Recent Results for Nucleon Form Factors

M. Göckeler, P. Hägler, R. Horsley, Y. Nakamura, D. Pleiter, P.E.L. Rakow, A. Schäfer, G. Schierholz, W. Schroers, H. Stüben, Th. Streuer, J.M. Zanotti

QCDSF Collaboration

LHP 2006, JLAB, Newport News (VA)

01. August 2006

D. Pleiter (DESY) (QCDSF Collaboration)

Nucleon Form Factors

LHP 2006 1 / 35

Parametrisation and q^2 Scaling

Chiral Extrapolation

Comparison with Experiment/Phenomenology

D. Pleiter (DESY) (QCDSF Collaboration)

Nucleon Form Factors

LHP 2006 2 / 35

A b

Content

Introduction

Parametrisation and q^2 Scaling

Chiral Extrapolation

Comparison with Experiment/Phenomenology

D. Pleiter (DESY) (QCDSF Collaboration)

Nucleon Form Factors

LHP 2006 3 / 35

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Electromagnetic form factors

$$\langle \boldsymbol{p}', \boldsymbol{s}' | J^{\mu} | \boldsymbol{p}, \boldsymbol{s} \rangle = \overline{\psi}(\boldsymbol{p}', \boldsymbol{s}') \left[\gamma_{\mu} F_{1}(\boldsymbol{q}^{2}) + i \sigma^{\mu\nu} \frac{q_{\nu}}{2M_{N}} F_{2}(\boldsymbol{q}^{2}) \right] \psi(\boldsymbol{p}, \boldsymbol{s})$$

•
$$q = p' - p$$
 ... momentum transfer

We will consider, e.g.

Proton form factors: $\frac{2}{3}\overline{u}\gamma^{\mu}u - \frac{1}{3}\overline{d}\gamma^{\mu}d$

Isovector form factors:

 $\overline{u}\gamma^{\mu}u - \overline{d}\gamma^{\mu}d$ $\rightarrow \text{Disconnected terms cancel}$

Matrix elements on the lattice

$$R(t,\tau,\vec{p}',\vec{p}\,) = \frac{C_3(t,\tau,\vec{p}',\vec{p}\,)}{C_2(t,\vec{p}\,')} \times \left[\frac{C_2(\tau,\vec{p}\,')C_2(t,\vec{p}\,')C_2(t-\tau,\vec{p}\,)}{C_2(\tau,\vec{p}\,)C_2(t,\vec{p}\,)C_2(t-\tau,\vec{p}\,')}\right]^{1/2}$$

where

$$C_2(t,ec{
ho}) = \sum_{lphaeta} {\sf \Gamma}_{etalpha} \langle {\cal B}_lpha(t,ec{
ho}) ar{{\cal B}}_eta(0,ec{
ho})
angle$$

and

$$\mathcal{C}_{3}(t, au,ec{
ho}\,',ec{
ho}\,) = \sum_{lphaeta} \mathsf{\Gamma}_{etalpha} \langle \mathcal{B}_{lpha}(t,ec{
ho}\,'\,) \mathcal{O}(au) ar{\mathcal{B}}_{eta}(0,ec{
ho}\,)
angle$$

We use the local vector current: $\overline{\psi}(\mathbf{x}) \gamma_{\mu} \psi(\mathbf{x})$

D. Pleiter (DESY) (QCDSF Collaboration)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Renormalisation and improvement

$$V_{\mu} = Z_{V}(1 + b_{V}am_{q}) \left[\bar{\psi}\gamma_{\mu}\psi + \mathrm{i}c_{V}a\partial_{\lambda}(\bar{\psi}\sigma_{\mu\lambda}\psi) \right]$$

- Z_V and b_V have been determined non-perturbatively
- ► c_V known only perturbatively → neglected here

[QCDSF 2002]

Simulation details

Configurations with $N_{\rm f}$ = 2 O(a)-improved dynamical quarks generated by UKQCD+QCDSF.

$m_{\rm PS,sea} =$	340,, 1170 MeV	a =	0.07,, 0.11 fm
$m_{\rm PS,val} =$	340,, 1240 MeV	V =	1.4,, 2.6 fm

- Simulations much closer to the physical quark mass
- Reasonably small lattice spacing

Momenta and polarisations

▶ 3 initial state momentum:

$$\frac{L}{2\pi}\vec{p} = \begin{pmatrix} 0\\0\\0 \end{pmatrix} , \begin{pmatrix} 1\\0\\0 \end{pmatrix} , \begin{pmatrix} 0\\1\\0 \end{pmatrix}$$

3 choices for polarisations:

$$\begin{split} \Gamma &=& \frac{1}{2}(1+\gamma_4) \\ \Gamma &=& \frac{1}{2}(1+\gamma_4)i\gamma_5\gamma_1 \\ \Gamma &=& \frac{1}{2}(1+\gamma_4)i\gamma_5\gamma_2 \end{split}$$

