Lattice Hadron Physics
Newport News, July 31 - August 32006

Lattice QCD and Nuclear Physics

Kostas Orginos
The College of William and Mary
JLab

NPLECD COLLABORATORS

- S. Beane (UNH)
- P. Bedaque (LBNL)
- E. Pallante (Gronigen)
- A. Parreno (Barcelona)
- M. Savage (UW)

LHPC COLLABORATORS

- R. Edwards (Jlab)
- G. Fleming (Yale)
- P. Hagler (Vrije Universiteit)
- J. Negele (MIT)
- A. Pochinsky (MIT)
- D. Renner (UofA)
- D. Richards (Jlab)
- W. Schroers (DESY)

Nuclear physics

- Connect Nuclear physics to QCD
- Two scale problem
- QCD scale 1 GeV
- Nuclear binding energy ~ MeV
- Does it look hopeless?
- Not really!

NUCLEAR PHYSICS: WHAT CAN WE DO?

- EFT description of nuclear forces
- Need low energy constants
- Use experiment
- Why not use lattice instead?

NUCLEAR PHYSICS: WHAT CAN WE DO?

- Nucleon mass
- Isospin breaking
- Decay constants and couplings
- $f_{\pi}, g_{A}, g_{N \Delta}, g_{\Sigma \Sigma}, g_{\equiv \Xi}, g_{\Sigma \Lambda}, \ldots .$.
- Gasser-Leutwyler coefficients
- Scattering lengths [NPLQCD]
- Lattice Nuclear physics [Lee et al., Borasoy et al.]
- Lattice offers flexibility!
- Ask questions not accessible to experiment

REALISTIC CALCULATIONS

- 2+1 Dynamical flavors
- 2 light (up down) 1 heavy (strange)
- charm bottom top (treated in HOET)
- Light quark masses $\mathrm{m}_{\pi}<400 \mathrm{MeV}$
- Chiral extrapolations
- Finite volume corrections
- Numerical algorithm slows down (algorithm scaling $\sim \frac{1}{m_{q}^{2.5}}$)
- Continuum extrapolations
- compute at several lattice spacings (algorithm scaling $\sim \frac{1}{a^{7}}$)

QUENCHED VS DYNAMICAL

THE HYBRID ACTION PROGRAM

- Domain wall fermions for valence (with hyp smeared links)
- Chiral symmetry ($\mathrm{O}\left(\mathrm{a}^{2}\right)$ errors better scaling)
- Ward Identities (renormalization, power divergent mixing)
- Kogut-Susskind 2+I Dynamical flavors
- Improved KS action (Asqtad: $O\left(a^{4}, g^{2} a^{2}\right)$) [KO, Sugar,Toussaint'99]
- MILC has generated lattices
- Light quark masses: Lightest pion

$$
m_{\pi} \sim 250 \mathrm{MeV}
$$

- Volumes: 2.6 to 3.2 fm
- Future: Continuum extrapolation
- MILC lattice spacings: $\mathrm{a}=0.125 \mathrm{fm}, 0.09 \mathrm{fm}$
- $\mathrm{a}=0.06 \mathrm{fm}$ in I -2 years
- Problem:"Rooted" fermions? (Bernard, Shamir, Sharpe, Golderman, Durr, Creutz, Hassenfratz....)

Ugly \longrightarrow Results are pretty ??

Domain Wall Fermions for QCD

Formulate the 5D Wilson fermions with mass $M \neq 0$ in $s \in\left[1, L_{s}\right]$

For $-2<M<0$, light chiral modes are bound on the walls. Only one Dirac fermion without doublers remains.

Fermion mass is introduced by explicitly coupling m_{f} of the walls.

Chiral symmetry breaking

$$
\Delta_{\mu}\left\langle\mathcal{A}_{\mu}^{a}(x) \mathcal{O}\right\rangle=2 m_{f}\left\langle J_{5}^{a}(x) \mathcal{O}\right\rangle+2\left\langle J_{5 q}^{a}(x) \mathcal{O}\right\rangle+i\left\langle\delta_{x}^{a} \mathcal{O}\right\rangle
$$

- The size of $\left\langle J_{5 q}^{a}(x) \mathcal{O}\right\rangle$ measures chiral symmetry breaking
- Let's use for the operator $\mathcal{O}=J_{5}^{a}(0)$
- Assume at long distances $J_{5 q}^{a} \sim J_{5}^{a}$
- The proportionality constant is the residual mass

$$
M_{\mathrm{res}}=\left.\frac{\sum_{x, y}\left\langle J_{5 q}^{a}(y, t) J_{5}^{a}(x, 0)\right\rangle}{\sum_{x, y}\left\langle J_{5}^{a}(y, t) J_{5}^{a}(x, 0)\right\rangle}\right|_{t \geq t_{\text {min }}}
$$

