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Nuclear physics

• Connect Nuclear physics to QCD

• Two scale problem

• QCD scale 1GeV

• Nuclear binding energy ~ MeV

• Does it look hopeless?

• Not really!



Nuclear physics: What can we do?

• EFT description of nuclear forces

• Need low energy constants

• Use experiment

• Why not use lattice instead?



Nuclear physics: What can we do?

• Nucleon mass

• Isospin breaking

• Decay constants and couplings 

• fπ, gA, gNΔ, gΣΣ, gΞΞ, gΣΛ, .....

• Gasser-Leutwyler coefficients

• Scattering lengths [NPLQCD]

• Lattice Nuclear physics [Lee et al., Borasoy et al.]

• Lattice offers flexibility!

• Ask questions not accessible to experiment



• 2+1 Dynamical flavors 

• 2 light (up down) 1 heavy (strange) 

• charm bottom top (treated in HQET)

• Light quark masses              m  < 400MeV

• Chiral extrapolations

• Finite volume corrections

• Numerical algorithm slows down  (algorithm scaling            )

• Continuum extrapolations

• compute at several lattice spacings  (algorithm scaling        )
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• Domain wall fermions for valence (with hyp smeared links)

• Chiral symmetry (O(a2) errors better scaling)

• Ward Identities (renormalization, power divergent mixing)

• Kogut-Susskind 2+1 Dynamical flavors 

• Improved KS action (Asqtad: O(a4, g2a2))  [KO, Sugar, Toussaint ‘99]

• MILC has generated lattices

• Light quark masses:  Lightest pion         mπ ~ 250MeV

• Volumes: 2.6 to 3.2 fm

• Future:  Continuum extrapolation

• MILC lattice spacings: a=0.125fm, 0.09fm

• a=0.06fm in 1 - 2 years

• Problem: “Rooted” fermions? (Bernard, Shamir, Sharpe, Golderman, Durr,  
Creutz, Hassenfratz.... )

The hybrid action program

Ugly Results are pretty ??



Domain Wall Fermions for QCD

Formulate the 5D Wilson fermions with mass M != 0 in s ε [1, Ls]

1 2 Ls/2 Ls... ...

q(R)

For −2 < M < 0, light chiral modes are bound on the walls.
Only one Dirac fermion without doublers remains.

1 2 Ls/2 Ls... ...

mf

q(R) Fermion mass is introduced by
explicitly coupling mf of the
walls. [Shamir,Furman & Shamir]
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Chiral symmetry breaking

• The size of                  measures chiral symmetry breaking

• Let’s use for the operator 

• Assume at long distances 

• The proportionality constant is the residual mass

∆µ〈Aa
µ(x)O〉 = 2 mf 〈Ja

5(x)O〉+ 2〈Ja
5q(x)O〉+ i〈δa

xO〉

Aa
µ(x) : Axial Current

Ja
5(x) = q̄(x)τaγ5q(x) : Pseudo-scalar density

Ja
5q(x) = −ψ(x,

Ls

2
)τaPLψ(x,
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2
+ 1)

+ ψ(x,
Ls

2
+ 1)τaPRψ(x,
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2
).

lim
Ls→∞

〈Ja
5q(x)O〉 = 0

• Ls →∞ : Exact chiral symmetry at finite lattice spacing.

• Finite Ls: Exponentially suppressed breaking [Furman & Shamir Nucl.Phys.

B439 (1995)]

• Flavor singlet case: 〈J5q(x)O〉 reproduces the anomaly.
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Residual Mass vs Ls
R
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a=0.125fm

At Ls = 16:
1MeV < mres <2.5MeV 



Residual Mass vs Ls
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a=0.09fm

At Ls = 12:
0.2MeV<mres <0.7MeV 



The  4D effective operator

• Overlap:   α=2, a5=0  (Borici)

• DWF:        α=1, a5=1  (Shamir)

The DWF transfer Matrix (a la Edwards and Heller)

K. Orginos
(Dated: November 3, 2004)

I. DOMAIN WALL FERMIONS: THE TRANSFER MATRIX

The generalized domain wall fermion action is:

SDW = −Ψ̄D(5)
DW Ψ = −

∑

x,x′

Ls−1∑

s=0

[
Ψ̄(x, s) [b5Dw(x, x′) + 1]Ψ(x′, s)

]
+

+
[
Ψ̄(x, s) [c5Dw(x, x′)− 1]P−Ψ(x′, s + 1) + Ψ̄(x, s) [c5Dw(x, x′)− 1]P+Ψ(x′, s− 1)

]
−

− mf

[
Ψ̄(x, 0) [c5Dw(x, x′)− 1]P+Ψ(x′, Ls − 1) + Ψ̄(x, Ls − 1) [c5Dw(x, x′)− 1]P−Ψ(x′, 0)

]
(1)

where

P+ =
1 + γ5

2

P− =
1− γ5

2
(2)

and Dw is the Wilson fermion matrix.
When c5 = 0 and b5 = a5 we have the Shamir domain wall fermions. When c5 = b5 = a5 we have the Borici domain

wall fermions. When b5 − c5 = a5 and b5 + c5 = κa5 we have the Neff fermions.
In matrix notation we can write:

D(5)
dwf =





D+ −D− P− 0 · · · 0 m D− P+

−D− P+ D+ −D− P− 0 · · · 0
0 −D− P+ D+ −D− P− 0 · · ·
...

...
m D− P− 0 · · · · · · −D− P+ D+




(3)

where

D+ = 1 + b5Dw

D− = 1− c5Dw (4)

We will transform from the Ψ̄ and Ψ variables to the χ̄ and χ in such a way that χ(0) is the q field (see axial current
and hermiticity notes) and χ̄(0) is the q̄ field [2]. In order to achieve this transformation we define the following
operators:

Pss′ = δss′P− + δs′,(s+1) mod Ls
P+ (5)

P−1
ss′ = δss′P− + δs′,(s−1) mod Ls

P+ (6)

and the reflection operator

Rss′ = δs′,Ls−1−s (7)

All s-indices run from 0 to Ls − 1. In matrix notation:

P =





P− P+ · · · 0
0 P− P+ · · · 0
...

...
. . .

...
0 0 · · · P+

P+ 0 · · · P−




(8)

P−1 =





P− 0 · · · P+

P+ P− · · · 0
...

. . . . . .
...

0 0 P+ P−




(9)

3

or

D(5)
DWP =





γ5Q− (P− −m P+) γ5Q+ · · · 0

0 γ5Q− γ5Q+

...
...

...
. . . . . .

γ5Q+ (P+ −m P−) 0 · · · γ5Q−




(25)

and

D(5)
DWP =





γ5Q−M− γ5Q+ · · · 0

0 γ5Q− γ5Q+

...
...

...
. . . . . .

γ5Q+M+ 0 · · · γ5Q−




(26)

with

M− = P− −m P+ (27)
M+ = P+ −m P− (28)

Note M−M+ = −m. Now if we define

T−1 = −Q−1
− Q+ (29)

we get

D(5)
DWP = γ5Q−





M− −T−1 · · · 0

0 1 −T−1
...

...
...

. . . . . .
−T−1 M+ 0 · · · 1




= γ5Q−UD5L (30)

with

D5 =





M− − T−LsM+ 0 · · · 0

0 1 0
...

...
...

. . . . . .
0 0 · · · 1




(31)

L =





1 0 0 · · · 0
−T−Ls+1M+ 1 0 0 · · ·

−T−Ls+2M+ 0 1
. . .