• 17 different choices of $\vec{q} = \vec{p}' - \vec{p}$

Scale definition

- r_0 can be determined with good precision on the lattice
 - → Good for scaling lattice results
- Experimental value less well known
 - → Use nucleon mass for conversion into physical units
 - \rightarrow *r*₀ = 0.467 fm

Content

Introduction

Parametrisation and q^2 Scaling

Chiral Extrapolation

Comparison with Experiment/Phenomenology

D. Pleiter (DESY) (QCDSF Collaboration)

Nucleon Form Factors

LHP 2006 10 / 35

A (10) > A (10) > A (10)

Parametrisation and q^2 scaling

Lattice (and experimental) data can be (well?) described by

$$F_i(q^2) = rac{A_i}{(1-q^2/M_i^2)^p}$$

Naive expectation from dimensional counting:

Let the data tell?

Difference of fits small wrt to statistical errors

Scaling of $F_2^{(v)}/F_1^{(v)}$

▶ $m_{\rm PS} \approx 600 \text{ MeV}, a = 0.084, ..., 0.070 \text{ fm}$

LHP 2006 13 / 35

ъ

Scaling of $F_1^{(d)}/F_1^{(u)}$

▶ Data suggests p = 2 and p = 3 to fit $F_1^{(u)}$ and $F_1^{(d)}$, respectively

 Flavour dependence also observed in fits to experimental data [Diehl et al., 2005]

Exploring *p*

Consider χ^2 as a function of *p*:

Form factor radii and magnetic moment

Definitions:

► Form factor radii *r_i*:

$$F_i(q^2) = F_i(0) \left[1 + \frac{1}{6} r_i^2 q^2 + O(q^4) \right]$$

• Magnetic moment μ / anomalous magnetic moment κ :

$$\mu = 1 + \kappa = F_1(0) + F_2(0)$$

For comparison with effective theories (and experimental numbers) and we will use

$$\kappa^{(\nu)\mathrm{norm}} = \kappa^{(\nu)} \ m_\mathrm{N}(m_\pi)/m_\mathrm{N}(m_\mathrm{PS})$$

D. Pleiter (DESY) (QCDSF Collaboration)

p-Dependence of form factor radii

Choice of p has less impact on form factor radii

Parametrisation of lattice results

Fit data to

$$F_i(q^2) = rac{A_i}{(1-q^2/M_i^2)^p}$$

where

This allows us to determine:

►
$$F_1^{(q)}(0), F_2^{(q)}(0) (q = u, d)$$

Di-/tripole masses or, equivalently, the form factor radii

Content

Introduction

Parametrisation and q^2 Scaling

Chiral Extrapolation

Comparison with Experiment/Phenomenology

D. Pleiter (DESY) (QCDSF Collaboration)

Nucleon Form Factors

LHP 2006 19 / 35

"Naive" extrapolation of masses

Di-/tripole masses appear to change linearly with the quark mass

"Naive" extrapolation of anomalous magnetic moment

Result in chiral limit smaller than experimental number

ChEFT result for $[r_1^{(v)}]^2$

[Hemmert and Weise, 2002; QCDSF 2003]

$$\begin{pmatrix} r_1^{(\nu)} \end{pmatrix}^2 = -\frac{1}{(4\pi F_\pi)^2} \left\{ 1 + 7g_A^2 + \left(10g_A^2 + 2\right)\log\left[\frac{m_{\rm PS}}{\lambda}\right] \right\}$$
$$+\frac{c_A^2}{54\pi^2 F_\pi^2} \left\{ 26 + 30\log\left[\frac{m_{\rm PS}}{\lambda}\right] + 30\frac{\Delta}{\sqrt{\Delta^2 - m_{\rm PS}^2}}\log\left[\frac{\Delta}{m_{\rm PS}} + \sqrt{\frac{\Delta^2}{m_{\rm PS}^2}} - 1\right] \right\}$$

イロト イヨト イヨト イヨト

$[r_1^{(v)}]^2$: comparison ChEFT vs. lattice

D. Pleiter (DESY) (QCDSF Collaboration)

Nucleon Form Factors

LHP 2006 23 / 35

ChEFT result for $[r_2^{(v)}]^2$

$$(r_2^{(v)})^2 = \frac{g_A^2 M_N}{8F_\pi^2 \kappa^{(v)}(m_{\rm PS})\pi m_{\rm PS}} + \frac{c_A^2 M_N}{9F_\pi^2 \kappa^{(v)}(m_{\rm PS})\pi^2 \sqrt{\Delta^2 - m_\pi^2}} \log\left[\frac{\Delta}{m_{\rm PS}} + \sqrt{\frac{\Delta^2}{m_\pi^2} - 1}\right] + \frac{24M_N}{\kappa^{(v)}(m_{\rm PS})} B_{c2}$$

