Hadron Structure in the Chiral Regime with Domain Wall Quarks on an Improved Staggered Sea

J.W. Negele

LHP 2006

Jefferson Lab

August 2, 2006

Collaborators

Lattice Hadron Physics Collaboration

Arizona D. Renner JLab R. Edwards **D.** Richards MIT **B.** Bistrovic J. Bratt A. Pochinsky D. Sigaev William & Mary, JLab K. Orginos Yale G. Fleming

Athens A.Tsapalis

U Cyprus C.Alexandrou G. Koutsou Ph. Leontiou

T. U. Munchen **Ph. Haegler**

DESY Zeuthen W. Schroers

Outline

Introduction

Form factors

 $\Box F_1, F_2, G_A, G_P$

Generalized form factors

Transverse structure

Origin of nucleon spin

Comparison with phenomenology

N-Delta transition form factor

Summary and future challenges

Goals

- Quantitative calculation of hadron observables from first principles
 - Agreement with experiment
 - Credibility for predictions and guiding experiment
- Insight into how QCD works
 - Mechanisms
 - Paths that dominate action instantons
 - Variational wave functions
 - Dependence on parameters
 - \square N_c, N_f, gauge group
 - mq

The case for using an improved staggered sea

Fourth root appears manageable

- □ RG indicates coefficient of nonlocal term \rightarrow 0
- Partially quenched staggered XPT accounts well for ugly properties
- Successful predictions and accurate agreement with expt.
- Availability of lattices with large L, 3 lattice spacings

The case for improved staggered quarks

S. Sharpe, "Rooted Staggered Fermions: Good, Bad or Ugly", Lattice 2006, 7/26/2006 - p.14/50

LHP06 8-2-06 J.W. Negele

Precision agreement in heavy quark systems

Gold Plated Observables" (Davies et. al. hep-lat/0304004)

- Staggered quarks
- Asqtad improved action
- □ a = 0.13, 0.09 fm

Lattice QCD Predictions

D meson decay constants

Mass of B_c meson

The case for domain wall valence quarks

- Chiral symmetry avoids operator mixing
- Order a²
- Conserved axial current facilitates renormalization
- Hybrid valence and sea actions are manageable
 - Hybrid XPT available
 - One-loop results have simple chiral behavior
 - Perturbative calculation of ratios of renormalization
 - constants works well

Hadron structure revealed by high energy scattering

- High energy scattering measures correlation functions along light cone
 - Asymptotic freedom: reaction theory perturbative
 - Unambiguous measurement of operators in light cone frame
 - Must think about physics on light cone
- Parton distribution q(x) gives longitudinal momentum distribution of light-cone wave function
- □ Generalized parton distribution $q(x, r_{\perp})$ gives transverse spatial structure of light-cone wave function

Parton and generalized parton distributions

High energy scattering: light-cone correlation function $(\lambda = p^+x^-)$

$$\mathcal{O}(x) = \int \frac{d\lambda}{4\pi} e^{i\lambda x} \bar{\psi}(-\frac{\lambda}{2}n) \not n \mathcal{P} e^{-ig \int_{-\lambda/2}^{\lambda/2} d\alpha n \cdot A(\alpha n)} \psi(\frac{\lambda}{2}n)$$

Deep inelastic scattering: diagonal matrix element

$$\langle P|\mathcal{O}(x)|P
angle = q(x)$$

 $[\not n \to \not n \gamma_5: \Delta q(x)]$

Deeply virtual Compton scattering: off-diagonal matrix element

$$\begin{split} \langle P'|\mathcal{O}(x)|P\rangle &= \langle \gamma \rangle H(x,\xi,t) + \frac{i\Delta}{2m} \langle \sigma \rangle E(x,\xi,t) \\ \Delta &= P' - P, \quad t = \Delta^2, \quad \xi = -n \cdot \Delta/2 \\ [\not n \to \not n \gamma_5 : \quad \tilde{E}(x,\xi,t), \tilde{H}(x,\xi,t)] \end{split}$$

Moments of parton distributions

Expansion of
$$\mathcal{O}(x) = \int \frac{d\lambda}{4\pi} e^{i\lambda x} \bar{\psi}(-\frac{\lambda}{2}n) \not n \mathcal{P} e^{-ig \int_{-\lambda/2}^{\lambda/2} d\alpha n \cdot A(\alpha n)} \psi(\frac{\lambda}{2}n)$$