...
...

...
. . . . . . 0

−T−1M+ 0 · · · 0 1




(32)

U =





1 −T−1 · · · 0

0 1 −T−1
...

...
...

. . . . . .
0 0 · · · 1




(33)

In closed form

[D5]ss′ = δss′

[
δs0(M− − T−LsM+) + 1− δs0

]
(34)

Lss′ = δss′ − δs0T
−Ls+s(δ0s′ − 1) (35)

Uss′ = δss′ − T−1δs′, s+1 (36)
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A. The transfer Matrix

The transfer matrix T was defined as:

T−1 = −Q−1
− Q+ (59)

Q+ = γ5

[
D+ P+ −D− P−

]
=

= γ5

[
P+ + b5DwP+ − P− + c5DwP−

]
=

= P+ + P− + b5HwP+ + c5HwP− = 1 + b5HwP+ + c5HwP+ − c5HwP+ + c5HwP− ⇒
Q+ = 1 + c5Hw + (b5 − c5)HwP+ (60)

with Hw = γ5Dw. Similarly

Q− = γ5

[
D+ P− −D− P+

]
=

= γ5

[
P− + b5DwP− − P+ + c5DwP+

]
=

= −P+ − P− + b5HwP− + c5HwP+ = −1 + b5HwP− + c5HwP− − c5HwP− + c5HwP+ ⇒
Q− = −1 + c5Hw + (b5 − c5)HwP− (61)

or

Q± = c5Hw ± 1 + (b5 − c5)HwP± (62)

So

T−1 = −Q−1
− Q+ =

=
1

1− c5Hw − (b5 − c5)HwP−

[
1 + c5Hw + (b5 − c5)HwP+

]
=

1 + HT

1−HT
⇒

[
1 + c5Hw + (b5 − c5)HwP+

][
1−HT

]
=

[
1− c5Hw − (b5 − c5)HwP−

][
1 + HT

]
⇒

2c5Hw + (b5 − c5)Hw =
[
2 + (b5 − c5)Hw(P+ − P−)

]
HT ⇒

HT =
1

2 + (b5 − c5)Hwγ5
(b5 + c5)Hw (63)

or

HT = (b5 + c5)γ5
Dw

2 + (b5 − c5)Dw
(64)

If we define α = b5 + c5 and a5 = b5 − c5 we get the transfer matrix to be

HT = α
1

2 + a5Hwγ5
Hw (65)

II. SOME FORMULAS

D = (b5 + c5)
Dw

2 + (b5 − c5)Dw
= α

Dw

2 + a5Dw
(66)

HT = γ5D (67)

T−1 =
1 + HT

1−HT
(68)

[1] R. G. Edwards and U. M. Heller, Phys. Rev. D63, 094505 (2001), arXiv:hep-lat/0005002.
[2] The 0 index refers to the s index of the 5th dimension
[3] see axial current and hermiticity notes
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With a little algebra we get
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P−1 1
Ddwf (1)

Ddwf (m)P = L−1(1)diag(Dov(m), 1, · · · , 1)L(m) (69)

or

P−1 1
Ddwf (1)

Ddwf (m)P =





Dov(m) 0 0 · · · · · · · · · 0
−(1−m)T−Ls/2+1 1

T−Ls/2+T Ls/2 1 0 0 · · · · · · 0
−(1−m)T−Ls/2+2 1

T−Ls/2+T Ls/2 0 1 0 · · · · · · 0
...

...
. . . . . . . . . · · ·

...
−(1−m) 1

T−Ls/2+T Ls/2 0 · · · · · · 1 0 · · ·
...

...
. . . . . . . . . . . .

...
−(1−m)TLs/2−1 1

T−Ls/2+T Ls/2 0 · · · · · · · · · 0 1





(70)

P−1 1
Ddwf (m)

Ddwf (1)P = L−1(m)diag(Dov(m), 1, · · · , 1)L(1) (71)

P−1 1
Ddwf (m)

Ddwf (1)P =





D−1
ov (m) 0 0 · · · · · · · · · 0

(1−m)T−Ls/2+1 1
T−Ls/2+T Ls/2 D−1

ov (m) 1 0 0 · · · · · · 0
(1−m)T−Ls/2+2 1

T−Ls/2+T Ls/2 D−1
ov (m) 0 1 0 · · · · · · 0

...
...

. . . . . . . . . · · ·
...

(1−m) 1
T−Ls/2+T Ls/2 D−1

ov (m) 0 · · · · · · 1 0 · · ·
...

...
. . . . . . . . . . . .

...
(1−m)TLs/2−1 1

T−Ls/2+T Ls/2 D−1
ov (m) 0 · · · · · · · · · 0 1





(72)

[1] R. G. Edwards and U. M. Heller, Phys. Rev. D63, 094505 (2001), arXiv:hep-lat/0005002.
[2] The 0 index refers to the s index of the 5th dimension
[3] see axial current and hermiticity notes

γ5 D + D γ5 = 2 D γ5 D

δΨ = γ5(1− 2D)Ψ

δΨ̄ = Ψ̄γ5

γ5 D + D γ5 = γ5 +
1

2
ε[γ5D(M5)] +

1

2
γ5ε[γ5D(M5)γ5] = 2 D γ5 D

Dov(m) =
1 + m

2
+

1−m

2
γ5εLs[γ5D(M5)] (12)
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(72)

εLs =
T−Ls − 1
T−Ls + 1

=
(1 + HT )Ls − (1−HT )Ls

(1 + HT )Ls + (1−HT )Ls
(73)

[1] R. G. Edwards and U. M. Heller, Phys. Rev. D63, 094505 (2001), arXiv:hep-lat/0005002.
[2] The 0 index refers to the s index of the 5th dimension
[3] see axial current and hermiticity notes
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Pion decay constant
• Fit the lower 4 points

• Scale used a = 0.125 fm

• One loop χPT extrapolation:                          
130.6(1.8)MeV

• Systematic error: 

chiral extr. 3 MeV  

2% from scale setting

• χ2/d.o.f. ~ 2 

• Need mixed  χPT: Baer et.al.’05
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calculations of the same quantity by MILC [1, 2]. In the subsequent sections we are going to

discuss the details of our calculation and present our result for the ratio of the kaon to pion

decay constants fK/fπ extrapolated to the physical point together with our best estimate

of systematic and statistical errors involved.

II. CHIRAL PERTURBATION THEORY

In SU(3) chiral perturbation theory (ChiPT) Gasser and Leutwyler [27–29] showed that

the ratio of the kaon to pion decay constants is
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where f is the pseudoscalar decay constant at the chiral limit, mK the kaon mass, mπ the

pion mass, and
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)
, (2)

with the index i running over the pseudoscalar states (π,K and η), and µ being the ChiPT

cut off scale. Finally L5(µ) is a scale dependent Gasser - Leutwyler low energy constant.

In our lattice calculation we have not computed the mass of the η meson since it involves

hard to compute disconnected diagrams. For that reason we replace mη by the Gell-Mann-

Okubo formula
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K −
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3
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π . (3)

This is valid to order of ChiPT at which we are working. In addition we shift the scale µ to

the value of the pion decay constant at the physical point. This amounts to a redefinition

of the low energy constant L5 according to
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16
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, (4)

and modifications to the higher order corrections to Eq. 1.