Residual Mass vs Ls

Residual Mass vs Ls

The 4D effective operator

With a little algebra we get

$$
\mathcal{P}^{-1} \frac{1}{D_{d w f}(1)} D_{d w f}(m) \mathcal{P}=\left[\begin{array}{rrrrrrr}
D_{o v}(m) & 0 & 0 & \cdots & \cdots & \cdots & 0 \\
-(1-m) T^{-L_{s} / 2+1} \frac{1}{T^{-L_{s} / 2}+T^{L_{s} / 2}} & 1 & 0 & 0 & \cdots & \cdots & 0 \\
-(1-m) T^{-L_{s} / 2+2} \frac{1}{T^{-L_{s} / 2}+T^{L_{s} / 2}} & 0 & 1 & 0 & \cdots & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \cdots & \vdots \\
-(1-m) \frac{1}{T^{-L_{s} / 2}+T^{L_{s} / 2}} & 0 & \cdots & \cdots & 1 & 0 & \cdots \\
\vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
-(1-m) T^{L_{s} / 2-1} \frac{1}{T^{-L_{s} / 2}+T^{L_{s} / 2}} & 0 & \cdots & \cdots & \cdots & 0 & 1
\end{array}\right]
$$

$$
\mathcal{P}=\left[\begin{array}{cccc}
P_{-} & P_{+} & \cdots & 0 \\
0 & P_{-} & P_{+} \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & P_{+} \\
P_{+} & 0 & \cdots & P_{-}
\end{array}\right] \quad L=\left[\begin{array}{rrrrr}
1 & 0 & 0 & \cdots & 0 \\
-T^{-L_{s}+1} M_{+} & 1 & 0 & 0 & \cdots \\
-T^{-L_{s}+2} M_{+} & 0 & 1 & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 \\
-T^{-1} M_{+} & 0 & \cdots & 0 & 1
\end{array}\right] \quad \begin{aligned}
& M_{-}=P_{-}-m P_{+} \\
& M_{+}=P_{+}-m P_{-} \\
& T_{T}=\frac{1+H_{T}}{1-H_{T}} \\
& =\gamma_{5} D
\end{aligned}
$$

$$
D_{o v}(m)=\frac{1+m}{2}+\frac{1-m}{2} \gamma_{5} \varepsilon_{L_{s}}\left[\gamma_{5} D\left(M_{5}\right)\right]
$$

$\varepsilon_{L_{s}}=\frac{T^{-L_{s}}-1}{T^{-L_{s}}+1}=\frac{\left(1+H_{T}\right)^{L_{s}}-\left(1-H_{T}\right)^{L_{s}}}{\left(1+H_{T}\right)^{L_{s}}+\left(1-H_{T}\right)^{L_{s}}}$

$$
D=\left(b_{5}+c_{5}\right) \frac{D_{w}}{2+\left(b_{5}-c_{5}\right) D_{w}}=\alpha \frac{D_{w}}{2+a_{5} D_{w}}
$$

- Overlap: $\alpha=2, a_{5}=0$ (Borici)
- DWF: $\alpha=1, a_{5}=1$ (Shamir)

Locality of the 4D action

$\mathrm{a}=0.125 \mathrm{fm}$

Locality of the 4D action

Localization: ~ 1.3a

The DWF quark masses

$\mathrm{a}=0.125 \mathrm{fm}$

IsoVector scalar correlator: Unitarity violation

PION DECAY CONSTANT

- Fit the lower 4 points
- Scale used a $=0.125 \mathrm{fm}$
- One loop χ PT extrapolation: $130.6(1.8) \mathrm{MeV}$
$f_{\pi}=f\left[1-\frac{m_{\pi}^{2}}{8 \pi^{2} f^{2}} \log \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)+c\left(\mu^{2}\right) m_{\pi}^{2}\right]$
- Systematic error:
- chiral extr. 3 MeV
- 2% from scale setting
- $\quad \chi^{2} /$ d.o.f. ~ 2
- Need mixed χ PT: Baer et.al.'o5

