workshop, JLab 2006

RBCK quenched results

- DBW2 $\beta = 0.87$, $a^{-1} = 1.31$ GeV, (2.4 fm)³
- m_{π} ranges 395-765 MeV
- Result (concentrating on the lightest three)

• $g_A = 1.212(27)_{stat}(24)_{norm}$

Ratio is in very good agreement with experiment

Blum, Ohta, Orginos, Sasaki '03

Blum, Ohta, Orginos '05

Nucleon structure from dynamical DWF

RBCK quenched results (Cont.)

Huey-Wen Lin @ 3rd LHP workshop, JLab 2006

RBC/UKQCD Ensembles

	2 flavor (RBC)	2+1 flavor (RBC/UKQCD)
Gauge action	DBW2	Iwasaki
eta	0.80	2.13
Algorithm	HMC	RHMC
a^{-1}	pprox 1.7 GeV	pprox 1.6 GeV
Lattice Size	$16^3 imes 32 imes 12$	$16^3 imes 32 imes 16$, $24^3 imes 64 imes 16$
L	pprox 2 fm	pprox 2 fm, $pprox$ 3 fm
am_{res}	0.001372(49)	0.00307(3)
$am_{\sf Sea}$	{0.02,0.03,0.04}	{0.01,0.02,0.03}
	$\left[\frac{m_{strange}}{2}, m_{strange}\right]$	$\left[\frac{1}{4}m_{\text{strange}}, \frac{3}{4}m_{\text{strange}}\right]$
M_5	- 1.8	1.8
Measurements		
Smearing source	Gaussian	Gaussian
$\{t_{\sf src},t_{\sf snk}\}$	$\{0,10\}, \{15,25\}$	{0,12}, {16,28}, {32,44}, {48,60}
Conf.	175 , 220, 220	30, 25, 25
$m_{\pi}({\sf MeV})$	$\{ 495.(4), 607.(4), 695.(4) \}$	$\{ 393.(4), 523.8(29), 611.7(26) \}$

- Unitary sea quark mass only
- Preliminary lightest 2f analysis
- Preliminary 2+1 analysis

Ratios: Plateau

-14-

Huey-Wen Lin @ 3rd LHP workshop, JLab 2006

Ratios: g_A/g_V

Ratios: g_A/g_V

Ratios: g_A/g_V

Ratios: $\langle x \rangle_q / \langle x \rangle_{\Delta q}$

Ratios: $\langle x \rangle_q / \langle x \rangle_{\Delta q}$

Nonperturbative Renormalization

• In general,

$$\mathcal{O}_i(\mu) = Z_i(\mu, a)\mathcal{O}_i(\mu) + \sum_{i \neq j} Z_{ij}(\mu; a)\mathcal{O}_j(\mu)$$

Chiral fermions are free of mixing problem

• Fourier transform Green function

$$G_{O_{\Gamma}}(p;a) = \sum_{x,y} e^{-ip \cdot (x-y)} \langle \psi(x) O_{\Gamma}(0) \overline{\psi}(y) \rangle$$

 Calculate point (S(pa; 0)) and point-split (D_μS(pa; 0)) source propagator

$$S(pa; 0) = \sum_{x} e^{-ip \cdot x} S(x; 0)$$

$$D_{\mu}S(pa; 0) = \sum_{x} \frac{1}{2} e^{-ip \cdot x} \left[S(x; -\hat{\mu}) U_{\mu}(-\hat{\mu}) - S(x; \hat{\mu}) U_{\mu}^{\dagger}(0) \right]$$

• Truncate the external quark propagator legs

$$\Lambda_{O_{\Gamma}}(p;a) = S(p;a)^{-1} G_{O_{\Gamma}}(p;p';a) S(p';a)^{-1}$$

Nonperturbative Renormalization (Cont.)

• Z^{RI} obtained after projection

$$Z_{O_{\Gamma}}(\mu; a)^{-1} Z_q(\mu; a) = \frac{1}{12} \operatorname{Tr} (\Lambda_{O_{\Gamma}}(p; a) P_{\Gamma})|_{p^2 = \mu^2},$$

 $\boldsymbol{\mu}$ must fall inside the renormalization window

$$\Lambda_{\rm QCD} \ll \mu \ll 1/a$$

• Convert to $\overline{\text{MS}}$ scheme

Nucleon structure from dynamical DWF

Nonperturbative Renormalization (Cont.)