Finally, we replace the ratios (mi/fπ,phys)2 by the lattice computed value (mi/fπ)2. Again,

this is consistent to the order of ChiPT at which we are working. Hence, the final expression

to which we fit our lattice data is
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With these values we can evaluate the ratio of the decay constants at the physical point

using the physical values for the pseudoscalar masses and the pion decay constant [38],

fπ = 130.7 MeV

mπ = 137.273 MeV

mK = 495.663 MeV. (12)

The resulting value for the ratio is

fK

fπ
= 1.210(10)(05) (13)

where the first error is statistical and the second is an estimation of the systematic error

due to the ignored higher order terms in the chiral expansion. The above result has also

an additional systematic error due to the lattice spacing which we expect to be O(a2). In

principle one can reduce this error by fitting to the appropriate chiral perturbation theory

formulas that include the O(g2a2) effects due to flavor symmetry breaking in the sea quark

sector [21]. Our data though fit very well to the continuum ChiPT formulas hence we do

not expect that the use of the Bar el.al.results would significantly improve our calculation.

Our final result is almost identical with the MILC number [1]

fK

fπ

∣∣∣∣
MILC

= 1.210(4)(13) (14)

where the first error is statistical and the second is the total systematic error MILC esti-

mated. Since our valence quarks are domain wall fermions, as opposed to the Kogut-Susskind

used by MILC, the discretization error should be very different. Hence, the agreement we

get in our results is an indication that these systematic errors are rather small. They are

certainly smaller than our statistical errors. KNO: More recent MILC calculations [2] has

a number of 1.198(3)(+16)(-05). They used finer lattices and a second run with lighter

strange quark mass at a=0.125fm. We might want to comment on this latest results. Also

we might want to think and comment on how the miss-tuned strange quark mass affects our

result. The correct strange quark mass is somewhat lighter that 0.05 thus MILC started

new runs at strange mass 0.03. This might also be the reason we cannot get the physical

MK accurately from our data. We get it heavier...

It is also interesting to note that our result is in agreement with the experimental number,

fK

fπ

∣∣∣∣
exp.

= 1.223(12) , (15)
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calculations of the same quantity by MILC [1, 2]. In the subsequent sections we are going to

discuss the details of our calculation and present our result for the ratio of the kaon to pion

decay constants fK/fπ extrapolated to the physical point together with our best estimate

of systematic and statistical errors involved.
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with the index i running over the pseudoscalar states (π,K and η), and µ being the ChiPT

cut off scale. Finally L5(µ) is a scale dependent Gasser - Leutwyler low energy constant.

In our lattice calculation we have not computed the mass of the η meson since it involves

hard to compute disconnected diagrams. For that reason we replace mη by the Gell-Mann-

Okubo formula
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and modifications to the higher order corrections to Eq. 1.
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With these values we can evaluate the ratio of the decay constants at the physical point

using the physical values for the pseudoscalar masses and the pion decay constant [38],

fπ = 130.7 MeV

mπ = 137.273 MeV

mK = 495.663 MeV. (12)

The resulting value for the ratio is

fK

fπ
= 1.210(10)(05) (13)

where the first error is statistical and the second is an estimation of the systematic error

due to the ignored higher order terms in the chiral expansion. The above result has also

an additional systematic error due to the lattice spacing which we expect to be O(a2). In

principle one can reduce this error by fitting to the appropriate chiral perturbation theory

formulas that include the O(g2a2) effects due to flavor symmetry breaking in the sea quark

sector [21]. Our data though fit very well to the continuum ChiPT formulas hence we do

not expect that the use of the Bar el.al.results would significantly improve our calculation.

Our final result is almost identical with the MILC number [1]

fK

fπ

∣∣∣∣
MILC

= 1.210(4)(13) (14)

where the first error is statistical and the second is the total systematic error MILC esti-

mated. Since our valence quarks are domain wall fermions, as opposed to the Kogut-Susskind

used by MILC, the discretization error should be very different. Hence, the agreement we

get in our results is an indication that these systematic errors are rather small. They are

certainly smaller than our statistical errors. KNO: More recent MILC calculations [2] has

a number of 1.198(3)(+16)(-05). They used finer lattices and a second run with lighter

strange quark mass at a=0.125fm. We might want to comment on this latest results. Also

we might want to think and comment on how the miss-tuned strange quark mass affects our

result. The correct strange quark mass is somewhat lighter that 0.05 thus MILC started

new runs at strange mass 0.03. This might also be the reason we cannot get the physical

MK accurately from our data. We get it heavier...

It is also interesting to note that our result is in agreement with the experimental number,

fK

fπ

∣∣∣∣
exp.

= 1.223(12) , (15)
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FIG. 2: F vs. m2
π/f2

π at NLO, along with the three different fits, A, B and C. The solid bars near

the y-axis denote the value of L5 and its uncertainty from the three fits. The point denoted by the
star corresponds to the experimental value.

Therefore, at NLO in the chiral expansion, the quantity F should be the same on each of
the ensembles, and equal to the counterterm L5(fphy

π ),

F = L5(f
phy
π ) . (12)

The calculated values of F , along with their uncertainties determined by jackknifing over
the configurations, are shown in Table II, and in fig. 2 we have plotted F versus m2

π/f
2
π .

A χ2-minimization is performed to extract the one parameter L5(fphy
π ) from the data. It is

clear that the data is not that well fit by a constant, due to the presence of higher-order
terms in the chiral expansion, and so to explore the dependence on these higher order terms
we have sequentially “pruned” the data by removing the highest mass point (bml = 030),
and then the two highest mass points (bml = 030, 020) and determined L5(fphy

π ) 3. The
results of these fits are shown in fig. 2, and presented in Table III. With the value of L5, we
use eq. 8 to evaluate the ratio of the decay constants at the physical point using the physical

3 Pruning the data provides an assessment of the importance of higher-order terms in the chiral expansion,

while fitting only the leading chiral contributions. There are a number of ways to approach this issue.

For instance, an alternate approach would be to add a systematic error to each data point that grows

with the pion mass in a manner consistent with χPT. We find that this provides an extrapolated value of

fK/fπ and L5 consistent with pruning the data, as expected.

7

TABLE III: Results from chiral extrapolation at one-loop order in χPT. Explanation of the various

fits is in the text.

FIT L5 × 103 fK/fπ (extrapolated) χ2/dof

A 5.68(3) 1.221(3) 3.5

B 5.65(2) 1.218(2) 1.4
C 5.63(2) 1.215(2) 0.7

values for the pseudoscalar masses and the pion decay constant [46],

fπ+ = 130.7 MeV , mπ = 137.3 MeV , mK = 495.7 MeV, (13)

where the masses are the isospin-averaged values. We use the Gell-Mann–Okubo mass
relation to determine the η-mass that appears in the chiral contributions.

It is important to keep in mind that this determination of L5 is only perturbatively close
to the actual value of L5 which is defined in the chiral limit. In the current extraction, the
strange quark mass is held fixed near the physical value, while the light quark masses are
somewhat lighter.

B. Incomplete Chiral Extrapolations at Next-to-Next-to-Leading Order

While the full two-loop expressions for fK/fπ exist in both QCD [47] and partially-quenched
QCD [48], these expressions contain many fit parameters, and therefore fruitful use of these
results must await lattice data with better statistics and at a larger variety of quark masses.
In order to estimate systematic errors, we perform fits with parts of the next-to-next-to-
Leading-Order (NNLO) expression [49]. We focus on just two of the structures that enter
at NNLO, analytic terms and a double logarithm with fixed coefficient.