F_{K} / F_{π}

Beane, Bedaque, KO, Savage hep-lat/0606023

$$
\begin{aligned}
& \text { Gasser-Leutwyler: } \\
& \frac{f_{K}}{f_{\pi}}=1+\frac{5}{4} l_{\pi}(\mu)-\frac{1}{2} l_{K}(\mu)-\frac{3}{4} l_{\eta}(\mu)+\frac{8}{f^{2}}\left(m_{K}^{2}-m_{\pi}^{2}\right) L_{5}(\mu) \\
& l_{i}(\mu)=\frac{1}{16 \pi^{2}} \frac{m_{i}^{2}}{f^{2}} \log \left(\frac{m_{i}^{2}}{\mu^{2}}\right) \\
& \frac{f_{K}}{f_{\pi}}=1.210(10) \\
& \left.\frac{f_{K}}{f_{\pi}}\right|_{\exp .}=1.223(12)
\end{aligned}
$$

Need much higher precision to see effects of Mixed XPT Baer et.al.'05

F_{K} / F_{π}

Beane, Bedaque, KO, Savage hep-lat/0606023

Gasser-Leutwyler:

$$
\begin{gathered}
\frac{f_{K}}{f_{\pi}}=1+\frac{5}{4} l_{\pi}(\mu)-\frac{1}{2} l_{K}(\mu)-\frac{3}{4} l_{\eta}(\mu)+\frac{8}{f^{2}}\left(m_{K}^{2}-m_{\pi}^{2}\right) L_{5}(\mu) \\
l_{i}(\mu)=\frac{1}{16 \pi^{2}} \frac{m_{i}^{2}}{f^{2}} \log \left(\frac{m_{i}^{2}}{\mu^{2}}\right)
\end{gathered}
$$

Result comparable with MILC

FIT	$L_{5} \times 10^{3}$	$f_{K} / f_{\pi}($ extrapolated $)$	χ^{2} / dof
A	$5.68(3)$	$1.221(3)$	3.5
B	$5.65(2)$	$1.218(2)$	1.4
C	$5.63(2)$	$1.215(2)$	0.7

$$
\begin{aligned}
& \left.\frac{f_{K}}{f_{\pi}}\right|_{\mathrm{MILC}}=1.210(4)(13) \\
& \left.\frac{f_{K}}{f_{\pi}}\right|_{\text {exp. }}=1.223(12)
\end{aligned}
$$

CASCADE-NUCLEON MASSSPLITTING

- Mild quark mass dependence
- Small systematic error due to chiral extrapolation
- Other systematic errors cancel
- Scale used $\mathrm{a}=1588 \mathrm{MeV}$
Latt./Exp. = 1.006(8)

LAMBDA-SIGMA SPLITTING

- Data point towards experimental result
- Linear fit is good
- Need XPT
- Exper:: 77.47MeV
- Lat.: 78(8) MeV
- Scale used $\mathrm{a}=1588 \mathrm{MeV}$

GMO RELATION

Beane, KO, Savage hep-lat/06040I3

$$
G^{\mathrm{GMO}}(t)=\frac{C_{\Lambda}(t) C_{\Sigma}(t)^{1 / 3}}{C_{N}(t)^{2 / 3} C_{\Xi}(t)^{2 / 3}} \rightarrow e^{-\left(M_{\Lambda}+M_{\Sigma} / 3-2 M_{N} / 3-2 M_{\Xi} / 3\right) t}
$$

ISOSPIN BREAKING

Beane, KO, Savage hep-lat/06050I5

$$
M_{n}-\left.M_{p}\right|^{d-u}=\frac{2}{3}(2 \bar{\alpha}-\bar{\beta})\left(\frac{1-\eta}{1+\eta}\right) m_{\pi}^{2}
$$

MILC: $\eta=m_{\mathrm{u}} / \mathrm{m}_{\mathrm{d}}=0.43(\mathrm{I})(8)$

Extraction	$M_{n}-\left.M_{p}\right\|^{d-u}(\mathrm{MeV})$ at $m_{\pi}^{\text {phys. }}$
$\mathrm{LO} \mathcal{O}\left(m_{q}\right)$	$1.96 \pm 0.92 \pm 0.37$
$\mathrm{NLO} \mathcal{O}\left(m_{q}^{3 / 2}\right)$	$2.26 \pm 0.57 \pm 0.42$

