Towards the hadron spectrum using spatially-extended operators in lattice QCD

Colin Morningstar Carnegie Mellon University 3rd Topical Workshop on Lattice Hadron Physics Jefferson Lab July 31, 2006

Lattice Hadron Physics Collaboration

- Lattice Hadron Physics Collaboration (LHPC) formed in 2000
- LHPC has several broad goals
 - compute QCD spectrum (baryons, mesons,...)
 - hadron structure (form factors, structure functions,...)
 - hadron-hadron interactions
- current members of spectroscopy effort:
 - Robert Edwards, George Fleming, Jimmy Juge, Adam Lichtl, CM, Nilmani Mathur, David Richards, Ikuro Sato, Steve Wallace

LHPC spectroscopy efforts

- extracting spectrum of resonances is big challenge!!
 - need sets of extended operators (correlator matrices)
 - multi-hadron operators needed too
 - deduce resonances from finite-box energies
 - □ anisotropic lattices $(a_t < a_s)$
 - inclusion of light-quark loops at realistically light quark mass
- Iong-term project
- efforts divide into two categories
 - operator technology
 - Monte Carlo updating technology (light quark loops)
- this talk is an interim status report
 - focus on baryons

Outline

- how to extract excited-state energies from Monte Carlo computations
 - need for multi-hadron operators
- operator construction
 - spatially-extended operators
 - symmetry channels
- field smearing
- operator pruning
- milestone reached: extraction of nine or more levels in a symmetry channel!!
- outlook and conclusion

Excited states, resonances in lattice Monte Carlo

Principal correlators

- extracting excited-state energies described in
 - C. Michael, NPB **259**, 58 (1985)
 - Luscher and Wolff, NPB **339**, 222 (1990)
- exploits the variational method
- for $N \times N$ correlator matrix $C_{\alpha\beta}(t) = \langle 0 | O_{\alpha}(t) O_{\beta}^{+}(0) | 0 \rangle$ define

N principal correlators $\lambda_{lpha}(t,t_0)$ as eigenvalues of $C(t_0)^{-1/2}C(t) C(t_0)^{-1/2}$

where t_0 (the time defining the "metric") is small

- can show $\lim_{t\to\infty} \lambda_{\alpha}(t,t_0) = e^{-(t-t_0)E_{\alpha}} (1+e^{-t\Delta E_{\alpha}})$
- *N* principal effective masses $\Omega_{\alpha}(t) = \ln\left(\frac{\lambda_{\alpha}(t,t_0)}{\lambda_{\alpha}(t+1,t_0)}\right)$ now tend (plateau) to *N* lowest-lying stationary-state energies

Unstable particles (resonances)

- our computations done in a periodic box
 - momenta quantized
 - discrete energy spectrum of stationary states → single hadron, 2 hadron, ...

- scattering phase shifts → resonance masses, widths (in principle) deduced from finite-box spectrum
 - B. DeWitt, PR 103, 1565 (1956) (sphere)
 - M. Luscher, NPB**364**, 237 (1991) (cube)
- first goal: get finite-box spectrum
 - must extract multi-hadron state energies
 - check volume dependences
 - know masses of decay products → placement and pattern of multi-particle states roughly known

Operator construction

Operator design issues

- must facilitate spin identification
 - shun the usual method of operator construction which relies on cumbersome continuum space-time constructions
 - focus on constructing operators which transform irreducibly under the symmetries of the lattice
- one eye on maximizing overlaps with states of interest
- other eye on minimizing number of quark-propagator sources
- use building blocks useful for baryons, mesons, multi-hadron operators
- must project onto definite spin polarizations or will observe many degeneracies

Three stage approach

- concentrate on baryons at rest (zero momentum)
- operators classified according to the irreps of O_h