1. Partial N2LO : Analytic Terms Only

Including only the analytic terms that enter at NNLO, eq. (12) becomes

F = L5 + Cs ms + Cl ml

= L̃5 + C̃π
m2

π

f 2
π

, (14)

where terms higher order in the chiral expansion are not shown. As the strange quark
mass is the same over all ensembles, we simply absorb it into the definition of L5, making
explicit the quark mass dependence discussed previously. Therefore fitting at NNLO holding
the strange quark mass fixed introduces one additional fit parameter, C̃π. It is clear that
the values of L̃5 and C̃π extracted from the data are correlated, and in determining the
extrapolated value of fK/fπ we explore the entire 68% confidence-level error ellipse in the
L̃5 − C̃π plane 4 (shown in fig. 4). We label this fit D, and the results are shown in Table IV.
The data minus the NLO chiral logs, and the fit are shown in fig. 3. Note that the errors
quoted in Table IV and displayed in fig. 3 are 1σ errors.

4 This results in an error that is consistent with textbook propogation of the errors in L̃5 and C̃π.
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data points are the results of our fully-dynamical lattice QCD calculation at pion masses of mπ ∼
293 MeV, 354 MeV, 493 MeV and 592 MeV. The blue (square) data points are the results at the
lightest quark masses of the quenched calculations of Refs. [41, 42].

which the numerators of eq. (7) are determined. As such, the fitting intervals over which
clear plateaus exist for the numerator extend somewhat closer to the propagator source than
those for the denominator. One can estimate systematic uncertainties in these calculations
by varying the intervals of the correlation functions over which δGMO is determined. By
increasing the lower-time of the fitting interval, the central values in all extractions are es-
sentially unchanged, while the statistical uncertainty grows a non-negligible amount. For
instance, at the bml = 0.010 point, increasing the lower limit of the fitting range by one
time-slice increases the statistical error by ∼ 50%, while the central value changes by ∼ 5%.
The same behaviour is found for the other points also. We conclude that the systematic
error in this calculation is small compared with the statistical error, and if combined in
quadrature would make a negligible modification to the results as shown in fig. 4.

The computation shows that the deviations from the GMO mass relation are small, and
in fact less than the experimental value, at all quark masses accessible to us. It is now
quite clear that the small violation of the GMO relation observed experimentally is not an
accident due to the physical values of the light-quark masses, but is a generic feature of the
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We found that the deviations from the GMO mass relation were determined most precisely
by forming the products and ratios of correlation functions associated with each of the
baryons in the octet,

GGMO(t) =
CΛ(t) CΣ(t)1/3

CN(t)2/3 CΞ(t)2/3
→ e−(MΛ+MΣ/3−2MN /3−2MΞ/3)t . (6)

The resulting correlation functions are shown in fig. 1 and corresponding effective mass plots
are shown in fig. 2. It is convenient to define a normalization factor with which to measure
deviations from the GMO mass relation. We normalize the deviation to the centroid of the
baryon octet, and define the fractional violation of the GMO mass relation, δGMO, to be

δGMO =
MΛ + 1

3MΣ − 2
3MN − 2

3MΞ
1
8MΛ + 3

8MΣ + 1
4MN + 1

4MΞ
. (7)

The denominators entering eq. (7) are extracted from the correlations functions with effective
mass plots shown in fig. 3. The experimental deviation translates into: δexpt

GMO = 0.00761 ±
0.00007. The results of our fully-dynamical lattice QCD calculation are shown in Table II,
and are plotted in fig. 4.

The correlation function associated with the centroid of the baryon octet exhibits rapid
but decaying oscillations near the source, as shown in fig. 3, due to the fact that the four-
dimensional effective domain-wall fermion action does not possess a positive definite transfer
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FIG. 4: The partially-quenched proton mass differences (in MeV) calculated from the bml = 0.007
and 0.010 MILC lattices plotted vs the pion mass composed of sea quarks. Various data have been

displaced horizontally by small amounts for display purposes. A lattice spacing of b = 0.125 fm has
been used.

Extraction Mn − Mp|d−u (MeV) at mphys.
π

LO O(mq) 1.96 ± 0.92 ± 0.37

NLO O(m3/2
q ) 2.26 ± 0.57 ± 0.42

TABLE IV: The neutron-proton mass-splitting at the physical value of the pion mass, mphys.
π =

140 MeV, extracted from this partially-quenched lattice calculation, using the parameters shown
in Table III. The lattice spacing used to convert between lattice units and physical units is b =

0.125 fm. The first error is statistical while the second error is due to the uncertainty in the ratio
of quark masses, mu/md, in the MILC calculation [1].

estimate how big the corrections should be. The lattice spacing is introduced into the
mixed-action theory by extending the SU(2)L ⊗ SU(2)R lie-algebra to a graded lie-algebra
that makes the distinction between sea and valence quarks explicit. The lattice spacing is
incorporated by a spurion field with the appropriate transformation properties under the
graded group, e.g. see Ref. [34–37]. There is a leading-order contribution at O(a2 m0

q) to
the nucleon mass (where we are assuming that the exponentially suppressed contribution
at O(a m0

q) from the finite L5 is numerically insignificant). However, such terms do not
contribute to the mass differences between the proton states that we have used to extract
the parameters. Finite lattice spacing contributions to the nucleon mass that depend upon

10

Quantity Mass (Difference) (l.u.) Mass (Difference) (MeV) Fitting Range

mπ(V1, V1;V1) 0.1864 ± 0.0011 294.2 ± 1.7 5 → 15

mπ(V1, V2;V1) 0.2066 ± 0.0010 326.2 ± 1.6 5 → 15

mπ(V2, V2;V1) 0.22473 ± 0.00091 354.4 ± 1.4 5 → 15

mπ(V1, V3;V1) 0.1929 ± 0.0012 304.5 ± 1.9 5 → 15

mπ(V3, V3;V1) 0.1996 ± 0.0011 315.1 ± 1.8 5 → 15

mπ(V1, V1;V2) 0.1844 ± 0.0013 291.0 ± 2.1 5 → 15

mπ(V1, V2;V2) 0.2050 ± 0.0012 323.7 ± 1.0 5 → 15

mπ(V2, V2;V2) 0.2236 ± 0.0011 352.9 ± 1.8 5 → 15

∆Mp(V1, V1, V2;V1) 0.0163 ± 0.0019 25.7 ± 3.0 5 → 12

∆Mp(V2, V2, V1;V1) 0.0209 ± 0.0029 32.9 ± 4.7 5 → 12

∆Mp(V2, V2, V2;V1) 0.0353 ± 0.0041 55.8 ± 6.5 5 → 12

∆Mp(V1, V1, V3;V1) 0.0049 ± 0.0010 7.7 ± 1.6 5 → 11

∆Mp(V3, V3, V1;V1) 0.0061 ± 0.0016 9.7 ± 2.5 5 → 11

∆Mp(V3, V3, V3;V1) 0.0109 ± 0.0024 17.2 ± 3.8 5 → 11

∆Mp(V1, V1, V1;V2) −0.0309 ± 0.0038 −48.8 ± 6.0 4 → 11

∆Mp(V1, V1, V2;V2) −0.0161 ± 0.0022 −25.5 ± 3.5 4 → 11

∆Mp(V2, V2, V1;V2) −0.0137 ± 0.0016 −21.6 ± 2.6 5 → 12

TABLE II: The pion masses and proton mass differences calculated on the bml = 0.007 and
bml = 0.010 MILC lattices. The notation of valence and sea quarks, V1,2,3, is defined in the text.