Extraction	$\frac{1}{3}(2 \bar{\alpha}-\bar{\beta})$ (l.u.)	$\bar{\alpha}+\bar{\beta}$ (l.u.)	g_{1}	$\left\|g_{\Delta N}\right\|$	$\chi^{2} /$ dof
$\mathrm{LO} \mathcal{O}\left(m_{q}\right)$	0.198 ± 0.093	2.07 ± 0.08	--	--	0.56
$\mathrm{NLO} \mathcal{O}\left(m_{q}^{3 / 2}\right)$	0.229 ± 0.058	3.4 ± 1.1	-0.10 ± 0.35	0.60 ± 0.66	0.21

minus EM part
Exp. value: $M_{n}-M_{p}=1.2933317(5) \mathrm{MeV}$

sCATTERING ON THE LATTICE

- Miani-Testa no-go theorem ('90) [and C. Michael '89]
- Infinite Volume:

Euclidean

Minkowski

- Finite volume: discrete spectrum

SCATTERING ON THE LATTICE Luscher

Scattering amplitude:

$$
\begin{aligned}
& A(p)=0 \\
& A(p)=\frac{4 \pi}{m} \frac{1}{p \cot \delta-i p}
\end{aligned}
$$

At finite volume one can show:

$$
\Delta E_{n} \equiv E_{n}-2 m=2 \sqrt{p_{n}^{2}+m^{2}}-2 m
$$

P_{n} solutions of:

$$
p \cot \delta(p)=\frac{1}{\pi L} \mathbf{S}\left(\frac{p^{2} L^{2}}{4 \pi^{2}}\right) \quad \mathbf{S}(\eta) \equiv \sum_{\mathrm{j}}^{\mid \mathrm{j}<\Lambda} \frac{1}{|\mathbf{j}|^{2}-\eta}-4 \pi \Lambda
$$

Effective range expansion:

$$
p \cot \delta(p)=\frac{1}{a}+\frac{1}{2} r p^{2}+\ldots
$$

LUSCHER FORMULA

Energy level shift in finite volume:

$$
\Delta E_{n} \equiv E_{n}-2 m=2 \sqrt{p_{n}^{2}+m^{2}}-2 m
$$

P_{n} solutions of:

$$
\begin{array}{lr}
p \cot \delta(p)=\frac{1}{\pi L} \mathbf{S}\left(\frac{p^{2} L^{2}}{4 \pi^{2}}\right) & \mathbf{S}(\eta) \equiv \sum_{\mathbf{j}}^{|\mathrm{j}|<\Lambda} \frac{1}{|\mathrm{j}|^{2}-\eta}-4 \pi \Lambda \\
p_{n} \cot \delta\left(p_{n}\right)=\frac{1}{a}+\cdots & \frac{1}{a}=\frac{1}{\pi L} S\left(\frac{p_{0}^{2} L^{2}}{4 \pi^{2}}\right)+\cdots
\end{array}
$$

Expansion at $\mathrm{p} \sim 0$:

$$
\Delta E_{0}=-\frac{4 \pi a}{m L^{3}}\left[1+c_{1} \frac{a}{L}+c_{2}\left(\frac{a}{L}\right)^{2}\right]+\mathcal{O}\left(\frac{1}{L^{6}}\right)
$$

PION I=2 SCATTERING LENGTH

S. Bean P. Bedaque KO and M. Savage hep-lat/0506013

$$
\begin{gathered}
C_{\pi^{+}}(t)=\sum_{\mathbf{x}}\left\langle\pi^{-}(t, \mathbf{x}) \pi^{+}(0, \mathbf{0})\right\rangle \\
C_{\pi^{+} \pi^{+}}(p, t)=\sum_{|\mathbf{p}|=p} \sum_{\mathbf{x}, \mathbf{y}} e^{i \mathbf{p} \cdot(\mathbf{x}-\mathbf{y})}\left\langle\pi^{-}(t, \mathbf{x}) \pi^{-}(t, \mathbf{y}) \pi^{+}(0, \mathbf{0}) \pi^{+}(0, \mathbf{0})\right\rangle \\
G_{\pi \pi}(p, t) \equiv \frac{C_{\pi \pi}(p, t)}{C_{\pi}(t)^{2}} \rightarrow \sum_{n=0}^{\infty} \mathcal{A}_{n} e^{-\Delta E_{n} t}
\end{gathered}
$$

Quenched
Sharpe etal '92
Gupta etal '93
Kuramashi etal '93
Fugugita etal '94
C. Liu etal ' 02