 $G_{1g}, G_{1u}, G_{2g}, G_{2u}, H_g, H_u$

- (1) basic building blocks: smeared, covariant-displaced quark fields $(\widetilde{D}_{i}^{(p)}\widetilde{\psi}(x))_{Aa\alpha}$ *p*-link displacement $(j = 0, \pm 1, \pm 2, \pm 3)$
- (2) construct elemental operators (translationally invariant) $B^{F}(x) = \phi^{F}_{ABC} \varepsilon_{abc} (\tilde{D}_{i}^{(p)} \tilde{\psi}(x))_{Aa\alpha} (\tilde{D}_{j}^{(p)} \tilde{\psi}(x))_{Bb\beta} (\tilde{D}_{k}^{(p)} \tilde{\psi}(x))_{Cc\gamma}$
 - flavor structure from isospin, color structure from gauge invariance
- (3) group-theoretical projections onto irreps of O_h $B_i^{\Lambda\lambda F}(t) = \frac{d_{\Lambda}}{g_{O_h^D}} \sum_{R \in O_h^D} D_{\lambda\lambda}^{(\Lambda)}(R)^* U_R B_i^F(t) U_R^+$

Grassmann package in Maple to do these calculations

details in PRD72, 094506 (2005)

Three-quark elemental operators

three-quark operator

$$\Phi^{ABC}_{\alpha\beta\gamma,ijk}(t) = \sum_{\vec{x}} \varepsilon_{abc} (\tilde{D}^{(p)}_{i} \tilde{\psi}(\vec{x},t))^{A}_{a\alpha} (\tilde{D}^{(p)}_{j} \tilde{\psi}(\vec{x},t))^{B}_{b\beta} (\tilde{D}^{(p)}_{k} \tilde{\psi}(\vec{x},t))^{C}_{c\gamma}$$

covariant displacements

 $\tilde{D}_{j}^{(p)}(x,x') = \tilde{U}_{j}(x) \tilde{U}_{j}(x+\hat{j}) \cdots \tilde{U}_{j}(x+(p-1)\hat{j}) \delta_{x',x+p\hat{j}} \quad (j = \pm 1, \pm 2, \pm 3)$ $\tilde{D}_{0}^{(p)}(x,x') = \delta_{x',x}$

Baryon	Operator
Δ^{++}	$\Phi^{uuu}_{\pmb{lpha}\pmb{eta}\pmb{\gamma},ijk}$
Σ^+	$\Phi^{uus}_{lphaeta\gamma,ijk}$
N^+	$\Phi^{uud}_{\alpha\beta\gamma,ijk} - \Phi^{duu}_{\alpha\beta\gamma,ijk}$
Ξ^0	$\Phi^{ssu}_{\pmb{lpha} \pmb{eta} \pmb{\gamma}, ijk}$
Λ^0	$\Phi^{uds}_{\alpha\beta\gamma,ijk} - \Phi^{dus}_{\alpha\beta\gamma,ijk}$
Ω^{-}	$\Phi^{sss}_{\alpha\beta\gamma,ijk}$

Incorporating orbital and radial structure

- displacements of different lengths build up radial structure
- displacements in different directions build up orbital structure

- minimizes number of sources for quark propagators
- useful for mesons, tetraquarks, pentaquarks even!
- can even incorporate hybrid mesons operator (in progress)

Enumerating the three-quark operators

Iots of operators (too many!)

	Δ^{++}, Ω^{-}	Σ^+, Ξ^0	N^+	Λ^0
Single-site	20	40	20	24
Singly-displaced	240	624	384	528
Doubly-displaced-I	192	572	384	576
Doubly-displaced-L	768	2304	1536	2304
Triply-displaced-T	768	2304	1536	2304
Triply-displaced-O	512	1536	1024	1536

Spin identification and other remarks

spin identification possible by pattern matching

J	$n_{G_1}^J$	$n_{G_2}^J$	n_{H}^{J}
$\frac{1}{2}$	1	0	0
$\frac{3}{2}$	0	0	1
<u>5</u> 2	0	1	1
$\frac{7}{2}$	1	1	1
<u>9</u> 2	1	0	2
$\frac{11}{2}$	1	1	2
$\frac{13}{2}$	1	2	2
$\frac{15}{2}$	1	1	3
$\frac{17}{2}$	2	1	3

total numbers of operators assuming two different displacement lengths

Irrep	Δ, Ω	N	Σ, Ξ	Λ
G_{1g}	221	443	664	656
G_{1u}	221	443	664	656
G_{2g}	188	376	564	556
G_{2u}	188	376	564	556
H_{g}	418	809	1227	1209
H_u	418	809	1227	1209

- total numbers of operators is huge \rightarrow uncharted territory
- ultimately must face two-hadron scattering states

Single-site operators

- choose Dirac-Pauli convention for γ-matrices
 - 20 independent single-site Δ^{++} elemental operators:

 $\Delta_{\alpha\beta\gamma} = \epsilon_{abc} \, \tilde{u}_{a\alpha} \, \tilde{u}_{b\beta} \, \tilde{u}_{c\gamma}, \qquad (\alpha \le \beta \le \gamma)$

• 20 independent single-site N^+ elemental operators:

 $N_{\alpha\beta\gamma} = \varepsilon^{abc} \left(\tilde{u}_{a\alpha} \, \tilde{u}_{b\beta} \, \tilde{d}_{c\gamma} - \tilde{d}_{a\alpha} \, \tilde{u}_{b\beta} \, \tilde{u}_{c\gamma} \right), \qquad (\alpha \le \beta, \, \alpha < \gamma)$

• 40 independent single-site Σ^+ elemental operators:

 $\Sigma_{\alpha\beta\gamma} = \epsilon_{abc} \,\, \tilde{u}_{a\alpha} \, \tilde{u}_{b\beta} \,\, \tilde{s}_{c\gamma} \qquad (\alpha \le \beta)$

• 24 independent single-site Λ⁰ elemental operators:

$$\Lambda_{\alpha\beta\gamma} = \epsilon_{abc} \left(\tilde{u}_{a\alpha} \, \tilde{d}_{b\beta} \, \tilde{s}_{c\gamma} - \tilde{d}_{a\alpha} \, \tilde{u}_{b\beta} \, \tilde{s}_{c\gamma} \right) \qquad (\alpha < \beta)$$

Δ ++ single-site operators

Irrep	Row	DP Operators		
G_{1g}	1	$\Delta_{144} - \Delta_{234}$		
G_{1g}	2	$-\Delta_{134}+\Delta_{233}$		
G_{1u}	1	$\Delta_{124} - \Delta_{223}$		
G_{1u}	2	$-\Delta_{114}+\Delta_{123}$		
H_{g}	1	Δ_{222}		
H_{g}	2	$-\sqrt{3}\Delta_{122}$		
H_{g}	з	$\sqrt{3}\Delta_{112}$		
H_g	4	$-\Delta_{111}$		
H_{g}	1	$\sqrt{3}\Delta_{244}$		
H_g	2	$-\Delta_{144}-2\Delta_{234}$		
H_g	з	$2\Delta_{134}+\Delta_{233}$		
H_{g}	4	$-\sqrt{3}\Delta_{133}$		

Irrep	Row	DP Operators			
H_u	1	$\sqrt{3}\Delta_{224}$			
H_u	2	$-2\Delta_{124}-\Delta_{223}$			
H_u	з	$\Delta_{114} + 2\Delta_{123}$			
H_u	4	$-\sqrt{3}\Delta_{113}$			
H_u	1	Δ444			
H_u	2	$-\sqrt{3}\Delta_{344}$			
H_u	з	$\sqrt{3}\Delta_{334}$			
H_u	4	$-\Delta_{333}$			

Single-site *N*+ operators

Irrep	Row	DP Operators
G	1	Nino
019	'	1*122
G_{1g}	2	$-N_{112}$
G_{1g}	1	$N_{144} - N_{243}$
G_{1g}	2	$-N_{134} + N_{233}$
G_{1g}	1	$N_{144} - 2N_{234} + N_{243}$
G_{1g}	2	$N_{134} - 2N_{143} + N_{233}$
G_{1u}	1	N_{142}
G_{1u}	2	$-N_{132}$
G_{1u}	1	N_{344}
G_{1u}	2	$-N_{334}$
G_{1u}	1	$2N_{124} - N_{142} - 2N_{223}$
G_{1u}	2	$-2N_{114} + 2N_{123} - N_{132}$

Irrep	Row	DP Operators
H_g	1	$\sqrt{3}N_{244}$
H_g	2	$-N_{144} - N_{234} - N_{243}$
H_g	3	$N_{134} + N_{143} + N_{233}$
H_g	4	$-\sqrt{3} N_{133}$
H_u	1	$\sqrt{3}N_{224}$
H_u	2	$-2N_{124} + N_{142} - N_{223}$
H_u	3	$N_{114} + 2N_{123} - N_{132}$
H_u	4	$-\sqrt{3} N_{113}$