A lattice spacing of b = 0.125 fm has been used.

Extraction 1
3

(

2α − β
)

(l.u.) α + β (l.u.) g1 |g∆N | χ2/dof

LO O(mq) 0.198 ± 0.093 2.07 ± 0.08 −− −− 0.56

NLO O(m3/2
q ) 0.229 ± 0.058 3.4 ± 1.1 −0.10 ± 0.35 0.60 ± 0.66 0.21

TABLE III: Parameter Table. The values of the parameters in the partially-quenched chiral La-
grangian as determined by a χ2-minimization fit of the theoretical proton mass differences given

in Appendix A, to the lattice data given in Table II. The isospin-conserving combination of coun-
terterms, α + β, is renormalization-scale dependent. We have renormalized at µ = 1 GeV.

expansion. It is reassuring that the predicted neutron-proton mass difference is relatively
insensitive to the order in the chiral expansion, as shown in Table IV. Both the tree-level
and the one-loop extraction of the neutron-proton mass differences are consistent with the
“experimental” value of Mn − Mp|d−u = 2.05 ± 0.30 MeV.

An interesting observation can be made by comparing the proton mass differences on
the two different lattice sets, as shown in Table II and displayed in fig. 4. Within errors,
the magnitude of the mass differences are independent of the value of the sea-quark mass.
This is consistent with the leading order chiral expansions given eq. (1) and in Appendix A.
Higher order contributions to these mass differences in the chiral expansion, which give rise
to deviations from these equalities, will be become more visible with increased statistics.

There will be finite lattice spacing contributions to the parameters that we have extracted
in this work. The recent developments in the inclusion of finite-lattice spacing effects in
mixed-action theories in χPT allow us to determine where such corrections enter and to
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140 MeV, extracted from this partially-quenched lattice calculation, using the parameters shown
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0.125 fm. The first error is statistical while the second error is due to the uncertainty in the ratio
of quark masses, mu/md, in the MILC calculation [1].
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mixed-action theory by extending the SU(2)L ⊗ SU(2)R lie-algebra to a graded lie-algebra
that makes the distinction between sea and valence quarks explicit. The lattice spacing is
incorporated by a spurion field with the appropriate transformation properties under the
graded group, e.g. see Ref. [34–37]. There is a leading-order contribution at O(a2 m0

q) to
the nucleon mass (where we are assuming that the exponentially suppressed contribution
at O(a m0

q) from the finite L5 is numerically insignificant). However, such terms do not
contribute to the mass differences between the proton states that we have used to extract
the parameters. Finite lattice spacing contributions to the nucleon mass that depend upon
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as required. The expansion of the neutron mass can be recovered from the expansion of the
proton mass by interchanging the up and down quark masses, u ↔ d. At the order to which
we are working it is most convenient to replace the explicit quark masses in the expression
for the proton mass with the leading order expression for the pion mass to yield

Mp = M0 +
(

α + β + 2σ
)

m2
π −

1

3

(

2α − β
)

(

1 − η

1 + η

)

m2
π

−
1

8πf 2

[

3

2
g2

Am3
π +

4g2
∆N

3π
Fπ

]

, (5)

where η = mu/md. The neutron mass is recovered by making the replacement η → 1/η, and
consequently

Mn − Mp|d−u =
2

3

(

2α − β
)

(

1 − η

1 + η

)

m2
π . (6)

The one-loop contributions at O(m3/2
q ) cancel in the mass-difference, as the pions are de-

generate up to O(m2
q). The analogous expressions for the partially-quenched proton masses

can be found in Appendix A.

III. DETAILS OF THE LATTICE CALCULATION AND ANALYSIS

Our computation uses the mixed-action lattice QCD scheme developed by LHPC [17, 18]
using domain-wall valence quarks from a smeared-source on Nf = 2+1 asqtad-improved [19,
20] MILC configurations generated with rooted 1 staggered sea quarks [26] that are HYP-
smeared [27–30]. In the generation of the MILC configurations, the strange-quark mass
was fixed near its physical value, bms = 0.050, (where b = 0.125 fm is the lattice spacing)
determined by the mass of hadrons containing strange quarks. The two light quarks in
the configurations are degenerate (isospin-symmetric). The domain-wall height is m = 1.7
and the extent of the extra dimension is L5 = 16. The MILC lattices were “chopped”
using a Dirichlet boundary condition from 64 to 32 time-slices to save time in propagator
generation. In order to extract the terms in the mass expansion, we computed a number
of sets of propagators corresponding to different valence quark masses, as shown in Table I.
On 468 bml = 0.007 (denoted by V1) lattices we have computed three sets corresponding
to the QCD point with a valence-quark mass of bmdwf = 0.0081 (V1), three sets on 367
bml = 0.007 lattices with a valence quark mass of bmdwf = 0.0138 (denoted by V2), and two
sets with a valence quark mass bmdwf = 0.0100 (denoted by V3). On 658 of the bml = 0.010
(V2) lattices we have computed three sets at the QCD point with a valence-quark mass of
bmdwf = 0.0138 (V2) and one set with a valence quark mass of bmdwf = 0.0081 (V1). The
parameters used to generate the QCD-point light-quark propagators have been “matched”
to those used to generate the MILC configurations so that the mass of the pion computed
with the domain-wall propagators is equal (to few-percent precision) to that of the lightest
staggered pion computed with the same parameters as the gauge configurations [26]. The
lattice calculations were performed with the Chroma software suite [31, 32] on the high-
performance computing systems at the Jefferson Laboratory (JLab).

1 For recent discussions of the “legality” of the mixed-action and rooting procedures, see Ref. [21–25].
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Scattering on the Lattice

Scattering amplitude:

A(p) =
4π

m

1

p cotδ − i p

π/

p ! mπ =⇒

p
mπ

L = − C0 (N†N)2 − C2 (N†∇2N)(N†N) + h.c. + . . .

V (p) = C0 + C2 p2 + . . . ≡

A(p) = + + ...+

OCTP 6/2005 – p.13/30

domain-wall [22–25] propagators generated by LHPC 1 at the Thomas Jefferson National
Laboratory (JLab).

This paper is organized as follows. In Section II we discuss Lüscher’s finite-volume method
for extracting hadron-hadron scattering parameters from energy levels calculated on the
lattice. In Section III we describe the details of our mixed-action lattice QCD calculation.
We also discuss the relevant correlation functions and outline our fitting procedures. In
Section IV we present the results of our lattice calculation, and the analysis of the lattice
data with χ-PT. In Section V we conclude.