Generates tower of twist-2 operators

$$\mathcal{O}_q^{\{\mu_1\mu_2\dots\mu_n\}} = \overline{\psi}_q \gamma^{\{\mu_1} i D^{\mu_2} \dots i D^{\mu_n\}} \psi_q$$

Diagonal matrix element

$$\langle P|\mathcal{O}_q^{\{\mu_1\mu_2\dots\mu_n\}}|P\rangle \sim \int dx \, x^{n-1}q(x)$$

Off-diagonal matrix element

$$\begin{split} \langle P' | \mathcal{O}_q^{\{\mu_1 \mu_2 \dots \mu_n\}} | P \rangle &\to A_{ni}(t), B_{ni}(t), C_{n0}(t) \\ \int dx \, x^{n-1} H(x, \xi, t) \sim \sum \xi^i A_{ni}(t) + \xi^n C_{n0}(t) \\ \int dx \, x^{n-1} E(x, \xi, t) \sim \sum \xi^i B_{ni}(t) - \xi^n C_{n0}(t) \\ [\not n \to \not n \gamma_5 : \quad \tilde{A}_{ni}(t), \tilde{B}_{ni}(t)] \end{split}$$

LHP06 8-2-06 J.W. Negele

Lattice operators: irreducible representations of hypercubic group with minimal operator mixing and minimal non-zero momentum components

LHP06 8-2-06 J.W. Negele

Asqtad Action: $O(a^2)$ perturbatively improved

- Symansik improved glue
 - $\Box S_g(U) = C_0 W^{|x|} + C_1 W^{|x|} + C_2 W^{cube}$
- Smeared staggered fermions S_f(V,U)
 - Fat links remove taste changing gluons
 - Tadpole improved

HYP Smearing

□ Three levels of SU(3) projected blocking within hypercube

Minimize dislocations - important for DW fermions

Perturbative renormalization

HYP smeared domain wall fermions - B. Bistrovic

operator	H(4)	NOS	НҮР	APE
$\bar{a}[\gamma_5]a$	1^{\pm}_{1}	0.792	0.981	1.046
$\bar{a}[\gamma_5]\gamma_{\mu}a$	4^{\pm}_{4}	0.847	0.976	0.994
$\bar{a}[\gamma_5]\sigma_{\mu\nu}a$	6^{\pm}_{1}	0.883	0.992	0.993
$\bar{q}[\gamma_5]\gamma_{\mu\nu}D_{\nu\nu}q$	6^{\pm}_{2}	0.991	0.979	0.954
$\bar{q}[\gamma_5]\gamma_{J\mu}D_{\nu}q$	3^{2}_{1}	0.982	0.975	0.951
$\bar{a}[\gamma_5]\gamma_{1\mu}D_{\nu}D_{\alpha\lambda}a$	8^{1}_{1}	1.134	0.988	0.934
$\bar{q}[\gamma_5]\gamma_{1\mu}D_{\nu}D_{\alpha}q$	mixing	5.71×10^{-3}	1.88×10^{-3}	8.21×10^{-4}
$\bar{a}[\gamma_5]\gamma_{1\mu}D_{\nu}D_{\alpha}a$	47	1.124	0.987	0.934
$\bar{a}[\gamma_5]\gamma_{\mu}D_{\nu}D_{\alpha}D_{\beta}a$	$2^{\frac{2}{\pm}}$	1.244	0.993	0.919
$\bar{a}[\gamma_5]\sigma_{\mu\nu}D_{\alpha\nu}a$	8^{\pm}_{1}	1.011	0.994	0.964
$\bar{a}[\gamma_5]\gamma_1D_{\nu_1}a$	6^{\mp}_{1}	0.979	0.982	0.989
$\bar{q}[\gamma_5]\gamma_{[\mu}D_{\{\nu]}D_{\alpha\}}q$	8^{\pm}_1	0.955	0.959	0.965

$$O_i^{\overline{MS}}(Q^2) = \sum_j \left(\delta_{ij} + \frac{g_0^2}{16\pi^2} \frac{N_c^2 - 1}{2N_c} \left(\gamma_{ij}^{\overline{MS}} \log(Q^2 a^2) - (B_{ij}^{LATT} - B_{ij}^{\overline{MS}}) \right) \right) \cdot O_j^{LATT}(a^2)$$

Numerical calculations

- Improved staggered sea quarks (MILC configurations)
 N_F = 3, a=0.125 fm
- Domain wall valence quarks
 - \Box L_s = 16, M = 1.7
 - Masses and volumes:

mπ	configs	Vol	L (fm)
761	425	20 ³	2.5
693	350	20 ³	2.5
544	564	20 ³	2.5
486	498	20 ³	2.5
354	655	20 ³	2.5
354	270	28 ³	3.5