Quark-field and link-variable smearing issues

Run parameters

- run parameters for all results presented here
 - \square 12³×48 anisotropic lattice
 - Wilson gauge, Wilson fermion actions
 - □ lattice spacings $a_s \sim 0.1$ fm, $a_s / a_t \sim 3.0$
 - \Box quark masses such that $m_{\pi} \sim 700 \,\mathrm{MeV}$
 - quenched
 - correlator matrices averaged over irrep rows
 - use of opposite-parity time-reversed propagators to double statistics
 - number of configurations used
 - 50 for operator smearing tests
 - 200 for operator prunings

Quark- and gauge-field smearing

- smeared quark and gluon fields fields \rightarrow dramatically reduced coupling with short wavelength modes
- Ink-variable smearing (stout links PRD69, 054501 (2004))
 - define $C_{\mu}(x) = \sum_{\pm (\nu \neq \mu)} \rho_{\mu\nu} U_{\nu}(x) U_{\mu}(x + \hat{\nu}) U_{\nu}^{+}(x + \hat{\mu})$ spatially isotropic $\rho_{jk} = \rho$, $\rho_{4k} = \rho_{k4} = 0$ $\hat{\nu}$

 - exponentiate traceless Hermitian matrix

$$\Omega_{\mu} = C_{\mu}U_{\mu}^{+} \qquad Q_{\mu} = \frac{i}{2}\left(\Omega_{\mu}^{+} - \Omega_{\mu}\right) - \frac{i}{2N}\operatorname{Tr}\left(\Omega_{\mu}^{+} - \Omega_{\mu}\right)$$

erate
$$U_{\mu}^{(n+1)} = \exp\left(iQ_{\mu}^{(n)}\right)U_{\mu}^{(n)}$$

- $U_{\mu} \rightarrow U_{\mu}^{(1)} \rightarrow \cdots \rightarrow U_{\mu}^{(n)} \equiv U_{\mu}$ quark-field smearing (covariant Laplacian uses smeared gauge field) $\tilde{\psi}(x) = \left(1 + \frac{\sigma_s^2}{4n_\sigma}\tilde{\Delta}^2\right)^{n_\sigma}\psi(x)$
- parameters to tune: $\sigma_s, n_{\sigma}, \rho, n_{\rho}$

🗅 it

Quark-field smearing tuning

- focus on three particular operators for smearing tests
 - \Box a single-site operator O_{SS} in the G_{lg} irrep
 - a singly-displaced operator O_{SD} with a particular choice of Dirac indices and 3-link displacement length
 - a triply-displaced-T operator O_{TDT} with a particular choice of the Dirac indices (3-link displacement lengths)
- define effective mass as usual $M_i(t) = \ln \left(\frac{C_{ii}(t)}{C_{ii}(t+a_i)} \right)$
- use $M_i(t=4a_t)$ to compare different quark-field smearings
- smeared links $\rho n_{\rho} = 2.5$, $n_{\rho} = 16$ since displaced operators noisy

Hadron spectrum from lattice QCD

Link-variable smearing tuning

- first, used the effective mass E(t=0) associated with the static quark-antiquark potential at spatial separation $R = 5a_s \sim 0.5$ fm
- found that link-smearing did not appreciably alter values of baryon effective masses, but had dramatic effect on *variance*
- compared relative jackknife error $\eta_i(t = 4a_t)$ of $M_i(t = 4a_t)$ for different link-smearing parameters ($\sigma_s = 4.0, n_\sigma = 32$)
- lesson learned: preferred parameters from static potential produce smallest errors in baryon effective masses

$n_{\rho} = 1, 2, 4, 8, 16, 32$

Importance of smearing

• Nucleon G1g channel

 effective masses of the 3 selected operators

 noise reduction from link variable smearing, especially for displaced operators

 quark-field smearing reduces couplings to high-lying states

 $\sigma_s = 4.0, \quad n_\sigma = 32$ $n_\rho \rho = 2.5, \quad n_\rho = 16$

• effect on excited states shows $\sigma_s = 3.0$ better

Smearing and excited states

- previous tests involved lowest state only
- important to tune smearing for excited states as well
- lowest 4 principal effective masses for 10x10 matrix of DDI G_{lg} operators shown same link smearing $\rho n_{\rho} = 2.5, n_{\rho} = 16$ quark-field smearings $\sigma_s = 2.0$ (blue), 3.0 (red), 4.0 (black) $n_{\sigma} = 32$ $\rho n_{\rho} = 5.0, n_{\rho} = 32$ with $\sigma_s = 4.0$ did not reduce errors