II. FINITE-VOLUME CALCULATION OF SCATTERING AMPLITUDES

The s-wave scattering amplitude for two particles below inelastic thresholds can be deter-
mined using Lüscher’s method [2], which entails a measurement of one or more energy levels
of the two-particle system in a finite volume. For two particles of identical mass, m, in
an s-wave, with zero total three momentum, and in a finite volume, the difference between
the energy levels and those of two non-interacting particles can be related to the inverse
scattering amplitude via the eigenvalue equation [2]

p cot δ(p) =
1

πL
S

(
p2L2

4π2

)

, (1)

where δ(p) is the elastic-scattering phase shift, and the regulated three-dimensional sum is

S ( η ) ≡
|j|<Λ∑

j

1

|j|2 − η
− 4πΛ . (2)

The sum in eq. (2) is over all triplets of integers j such that |j| < Λ and the limit Λ → ∞
is implicit [26]. This definition is equivalent to the analytic continuation of zeta-functions
presented by Lüscher [2]. In eq. (1), L is the length of the spatial dimension in a cubically-
symmetric lattice. The energy eigenvalue En and its deviation from twice the rest mass of
the particle, ∆En, are related to the center-of-mass momentum pn, a solution of eq. (1), by

∆En ≡ En − 2m = 2
√

p2
n + m2 − 2m . (3)

In the absence of interactions between the particles, |p cot δ| = ∞, and the energy levels
occur at momenta p = 2πj/L, corresponding to single-particle modes in a cubic cavity.
Expanding eq. (1) about zero momenta, p ∼ 0, one obtains the familiar relation 2

∆E0 = − 4πa

mL3

[

1 + c1
a

L
+ c2

(
a

L

)2
]

+ O
(

1

L6

)
, (4)

1 We thank the MILC and LHP collaborations for very kindly allowing us to use their gauge configurations
and light-quark propagators for this project.

2 We have chosen to use the “particle physics” definition of the scattering length, as opposed to the “nuclear
physics” definition, which is opposite in sign.
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the midpoint of the time direction (t = 32) has been used in generating the LHPC propa-
gators in order to reduce the cost of nucleon matrix-element calculations without affecting
their accuracy4. Unfortunately, this is not the case for light-pseudoscalar mesons where the
signal is sustained for longer time intervals, and hence both the systematic errors and the
statistical errors can be improved using correlators of longer time extent.

B. Correlators, Projections and Fitting Methods

In order to perform our calculations of the ππ correlation functions we used the programs
Chroma and QDP++ written at JLab under the auspices of SciDAC [38]. In this program-
ming environment, a few lines of c++ code were required to construct the two distinct
propagator contractions that contribute to ππ interactions in the I = 2 channel. As it is
the difference in the energy between two interacting pions and two non-interacting pions
that provides the scattering amplitude, we computed both the one-pion correlation func-
tion, Cπ(t), and the two-pion correlation function Cππ(p, t), where t denotes the number of
time-slices between the hadronic-sink and the hadronic-source, and p denotes the magnitude
of the (equal and opposite) momentum of each pion.

The single-pion correlation function is

Cπ+(t) =
∑

x

〈π−(t,x) π+(0, 0)〉 , (7)

where the summation over x corresponds to summing over all the spatial lattice sites, thereby
projecting onto the momentum p = 0 state. A π+π+ correlation function that projects onto
the s-wave state in the continuum limit is

Cπ+π+(p, t) =
∑

|p|=p

∑

x,y

eip·(x−y)〈π−(t,x) π−(t,y) π+(0, 0) π+(0, 0)〉 , (8)

where, in eqs. (7) and (8), π+(t,x) = ū(t,x)γ5d(t,x) is an interpolating field for the π+.
Steps were taken to optimize the overlap between the interpolating fields and the one- and

two-pion hadronic states. First, the propagators calculated by LHPC, which all have sources
centered about x = 0, were smeared [30, 39] in the neighborhood of x = 0 to maximize
overlap with the single-hadron states. Therefore, in eq. (7) and eq. (8), π+(0, 0) denotes
an interpolating field constructed from smeared-source light-quark propagators. Second,
we projected onto two-pion states that are perturbatively close to the energy eigenstates
of interest. The two-pion states with zero total momentum that transform in the A1 rep-
resentation of the cubic group are, in general, linear combinations of the non-interacting
finite-volume eigenstates,

|π+π+〉 = d0 |π+(p = 0)π+(p = 0)〉 + d1

∑

pL
2π =x̂,ŷ,ẑ

|π+(p)π+(−p)〉 + ... (9)

where d0 and d1 are complex coefficients. In the absence of interactions, the ground state is
given by the first term in eq. (9), the first excited state by the second term, and so on. In

4 Note that the source of each propagator was placed on the t = 10 time slice, which led to a maximum of
∆t = 22 usable time slices.
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smeared-smeared correlator was used only in the determination of the pion decay constant,
fπ (see below).

In the relatively large lattice volumes that we are using, the energy difference between
the interacting and non-interacting two-pion states is a small fraction of the total energy,
which is dominated by the mass of the pions. In order to extract this energy difference we
followed Ref. [4] and formed the ratio of correlation functions, Gππ(p, t), where

Gππ(p, t) ≡ Cππ(p, t)

Cπ(t)2
→

∞∑

n=0

An e−∆En t , (10)

and the arrow becomes an equality in the limit of an infinite number of gauge configura-
tions. In Gππ(p, t), some of the fluctuations that contribute to both the one- and two-pion
correlation functions cancel, thereby improving the quality of the extraction of the energy
difference beyond what we are able to achieve from an analysis of the individual correlation
functions.

In the p = 0 case, where we project perturbatively close to the ground state, the correlator
Gππ(0, t), shown in Fig. 1, can be fit by a single exponential beyond the first few time slices,
and the ground-state energy difference, ∆E0, can be determined quite cleanly. For the
first excited level, with p = 2π/L, the momentum projection in eq. (8) eliminates all but
approximately 10% (in amplitude) of the ground state contribution, which contributes with
opposite sign, as shown in Fig. 1. We analyzed this correlator in two ways. First, by
fitting a single exponential to what remains after subtracting the ground-state contribution
determined at a distant time slice. Second, by fitting two exponentials, either keeping the
value of the ground state energy fixed (three parameter fit) or letting that vary also (four
parameter fit). The difference between these procedures, as well and the difference coming
from the somewhat arbitrary choice of fitting ranges, is significant only in the value of the
two-pion energies and is incorporated in the estimated systematic error. The results of
our analysis and the quantities relevant to the determination of the scattering length are
summarized in Table II.

IV. ANALYSIS

A main focus of the analysis of lattice data is the extrapolation of the lattice values of var-
ious physical and unphysical parameters that hadronic quantities computed on the lattice
depend on, in order to make direct comparison with experimental hadronic quantities. Ex-
trapolations in the light-quark masses, the finite lattice spacing and the lattice volume are
currently required. For small enough quark masses and lattice spacings, and large enough
volumes, one can rigorously perform such extrapolations using low-energy effective field the-
ories. What defines small enough are the dimensionless quantities bΛχ # 1, mπ/Λχ # 1
and mπL $ 1. The low-energy effective field theory that can be used to describe the ππ
scattering length is χ-PT supplemented to include the finite lattice spacing, based on the
Symanzik action [40, 41].

Our calculations have generated pions with masses that are less than ∼ 500 MeV, which is
likely an upper limit to the range of applicability of the chiral expansion. We are confident
that the results of the calculations at the lightest two pion masses fall within the chiral
regime and can be analyzed with χ-PT, while the results of the largest mass point is at the
edge of applicability of χ-PT.
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statistical and the second is an estimate of the systematic error. Thus this scale set-
ting procedure is remarkably robust and consistent. One may wonder about the rel-
evance of the chiral logarithm. Repeating the fitting procedure with f l.u.

π (mπ/fπ) =

bfit fphy
π

[
1 + 1/8π2

[
(mπ/fπ)2 −

(
mphy

π /fphy
π

)2
]
Lfit

]
yields bfit = 0.1330 ± 0.0001 ±

0.0001 fm and Lfit = 1.407±0.010±0.009, which are not consistent with MILC scale setting

or the experimental value of l
phy
4 , respectively. It would appear that the chiral logarithm is

resolved by our data at this order in the chiral expansion.