Hadron matrix elements on the lattice

Measure ⟨𝒫⟩ for m_q, a, L
Connected diagrams
Disconnected diagrams (cancel for ⟨𝕗⟩_u − ⟨Ο⟩_d)
Extrapolate m_q : m_π → 140 MeV a →~ 0.05 fm L →~ 5 fm

Overdetermined system for form factors

Calculate ratio

$$R_{\mathcal{O}}(\tau, P', P) = \frac{C_{\mathcal{O}}^{\rm 3pt}(\tau, P', P)}{C^{\rm 2pt}(\tau_{\rm snk}, P')} \left[\frac{C^{\rm 2pt}(\tau_{\rm snk} - \tau + \tau_{\rm src}, P) \ C^{\rm 2pt}(\tau, P') \ C^{\rm 2pt}(\tau_{\rm snk}, P')}{C^{\rm 2pt}(\tau_{\rm snk} - \tau + \tau_{\rm src}, P') \ C^{\rm 2pt}(\tau, P) \ C^{\rm 2pt}(\tau_{\rm snk}, P)} \right]^{1/2}$$

Schematic form

$$\begin{split} \langle \mathcal{O}_i^{cont} \rangle &= \sum_j a_{ij} \mathcal{F}_j \\ \langle \mathcal{O}_i^{cont} \rangle &= \sqrt{E'E} \sum_j Z_{ij} \overline{R}_j \\ \overline{R}_i &= \frac{1}{\sqrt{E'E}} \sum_{jk} Z_{ij}^{-1} a_{jk} \mathcal{F}_k \\ &\equiv \sum_j a'_{ij} \mathcal{F}_j \,. \end{split}$$

Nucleon axial charge in full lattice QCD

 \Box Why g_A ?

Matrix element of axial current $A_{\mu} = \bar{q}\gamma_{\mu}\gamma_{5}\frac{\tau}{2}q$ $\langle N(p+q)|A_{\mu}|N(p)\rangle = \bar{u}(p+q)\frac{\tau}{2}\left[g_{A}(q^{2})\gamma_{\mu}\gamma_{5} + g_{P}(q^{2})q_{\mu}\gamma_{5}\right]u(p)$ $g_{A}(0) = 1.2695 \pm 0.0029$

□ Adler Weisberger $g_A^2 - 1 \sim \int (\sigma_{\pi^+ p} - \sigma_{\pi^- p})$

□ Goldberger Treiman $g_A \rightarrow f_\pi g_{\pi NN}/M_N$

• Spin content $\langle 1 \rangle_{\Delta q} = \int_0^1 dx [\Delta q(x) + \Delta \bar{q}(x)]$

 $g_A = \langle 1 \rangle_{\Delta u} - \langle 1 \rangle_{\Delta d}$ $\Sigma = \langle 1 \rangle_{\Delta u} + \langle 1 \rangle_{\Delta d} + \langle 1 \rangle_{\Delta s}$

Nucleon axial charge

Gold-Plated observable

Accurately measured

No disconnected diagrams

Chiral perturbation theory for $g_A(m_{\pi}^2, V)$

Renormalization - 5-d conserved current

Nucleon Axial Charge

Chiral perturbation theory $g_A(m_{\pi}^2, V)$

- Beane and Savage hep-ph/0404131
- Detmold and Lin hep-lat/0501007
- I-loop theory has 6 parameters
 - \Box Fix $f_{\pi}, m_{\Delta} m_N, g_{\Delta N}$ (0.3% error)
 - \Box Fit $g_A, g_{\Delta\Delta}, C$

 \Box Result $g_A(m_{\pi} = 140) = 1.212 \pm 0.084$

Chiral expansion of axial charge

$$\begin{split} \Gamma_{NN} &= g_A - i \frac{4}{3f^2} [4g_A^3 J_1(m_\pi, 0, \mu) \\ &+ 4(g_{\Delta N}^2 g_A + \frac{25}{81} g_{\Delta N}^2 g_{\Delta \Delta}) J_1(m_\pi, \Delta, \mu) \\ &+ \frac{3}{2} g_A R_1(m_\pi, \mu) \\ &- \frac{32}{9} g_{\Delta N} g_A N_1(m_\pi, \Delta, \mu)] \\ &+ C m_\pi^2 \end{split}$$