• preferred:
$$n_{\sigma} = 32, \sigma_s = 3.0$$

Smearing summary

• From our quenched study of the G_{1g} nucleon channel on small lattices $12^3 \times 48$ for $a_s \sim 0.1$ fm and $a_s/a_t \sim 3.0$ and $m_{\pi} \sim 700$ MeV, the preferred smearing parameters are

$$\rho n_{\rho} = 2.5, n_{\rho} = 16$$
 $n_{\sigma} = 32, \sigma_s = 3.0$

- factors still to consider:
 - evidence for same smearing for other irreps
 - expect same smearing for other isospin channels
 - dependence on lattice spacing
 - dependence on quark mass

Operator pruning issues

Operator plethora

Number of N⁺ operators given below (1 displacement length)
 total of 179 operators in G_{1g} channel

	G_{1g}	G_{2g}	H_{g}
Single-site	3	0	1
Singly-displaced	24	8	32
Doubly-displaced-I	24	8	32
Doubly-displaced-L	64	64	128
Triply-displaced-T	64	64	128

- since 179x179 matrix too large to be practical, operator pruning is clearly necessary
- will focus on G_{lg} channel first

Operator plethora (G1g Nucleon)

G1g nucleon operators

G2g nucleon operators

Hu nucleon operators

Pruning: step one

- look at effective masses of diagonal elements of correlation matrix and discard noisy operators
- examples shown below $(\rho n_{\rho} = 2.5, n_{\rho} = 16, n_{\sigma} = 32, \sigma_s = 4.0 \text{ used})$
- all 179 effective masses

Pruning: step one (continued)

- retain 64 operators out of the 179
 - SS: 0, 1, 2
 - □ SD: 3, 5, 6, 8, 10, 12, 14, 17, 19, 20, 22, 24, 25
 - DDI: 27, 29, 30, 31, 33, 36, 38, 41, 43, 44, 45, 48
 - □ DDL: 52, 54, 56, 57, 58, 59, 60, 61, 62, 72, 74, 76, 78, 85, 88, 94, 97, 98, 105, 110
 - TDT: 116, 118, 119, 124, 125, 126, 132, 134, 136, 138
 149, 158, 162, 163, 169, 174

Noise, noise, noise, noise

- noise is the enemy!!
 - intrinsic noise in each operator
 - presence of small singular values indicates operator set not "independent enough" → noise can creep in
- examine renormalized matrix at early time t=1

 $\hat{C}_{ij}(1) = C_{ij}(1) / \sqrt{C_{ii}(1)C_{jj}(1)}$

- sort operators in order of increasing noise
- keep 6 least noisiest operators of each kind (SD,DDI,...) which yield acceptable matrix condition number
- from above set, choose 25 operators which still yield acceptable matrix condition number
- try to keep different operator types if condition number allows

Milestone: principal effective masses

- G1g nucleons (16x16 matrix) using 200 configurations
- world record: 9 levels extracted (even more possible!)

G1u Nucleon channel

can see effect of time-backward propagation of anti-baryons

G2g nucleon channel

G2u nucleon channel

Hg nucleon channel

Hu nucleon channel

Future work

- three-quark operator pruning to be completed
 - □ all irreps, all isospin channels
 - different displacement <u>lengths</u>
- include mesons (in progress)
- include multi-hadron operators
 - stochastic all-to-all propagators with dilution, low eigenvectors
 - will also facilitate disconnected diagrams
- goal: operator technology ready to go when unquenched simulations near realistically-light quark masses become possible
- LHPC recently was awarded 1/6 of QCDOC to generate configurations on large lattices with dynamical quarks such that pion mass around 300 MeV

Summary

- progress report on ongoing efforts of LHPC to extract hadron spectrum with large sets of extended operators
 - need for correlation matrices of good operators
 - spin identification must be addressed
 - multi-hadron operators will become important
- exploration of 3-quark baryon operators nearly done
- study of meson operators beginning
- major milestone reached: can extract 9 or more states!!
- ultimately, MC updating with realistically light quark masses needed
- very challenging calculations
 will keep hammering at it!