B. The Scattering Length

With small quark masses and momenta, ππ scattering can be reliably computed in χ-PT.
The leading-order result (equivalent to current algebra) was computed in Ref. [54], and the
one-loop ππ amplitude was computed in Ref. [52]. While this amplitude is now known at
the two-loop level [55, 56], given our current lattice data, we choose to analyze our lattice
results at one-loop level. The one-loop expression for the I = 2 ππ scattering length is

mπa2 = − m2
π

8πf 2
π

[

1 +
3m2

π

16π2f 2
π

(

log
m2

π

µ2
+ lππ(µ)

)]

, (15)

where lππ(µ) is a linear combination of scale-dependent low-energy constants that appear
in the O(p4) chiral lagrangian [52] (see Appendix A). We define lππ ≡ lππ(µ = 4πfπ),
and therefore we can simply use the ratio mπ/fπ computed on the lattice to determine the
scattering length using eq. (15). The difference between using the lattice fπ and a fixed fπ

in the argument of the logarithm modifies the scattering length only at higher orders in the
chiral expansion.

The lowest-lying energy eigenvalues in the lattice volume, shown in Table II, allow us to
determine the I = 2 ππ scattering lengths at the different light-quark masses via eq. (4). Our
results for the scattering lengths, and other parameters are presented in the summary table,
Table II. The location of the first excited state in the lattice volume allows, in general, for a
determination of the phase-shift at non-zero values of the pion momentum via eq. (1). For
the lattice parameters in these calculations we were able to extract the I = 2 ππ phase-shift
at one (large) momentum at the largest quark mass, which is shown in Table II. For the two
lighter quark masses, the first excited state is very near the four-pion inelastic threshold,
and a simple extraction of the ππ phase-shift is not possible.

The results of our calculation of the product mπa2 are shown as a function of mπ/fπ in
Fig. (2). In addition, we have shown the lowest pion mass datum from the dynamical calcu-
lations of the CP-PACS collaboration [22] 7. The uncertainty in the CP-PACS measurement
is significantly smaller than that of our calculation and the agreement is very encouraging.
In order to extrapolate mπa2 to the physical value of mπ/fπ, we performed a weighted fit of
eq. (15) to the three data points in Table II and extracted a value of the counterterm lππ.
As both quantities, mπa2 and mπ/fπ, are dimensionless there is no systematic uncertainty
arising from the scale setting (l4). We determined that lππ = 3.3± 0.6± 0.3, where the first

7 We have shown the CP-PACS data point at the lightest pion mass, and at the smallest lattice spacing,
β = 2.10, and have not attempted to extrapolate their result to the continuum. This lattice spacing is
comparable to the one used in this work.
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where the counterterm LπK(λ) is a renormalization scale, λ, dependent linear combination
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FIG. 4: Error ellipses in the L5-LπK plane for the four fits (A,B,C,D) at 68% (dotted lines) and
95% (solid lines) confidence level.

and a prediction of the scattering lengths extrapolated to the physical point of

mπ a3/2 = −0.0574 ± 0.0016+0.0024
−0.0058

mπ a1/2 = 0.1725 ± 0.0017+0.0023
−0.0156 . (20)

We have chosen to take the central values and statistical errors from fit D and have set the
systematic error due to truncation of the chiral expansion by taking the range of the various
quantities allowed by the four fits, including statistical and systematic errors. In fig. 4 we
plot the 68% and 95% confidence-level error ellipses for the four fits given in Table III in the
L5-LπK plane. In fig. 5 we plot the 95% confidence-level error ellipses associated with the
four fits in the mπ a1/2-mπ a3/2 plane 4. For purposes of comparison we have included the
current-algebra point [10] on the plot as well as 1-σ error ellipses from analyses based on
fitting experimental data using χPT at NLO [6] and using Roy-Steiner equations [5]. As 1-σ
error ellipses correspond to 39% confidence level, one should be careful in finding discrepancy
between the various determinations of the scattering lengths. It would be interesting to see
the NLO χPT and Roy-Steiner error ellipses at higher confidence levels.

4 In Mathematica format, the 95% confidence-level error ellipses are:

fit A: Ellipsoid[{0.1631,-0.0607},{0.0197,0.0007},{{0.9283,0.3719},{-0.3719,0.9283}}]

fit B: Ellipsoid[{0.1585,-0.0620},{0.0076,0.0004},{{0.9461,0.3239},{-0.3239,0.9461}}]

fit C: Ellipsoid[{0.1731,-0.0567},{0.0042,0.0016},{{0.7534,0.6576},{-0.6576,0.7534}}]

fit D: Ellipsoid[{0.1725,-0.0574},{0.0046,0.0027},{{0.7881, 0.6156},{-0.6156,0.7881}}].
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of the Gasser-Leutwyler counterterms

LπK ≡ 2L1 + 2L2 + L3 − 2L4 −
L5

2
+ 2L6 + L8 . (15)

It is important to note that the expressions in eqs. (13) and (14) are written in terms of
the full fπ, and not the chiral limit value. The functions χ(NLO,+) (mπ/λ, mK/λ, mη/λ)
and χ(NLO,−) (mπ/λ, mK/λ, mη/λ) clearly depend upon the renormalization scale λ. In the
analysis that follows, it was found to be convenient to normalize the meson masses to fπ,
and therefore we can choose the renormalization scale to be λ = fphys

π , and use the values of
mπ/fπ and mK/fπ in Table II directly. Deviations between the λ = fπ calculated on each
lattice and λ = fphys

π are higher order in the chiral expansion.
The I = 1

2 and I = 3
2 scattering lengths are related to those in eqs. (13) and (14) by

a1/2 = a+ + 2a−

a3/2 = a+ − a− = aπ+K+ . (16)

It is convenient to define the function Γ via a subtraction of the tree-level and one-loop
contributions in order to isolate the counterterms,

Γ

(

mπ

fπ
,
mK

fπ

)

≡ −
f 2

π

16m2
π

(

4πf 2
π

µ2
πK

[µπK aπ+K+] + 1 + χ(NLO,−) − 2
mKmπ

f 2
π

χ(NLO,+)

)

,(17)

where we use the Gell-Mann–Okubo mass-relation among the mesons to determine the η-
mass, which we do not measure in this lattice calculation. At NLO this becomes

Γ = L5(f
phys
π ) − 2

mK

mπ
LπK(fphys

π ) . (18)

It is clear that the dependence of Γ on mπ and mK determines L5 and LπK and, in turn,
allows an extraction of a3/2 and a1/2. The numerical values of Γ and their jackknife errors
calculated on each ensemble of lattices are given in Table II, and are plotted in fig. 3. By
fitting a straight line to the values of Γ as a function of mk/mπ the counterterms L5 and
LπK (renormalized at fphys

π ) can be determined.
Ideally, one would fit to lattice data at the lightest accessible values of the quark masses

in order to ensure convergence of the chiral expansion. While we only have four different
quark masses in our data set, with pion masses ranging from mπ ∼ 290 MeV to 600 MeV,
fitting all four data sets and then “pruning” the heaviest data set and refitting provides a
useful measure of the convergence of the chiral expansion. Hence, in “fit A”, we fit the data
from all four lattice ensembles (m007, m010, m020 and m030), while in “fit B”, we fit the
data from the lightest three lattice ensembles (m007, m010 and m020).