イロト イヨト イヨト イヨ

ChEFT result for $\kappa^{(v)}$

$$\kappa^{(v)}(m_{\rm PS}) = \kappa^{(v)0} - \frac{g_{\rm A}^2 m_{\rm PS} M_{\rm N}}{4\pi F_{\pi}^2} + \frac{2c_{\rm A}^2 \Delta M_{\rm N}}{9\pi^2 F_{\pi}^2} \left\{ \sqrt{1 - \frac{m_{\rm PS}^2}{\Delta^2}} \log R(m_{\rm PS}) + \log \left[\frac{m_{\rm PS}}{2\Delta}\right] \right\} - 8E_1^{(r)}(\lambda) M_{\rm N} m_{\rm PS}^2 + \frac{4c_{\rm A} c_{\rm V} g_{\rm A} M_{\rm N} m_{\rm PS}^2}{9\pi^2 F_{\pi}^2} \log \left[\frac{2\Delta}{\lambda}\right] + \frac{4c_{\rm A} c_{\rm V} g_{\rm A} M_{\rm N} m_{\rm PS}^3}{27\pi F_{\pi}^2 \Delta} - \frac{8c_{\rm A} c_{\rm V} g_{\rm A} \Delta^2 M_{\rm N}}{27\pi F_{\pi}^2} \left\{ \left(1 - \frac{m_{\rm PS}^2}{\Delta^2}\right)^{3/2} \log R(m_{\rm PS}) + \left(1 - \frac{3m_{\rm PS}^2}{2\Delta^2}\right) \log \left[\frac{m_{\rm PS}}{2\Delta}\right] \right\}$$
where $R(m) = \frac{\Delta}{m} + \sqrt{\frac{\Delta^2}{m^2} - 1}$

$[r_2^{(v)}]^2$: comparison ChEFT vs. lattice

• Joined fit to $[r_2^{(v)}]^2$ and $\kappa^{(v)}$:

$\kappa^{(v)}$: comparison ChEFT vs. lattice

ChEFT result for $\kappa^{(s)}$

$$\kappa^{(s)}(m_{\rm PS}) = \kappa^{(s)0} - 8E_2m_{\rm N}m_{\rm PS}^2$$

Content

Introduction

Parametrisation and q^2 Scaling

Chiral Extrapolation

Comparison with Experiment/Phenomenology

D. Pleiter (DESY) (QCDSF Collaboration)

 $F_2^{(p)}$ vs. $F_1^{(p)}$

Perturbative QCD [Belitsky et al., 2003]:

 $\left(\,Q^2/\log(Q^2/\Lambda)^2\right)F_2(Q^2)/F_1(Q^2)\propto {\rm const}$

Comparison with Experiment/Phenomenology

$F_1^{(p)}$: Lattice vs. Experiment

▶ Lattice results at $m_{\rm PS} \gtrsim$ 300 MeV → too small Dirac radius

Comparison with Experiment/Phenomenology

$F_2^{(p)}$: Lattice vs. Experiment

• Better agreement for $m_{\rm PS} \simeq 300 \ {\rm MeV}?$

Quantitative Comparison

	Experiment	"Naive"	ChEFT
$(r_1^{(v)})^2$ [fm ²]	0.585	0.31(3)	0.71
$(r_2^{(v)})^2$ [fm ²]	0.797	0.34(3)	0.60
$\kappa^{(u)}$	1.67	1.4(1)	
$\kappa^{(d)}$	-2.03	-1.6(1)	
$\kappa^{(v)}$	3.70	2.9(1)	3.95
$\kappa^{(s)}$	-0.12	-0.03(1)	-0.03

イロト イヨト イヨト イヨト

Comparison with Experiment/Phenomenology

Calculation of $\mu^{(p)}G_e^{(p)}(q^2)/G_m^{(p)}(q^2)$ in chiral limit

$$\begin{array}{lll} G_{e}(q^{2}) & = & F_{1}(q^{2}) + \frac{q^{2}}{(2M_{N})^{2}}F_{2}(q^{2}) \\ G_{m}(q^{2}) & = & F_{1}(q^{2}) + F_{2}(q^{2}) \end{array}$$

LHP 2006 34 / 35

Summary and Conclusions

Summary and Conclusions

- Parametrisation of the form factors:
 - Large uncertainties remain, as lattice data is not precise enough to fix q² dependence
 - Qualitative agreement with experimental data found,
 e.g. flavour dependence of *F*₁
- Chiral extrapolations:
 - First indications for strong effects at light quark masses
 - Lattice data much closer to the chiral limit is crucial (and starting to become available)
- Other systematic errors:
 - Within the statistical errors and above systematic errors, discretisation effects seem negligible.
 - Contributions from disconnected terms have not been taken into account

通 ト イ ヨ ト イ ヨ ト