Dynamical CP-PACS ‘04 (Wilson) NPLQCD ‘05 (Hybrid)
J. Junk RBG ‘03

CP-PACS

CORRELATOR RATIO

I=2 PION SCATTERING

- $\mathrm{m}_{\pi} \mathrm{a}_{2}=-0.0422(3)(18)$
- Experiment: $\mathrm{m}_{\pi} \mathrm{a}_{2}=-0.0454$ (31)
- SXPT has insignificant effect to the result [Chen et al. ‘05]

CORRELATOR RATIO

I=3/2 K- π SCATTERING

S. Bean P. Bedaque, T. Luu, KO, E. Pallante, A. Parreno and M. Savage hep-lat/0607036

Quenched Calculation:
C. Miao et.al. hep-lat/0403028
$-\chi \mathrm{PT} \mathrm{p}^{2}$

- This work
--. physical line

Fitting to NLO ChiPT allows the extraction of both $\mathrm{I}=1 / 2$ and $\mathrm{I}=3 / 2$ scattering lengths

I=3/2 K- π SCATTERING

$$
\begin{gathered}
\Gamma\left(\frac{m_{\pi}}{f_{\pi}}, \frac{m_{K}}{f_{\pi}}\right) \equiv-\frac{f_{\pi}^{2}}{16 m_{\pi}^{2}}\left(\frac{4 \pi f_{\pi}^{2}}{\mu_{\pi K}^{2}}\left[\mu_{\pi K} a_{\pi^{+} K^{+}}\right]+1+\chi^{(N L O,-)}-2 \frac{m_{K} m_{\pi}}{f_{\pi}^{2}} \chi^{(N L O,+)}\right) \\
\Gamma=L_{5}\left(f_{\pi}^{\text {phys }}\right)-2 \frac{m_{K}}{m_{\pi}} L_{\pi K}\left(f_{\pi}^{\text {phys }}\right)
\end{gathered}
$$

FIT	$L_{5} \times 10^{3}$	$L_{\pi K} \times 10^{3}$	$m_{\pi} a_{3 / 2}$	$m_{\pi} a_{1 / 2}$	$\chi^{2} /$ dof
A	3.83 ± 0.49	3.55 ± 0.20	-0.0607 ± 0.0025	0.1631 ± 0.0062	0.17
B	2.94 ± 0.07	3.27 ± 0.02	-0.0620 ± 0.0004	0.1585 ± 0.0011	0.001
C	$5.65 \pm 0.02_{-0.54}^{+0.18} a$	4.24 ± 0.17	-0.0567 ± 0.0017	0.1731 ± 0.0017	0.84
D	$5.65 \pm 0.02_{-0.54}^{+0.18} a$	4.16 ± 0.18	-0.0574 ± 0.0016	0.1725 ± 0.0017	0.90

${ }^{a}$ Input from $f_{K} / f_{\pi}[37]$.

$$
\begin{aligned}
& m_{\pi} a_{3 / 2}=-0.0574 \pm 0.0016_{-0.0058}^{+0.0024} \\
& m_{\pi} a_{1 / 2}=0.1725 \pm 0.0017_{-0.0156}^{+0.0023}
\end{aligned}
$$

CORRELATOR RATIO

KAON SCATTERING

NUCLEON-NUCLEON

${ }^{1} S_{0}$ channel

${ }^{3} S_{1}$ channel

NUCLEON-NUCLEON

Beane, Bedaque, KO, Savage hep-lat/06020IO

Fukugita et al. ‘95

FUTURE

- These calculations are the beginning of the beginning!
- Need lighter pion masses, multiple volume sizes, and lattice spacings
- Determine we see scattering states
- K-T π and $\mathrm{K}-\mathrm{K}$ in the works
- Meson baryon channels: (K-n, K- Σ...)
- Hyperon-Hyperon and Hyperon-Nucleon channels
- Higher statistics
- Need to make lattices designed for this project
- Turn to Wilson fermions (exact chiral symmetry not important) (JLAB program)
- Find a big computer!

Conclusions

- We have the means to perform high precision calculations relevant to hadronic physics
- Mixed action calculations with ChiPT can very accurately compute all Gasser-Leutwyler coefficients determining important parameters of the low energy effective field theories describing hadronic physics
- A careful study of systematic errors is still needed
- Opportunities for new calculations are now arising
- The computation of nucleon-nucleon scattering lengths is explored with encouraging results - new ideas are needed for obtaining phenomenologically interesting results.

INT Summer School on "Lattice QCD and its applications"

August 8-28, 2007

Seattle, WA
USA

http://www.int.washington.edu/PROGRAMS/07-2b.html