$$J_{1}(m, \Delta, \mu) = -\frac{3}{4} \frac{i}{16\pi^{2}} \left[(m^{2} - 2\Delta^{2}) \log \frac{m^{2}}{\mu^{2}} + 2\Delta F(m, \Delta) \right]$$

$$R_{1}(m, \mu) = \frac{i}{16\pi^{2}} m^{2} \left[\Gamma(\epsilon) + 1 - \log \frac{m^{2}}{\mu^{2}} \right]$$

$$N_{1}(m, \Delta, \mu) = -\frac{3}{4} \frac{i}{16\pi^{2}} \left[(m^{2} - \frac{2}{3}\Delta^{2}) \log \frac{m^{2}}{\mu^{2}} + \frac{2}{3}\Delta F(m, \Delta) + \frac{2}{3} \frac{m^{2}}{\Delta} [\pi m - F(m, \Delta)] \right]$$

$$f(m, \Delta) = \sqrt{\Delta^{2} - m^{2} - i\epsilon} \log \left(\frac{\Delta - \sqrt{\Delta^{2} - m^{2} - i\epsilon}}{\Delta + \sqrt{\Delta^{2} - m^{2} - i\epsilon}} \right)$$

LHP06 8-2-06 J.W. Negele

Nucleon axial charge g_A $\langle 1 \rangle_{\Delta q}^{u-d}$

J.W. Negele

Chiral Extrapolation of Moments

for example, unpolarized moments

$$\langle x^n \rangle_{u-d} = a_n \left(1 - \frac{(3g_{A,0}^2 + 1)}{(4\pi f_{\pi,0})^2} m_\pi^2 \ln\left(\frac{m_\pi^2}{\mu^2}\right) \right) + b'_n(\mu) m_\pi^2$$

• choose $\mu=f_{\pi,0}$, and at one loop $g_{A,0} o g_{A,m_\pi}$ and $f_{\pi,0} o f_{\pi,m_\pi}$

$$\langle x^n \rangle_{u-d} = a_n \left(1 - \frac{(3g_{A,m_\pi}^2 + 1)}{(4\pi)^2} \frac{m_\pi^2}{f_{\pi,m_\pi}^2} \ln\left(\frac{m_\pi^2}{f_{\pi,m_\pi}^2}\right) \right) + b_n \frac{m_\pi^2}{f_{\pi,m_\pi}^2}$$

• self consistently $g_A \to g_{A,\text{lat}}, \ f_\pi \to f_{\pi,\text{lat}}, \ m_\pi \to m_{\pi,\text{lat}}$

$$\langle x^{n} \rangle_{u-d} = a_{n} \left(1 - \frac{(3g_{A,\text{lat}}^{2} + 1)}{(4\pi)^{2}} \frac{m_{\pi,\text{lat}}^{2}}{f_{\pi,\text{lat}}^{2}} \ln \left(\frac{m_{\pi,\text{lat}}^{2}}{f_{\pi,\text{lat}}^{2}} \right) \right) + b_{n} \frac{m_{\pi,\text{lat}}^{2}}{f_{\pi,\text{lat}}^{2}}$$

similarly for the helicity and transversity moments

$$\begin{aligned} \langle x^{n} \rangle_{\Delta u - \Delta d} &= \Delta a_{n} \left(1 - \frac{(2g_{A,\text{lat}}^{2} + 1)m_{\pi,\text{lat}}^{2}}{(4\pi)^{2}} \ln \left(\frac{m_{\pi,\text{lat}}^{2}}{f_{\pi,\text{lat}}^{2}} \right) \right) + \Delta b_{n} \frac{m_{\pi,\text{lat}}^{2}}{f_{\pi,\text{lat}}^{2}} \\ \langle x^{n} \rangle_{\delta u - \delta d} &= \delta a_{n} \left(1 - \frac{(4g_{A,\text{lat}}^{2} + 1)m_{\pi,\text{lat}}^{2}}{2(4\pi)^{2}} \ln \left(\frac{m_{\pi,\text{lat}}^{2}}{f_{\pi,\text{lat}}^{2}} \right) \right) + \delta b_{n} \frac{m_{\pi,\text{lat}}^{2}}{f_{\pi,\text{lat}}^{2}} \end{aligned}$$