With the limited data set presently at our disposal, it is not practical to fit to the NNLO
expression [9] for the scattering length. However, it is important to estimate the uncertainty
in the values of the scattering lengths extrapolated to the physical point that is introduced
by the truncation of the chiral expansion at NLO. In our work on fK/fπ [37] we extracted
a value of L5 as it is the only NLO counterterm that contributes. The numerical value
obtained is only perturbatively close to its true value, as it is contaminated by higher-order
contributions. Therefore, by fixing the L5 that appears in eq. (18) to the value of L5 extracted
from fK/fπ, an estimate of the uncertainty in both LπK and in the extrapolated values
of the scattering lengths due to the truncation of the chiral expansion can be estimated.
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FIG. 3: Γ vs. mK/mπ. The dark error bar on the data points is statistical, while the lighter error
bar corresponds to the systematic error. The lines correspond to the four linear fits (A,B,C,D).

The bars on the y axis represent the 1-σ errors in the determinations of L5 = Γ(mK/mπ = 0) as
given in Table III. (At 95% confidence level, these determinations are in agreement.)

TABLE III: Results of the NLO fits. The values of mπa3/2 and mπa1/2 correspond to their ex-
trapolated values at the physical point, where the error ellipses in the L5-LπK plane have been

explored at 68% confidence level (see fig. 4).

FIT L5 × 103 LπK × 103 mπa3/2 mπa1/2 χ2/dof

A 3.83 ± 0.49 3.55 ± 0.20 −0.0607 ± 0.0025 0.1631 ± 0.0062 0.17

B 2.94 ± 0.07 3.27 ± 0.02 −0.0620 ± 0.0004 0.1585 ± 0.0011 0.001

C 5.65 ± 0.02+0.18
−0.54

a 4.24 ± 0.17 −0.0567 ± 0.0017 0.1731 ± 0.0017 0.84

D 5.65 ± 0.02+0.18
−0.54

a
4.16 ± 0.18 −0.0574 ± 0.0016 0.1725 ± 0.0017 0.90

aInput from fK/fπ [37].

Specifically, we sampled L5 from a Gaussian distribution for a range of fK/fπ values [37]
and then fit LπK using χ2-minimization. We then generated a value of LπK from a normal
distribution formed from its mean and standard error. This fit is denoted “fit C”, and the
same fit but with the m030 data pruned is denoted “fit D”. The results of the four fits are
given in Table III and plotted in fig. 3. These fits lead to an extraction of

LπK = 4.16 ± 0.18+0.26
−0.91 , (19)
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Nucleon-NuclEON

3

mπ (MeV ) a(1S0) (fm) a(3S1) (fm)

353.7 ± 2.1 0.63 ± 0.50 (5-10) 0.63 ± 0.74 (5-9)

492.5 ± 1.1 0.65 ± 0.18 (6-9) 0.41 ± 0.28 (6-9)

593.0 ± 1.6 0.0 ± 0.5 (7-12) −0.2 ± 1.3 (7-12)

TABLE I: Scattering lengths in the 1S0 channel and in the
3S1 −

3D1 coupled channels. The uncertainty is statistical and
the fitting ranges are in parentheses. There is a systematic
error of ∼ 0.1 fm on each scattering length associated with the
truncation of the effective range expansion; i.e. the numbers
exhibited are for −1/p cot δ at the measured energy-splitting.

lengths at the heaviest pion mass are not inconsistent
with the lightest-mass quenched values of Ref. [1]. How-
ever, one should keep in mind the effects of quenching on
the infrared properties of the theory [21].

The lowest pion mass at which we have calculated is
at the upper limit of where we expect the EFT describ-
ing NN interactions to be valid [22, 23, 24, 25, 26, 27].
While some controversy remains regarding the details
of the NN EFT, in our present analysis, we have con-
strained the chiral extrapolation using BBSvK power-
counting [27] (≡KSW power-counting [25, 26]) and W
power-counting [22, 23, 24] in the 1S0-channel and BB-
SvK power-counting in the 3S1 −3D1 coupled channels.
The recent lattice QCD determinations of the light-quark
axial-matrix element in the nucleon by LHPC [28] and
its physical value are used to constrain the chiral expan-
sion of gA. Our lattice calculations of the nucleon mass
and pion decay constant [20] —as well as their physi-
cal values— are used to constrain their respective chi-
ral expansions. In addition to the quark-mass depen-
dence these three quantities contribute to the NN sys-
tems, there is dependence on the quark masses at next-
to-leading order (NLO) from pion exchange, and from
local four-nucleon operators that involve a single inser-
tion of the light-quark mass matrix, described by the
“D2” coefficients [6, 7, 8]. The results of this lattice
QCD calculation constrain the range of allowed values
for the D2’s, and consequently the scattering lengths in
the region between mπ ∼ 350 MeV and the chiral limit,
as shown in fig. 3 and fig. 4. With only one lattice point
at the edge of the regime of applicability of the EFT, a
prediction for the scattering lengths at the physical pion
mass is not possible: the experimental values of the scat-
tering lengths are still required for an extrapolation to
the chiral limit and naive dimensional analysis (NDA)
is still required to select only those operator coefficients
that are consistent with perturbation theory. The regions
plotted in the figures correspond to values of C0 – the
coefficient of the leading-order quark-mass independent
local operator – and D2 that fit the lattice datum and
the physical value, and are consistent with NDA; indeed
we have D2(Λ)m2

π/C0(Λ) ∼ ±0.10 in both channels (at

physical mπ), at a renormalization scale Λ ∼ 350 MeV.
In both channels the lightest lattice datum constrains the
chiral extrapolation to two distinct bands which are sen-
sitive to both the quark mass dependence of gA and the
sign of the D2 coefficient. As the lattice point used to
constrain the EFT is at the upper limits of applicabil-
ity of the EFT, we expect non-negligible corrections to
these regions from higher orders in the EFT expansion.
It is clear from fig. 3 and fig. 4 that even a qualitative
understanding of the chiral limit will require lattice cal-
culations at lighter quark masses.

FIG. 3: Allowed regions for the scattering length in the 1S0

channel as a function of the pion mass. The experimental
value of the scattering length and NDA have been used to
constrain the extrapolation in both BBSvK [25, 26, 27] and
W [22, 23, 24] power-countings at NLO.

FIG. 4: Allowed regions for the scattering length in the
3S1 −

3D1 coupled-channels as a function of the pion mass.
The experimental value of the scattering length and NDA
have been used to constrain the extrapolation in BBSvK [27]
power-counting at NLO. (W counting gives essentially iden-
tical results.)

Without the resources to perform similar lattice QCD
calculations in different volumes, and observing that
most energy-splitting are positive, we have assumed that
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Future

• These calculations are the beginning of the beginning!

• Need lighter pion masses, multiple volume sizes, and lattice spacings

• Determine we see scattering states

• K-π  and Κ-Κ in the works

• Meson baryon channels: (K-n, K-Σ ...)

• Hyperon-Hyperon and Hyperon-Nucleon channels

• Higher statistics

• Need to make lattices designed for this project

• Turn to Wilson fermions (exact chiral symmetry not important) (JLAB program)

• Find a big computer!



Conclusions

• We have the means to perform high precision calculations 
relevant to hadronic physics

• Mixed action calculations with ChiPT can very accurately 
compute all Gasser-Leutwyler coefficients determining 
important parameters of the low energy effective field theories 
describing hadronic physics

• A careful study of systematic errors is still needed

• Opportunities for new calculations are now arising

• The computation of nucleon-nucleon scattering lengths is 
explored with encouraging results - new ideas are needed for 
obtaining phenomenologically interesting results.
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