OLUMBIA UNIVERSITY

THE CITY OF NEW YORK

Do RGI running to remove $(ap)^2$ dependence (Example from 2 flavor case with $am_{sea} = 0.02$) \mathcal{O}_{34}^{5q} \mathcal{O}^q_{44} 2 2 1.75 1.75 1.5 1.5 ₽ ₽ 1.25 1.25 $(\mathbb{Z}^{q}_{44})^{\mathrm{SI}}$ $(Z_{44}^q)^{SI}$ 1 Φ 1 φ 0.75 0.75 Φ Φ 0.5 Φ 0.5 \$ 0.25 0.25 ⊕ ₽ 0.5 1 1.5 2 2.5 0.5 1.5 2 2.5 1 $Sin(pa)^2$ $Sin(pa)^2$

• Renormalized at 2 GeV $\Rightarrow Z_{\mathcal{O}_{44}^q} = 0.983(4) \text{ and } Z_{\mathcal{O}_{34}^{5q}} = 0.975(5).$

Summary of the Renormalization Factors

(Preliminary)

	2 flavor	2+1 flavor
Conf.	$\{94, 111, 90\}$	{76, 76, 76}
$Z_{\mathcal{O}^q_{\scriptscriptstyle AA}}$	$\{0.983(4), 0.962(3), 0.970(5)\}$	$\{0.877(13), 0.891(10), 0.866(10)\}$
$Z_{\mathcal{O}^{5q}_{24}}$	$\{0.975(5), 0.999(3), 0.988(3)\}$	$\{0.997(7), 0.918(4), 0.936(4)\}$
$Z_{\mathcal{O}^{\sigma q}_{34}}$	$\{0.707(1), 0.711(1), 0.720(1)\}$	$\{0.676(2), 0.675(2), 0.663(2)\}$

Summary of the Renormalization Factors

(Preliminary)

Huey-Wen Lin @ 3rd LHP workshop, JLab 2006

-28-

Renormalized $\langle x \rangle_q$ and $\langle x \rangle_{\Delta q}$ (Preliminary)

• Not yet extrapolated

Renormalized $\langle x \rangle_q$ and $\langle x \rangle_{\Delta q}$ (Preliminary)

• Not yet extrapolated

Renormalized $\langle x \rangle_q$

(Preliminary)

• Comparisons with other calculations

• Data taken from hep-ph/0509101 (PT renormalized)

Renormalized $\langle x \rangle_q$

(Preliminary)

• Comparisons with other calculations

- Data taken from hep-ph/0509101 (PT renormalized)
- Quenched overlap data from G. Schierholz Trento'06

Renormalized $\langle x \rangle_q$

(Preliminary)

• Compare with DWF on 2+1 staggered sea; PT renormalization. (Renner Lat'06)

Renormalized $\langle x \rangle_{\Delta q}$

(Preliminary)

• Compare with DWF on 2+1 staggered sea; PT renormalization. (Renner Lat'06)

Conclusion and Outlook

• Preliminary on lightest 2 flavor and all 2+1 flavor data

From our current data...

- Experimentally consistent ratios of g_A/g_V and $\langle x
 angle_q/\langle x
 angle_{\Delta q}$
- (Preliminary) Renormalized $\langle x \rangle_q$ and $\langle x \rangle_{\Delta q}$ are up to 50% higher than experimental values
- Our 2 flavor and 2+1 flavor data line up nicely
- No curvature observed so far

More to do:

- One more sea quark measurement to finish in 2 flavor case
- More statistics needed from 2+1 flavor case
- Finalize the NPR analysis
- Momentum dependence of the axial and vector charge
- Transversity analysis

In the near future...

• New ensembles with $am_{sea} = 0.005$ ($m_{\pi} \approx 290$ MeV) with $L \approx 3$ fm will further explore the lighter m_{PS} region