Chiral Extrapolation of Moments

Chiral Extrapolation of Moments

LHP06 8-2-06 J.W. Negele

Chiral Extrapolation of Moments

LHP06 8-2-06 J.W. Negele

Electromagnetic form factors

Simplest off-diagonal matrix element

$$\langle p|\bar{\psi}\gamma^{\mu}\psi|p'\rangle = \bar{u}(p)[F_1(q^2)\gamma^{\mu} + F_2(q^2)\frac{i\sigma^{\mu\nu}q_{\nu}}{2m}]u(p')$$

$$G_E(q^2) = F_1(q^2) - \frac{q^2}{4M^2}F_2(q^2)$$
 $G_M(q^2) = F_1(q^2) + F_2(q^2)$

□ Fourier transform of charge density if $L_{system} \gg L_{wavepacket} \gg \frac{1}{m}$

Pb: 5 fm >> 10⁻⁵ fm, Proton: 0.8 fm ~ 0.2 fm: marginal

□ For transverse Fourier transform of light cone w. f., m \rightarrow p₊ ~ ∞

Large q²: ability of one quark to share q² with other constituents to remain in ground state - q² counting rules

$$\langle r^2 \rangle^{u-d} = a_0 - \frac{(1+5g_A^2)}{(4\pi f_\pi)^2} \log\left(\frac{m_\pi^2}{m_\pi^2 + \Lambda^2}\right)$$

LHP06 8-2-06 J.W. Negele

Isovector Form Factors at higher Q²

Polarization transfer at JLab

Lattice results

Polarized Nucleon Form Factors GA and GP

 $\langle p|\bar{\psi}\gamma^{\mu}\gamma_{5}\psi|p'\rangle = \bar{u}(p)[G_{A}(q^{2})\gamma^{\mu}\gamma_{5} + q^{\mu}\gamma_{5}G_{P}(q^{2}) + \sigma^{\mu\nu}\gamma_{5}q_{\nu}G_{M}(q^{2})]u(p')$

Form factor ratio: GP/GA

Form factor ratio: G_P/G_A

Generalized form factors

$$\mathcal{O}_q^{\{\mu_1\mu_2\dots\mu_n\}} = \overline{\psi}_q \gamma^{\{\mu_1} i D^{\mu_2} \dots i D^{\mu_n\}} \psi_q$$

,

 $\bar{P} = \frac{1}{2}(P' + P)$ $\Delta = P' - P$

$$t = \Delta^2$$

$$P'|\mathcal{O}^{\{\mu_{1}\mu_{2}\}}|P\rangle = \bar{P}^{\{\mu_{1}}\langle\!\langle \gamma^{\mu_{2}} \rangle\!\rangle A_{20}(t) + \frac{i}{2m} \bar{P}^{\{\mu_{1}}\langle\!\langle \sigma^{\mu_{2}} \rangle\!\rangle \Delta_{\alpha} B_{20}(t) + \frac{1}{m} \Delta^{\{\mu_{1}} \Delta^{\mu_{2}\}} C_{2}(t),$$

$$\begin{split} \langle P' | \mathcal{O}^{\{\mu_1 \mu_2 \mu_3\}} | P \rangle &= \bar{P}^{\{\mu_1} \bar{P}^{\mu_2} \langle\!\langle \gamma^{\mu_3} \rangle\!\rangle A_{30}(t) \\ &+ \frac{i}{2m} \bar{P}^{\{\mu_1} \bar{P}^{\mu_2} \langle\!\langle \sigma^{\mu_3} \rangle\!\rangle \Delta_{\alpha} B_{30}(t) \\ &+ \Delta^{\{\mu_1} \Delta^{\mu_2} \langle\!\langle \gamma^{\mu_3} \rangle\!\rangle A_{32}(t) \\ &+ \frac{i}{2m} \Delta^{\{\mu_1} \Delta^{\mu_2} \langle\!\langle \sigma^{\mu_3} \rangle\!\rangle \Delta_{\alpha} B_{32}(t), \end{split}$$

LHP06 8-2-06 J.W. Negele

Limits of generalized form factors

□ Moments of parton distributions $t \rightarrow 0$

$$A_{n0} = \int dx x^{n-1} q(x)$$

Electromagnetic form factors

$$A_{10} = F_1(t), \quad B_{10} = F_2(t)$$

Total quark angular momentum

 $J_q = \frac{1}{2} [A(0)_{20} + B(0)_{20}]$

Transverse structure of nucleon

 $H(x, 0, -\Delta_{\perp}^{2})$ is transverse Fourier transform of light cone quark distribution $q(x,r_{\perp})$ at momentum fraction x

$$q(x,r_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} H(x,0,-\Delta_{\perp}^2) e^{-ir_{\perp}\Delta_{\perp}}$$
$$\int dx x^{n-1} q(x,r_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} A(-\Delta_{\perp}^2) e^{-ir_{\perp}\Delta_{\perp}}$$

 $\square x \rightarrow I$: Single Fock space component \Rightarrow slope $\rightarrow 0$

 $\square x \neq I$: Transverse structure \Rightarrow slope steeper

Generalized form factors from lattice

Transverse size of light-cone wave function

$$x_{\rm av}^n = \frac{\int d^2 r_\perp \int dx \, x \cdot x^{n-1} q(x, \vec{r}_\perp)}{\int d^2 r_\perp \int dx x^{n-1} q(x, \vec{r}_\perp)}$$

 $q(x,ec{r_{\perp}})\, {\sf model}$ (Burkardt hep-ph/0207047)

Generalized form factors A10, A20, A30

LHP06 8-2-06 J.W. Negele

First x moments: A_{20}, B_{20}, C_{20}

m_π = 897 MeV

LHPC hep-lat/0304018

LHP06 8-2-06 J.W. Negele

$$B_{20}^{u-d} > A_{20}^{u-d}$$
$$A_{20}^{u+d} > B_{20}^{u+d} \sim 0$$
$$C_{20}^{u-d} \sim 0$$
$$C_{20}^{u+d} < 0$$
Large N_c behavior

LHP06 8-2-06 J.W. Negele

Origin of nucleon spin

"Spin crisis" - only ~ 30% arises from quark spins quark spin contribution $\frac{1}{2}\Delta\Sigma = \frac{1}{2}\langle 1 \rangle_{\Delta u + \Delta d} \sim \frac{1}{2}0.682(18)$ total quark contribution (spin plus orbital)

 $J_q = \frac{1}{2} [A_{20}^{u+d}(0) + B_{20}^{u+d}(0)] = \frac{1}{2} [\langle x \rangle_{u+d} + B_{20}^{u+d}(0)] \sim \frac{1}{2} 0.675(7)$

Nucleon spin decomposition

Nucleon spin decomposition

Nucleon spin decomposition

Comparison with Phenomenology

GPD parameterization: Diehl, Feldmann, Jakob, Kroll EPJC 2005 nucleon form factors, CTEQ parton distributions, Regge, Ansatz

 $A_{20} = \int dx \, x \, H(x,0,t)$

$$A_{30} = \int dx \, x^2 \, H(x, 0, t)$$

Comparison with Phenomenology

 $\tilde{A}_{20} = \int dx \, x \, \tilde{H}(x, 0, t) \qquad \tilde{A}_{30} = \int dx \, x^2 \, \tilde{H}(x, 0, t)$

LHP06 8-2-06 J.W. Negele

Comparison with Phenomenology

Slope improves with decreasing masss

Axial N-Delta transition form factors

 $\langle \Delta(p',s') | A_{\mu} | N(p,s) \rangle \propto \bar{u}^{\lambda}(p',s') \left[\left(\frac{C_3^A(q^2)}{M} \gamma^{\nu} + \frac{C_4^A(q^2)}{M^2} p'^{\nu} \right) (g_{\lambda\mu}g_{\rho\nu} - g_{\lambda\rho}g_{\mu\nu}) q^{\rho} + C_5^A(q^2) g_{\lambda\mu} + \frac{C_6^A(q^2)}{M^2} q_{\lambda}q_{\mu} \right] u(p,s) \right]$

Alexandrou, Leontiou, Tsapalis, JN

Axial N-Delta transition form factors

Off-diagonal Goldberger-Treiman relation

Summary

Entering era of quantitative solution in chiral regime

- □ Form factors: F_1 , F_2 , G_A , G_P
- Generalized form factors A B C
- Transverse structure
- Origin of nucleon spin
- Transition form factors
- Opportunity for theory and experiment to work in consort
 - Validate by agreement with key experiments
 - GPD's: Expt. convolution, Theory moments, combine
 - Resolve experimental discrepancies
 - \square F₂: 2-Y contributions to Rosenbluth, pol. transfer
 - \Box G_A: V vs π -electroproduction

Future Challenges

- Lower pion masses and finer lattices
- Partially quenched hybrid chiral perturbation theory
- Form factors at high momentum transfer
- Disconnected diagrams
- Nonperturbative renormalization
- Full QCD with chiral fermions
- Gluon observables
- Transition form factors for unstable states