Flavor Twisting for Isovector Form Factors

Brian C. Tiburzi

Duke University

LHP2006, August 1st
Flavor Twisted Boundary Conditions
and
Isovector Form Factors

- Quantized momentum and form factors
Flavor Twisted Boundary Conditions
and
Isovector Form Factors

- Quantized momentum and form factors
- Twisted boundary conditions
Outline

Flavor Twisted Boundary Conditions and Isovector Form Factors

- Quantized momentum and form factors
- Twisted boundary conditions
- Kinematical effects
Outline

Flavor Twisted Boundary Conditions and Isovector Form Factors

- Quantized momentum and form factors
- Twisted boundary conditions
- Kinematical effects
- Dynamical effects
Limitations near $q = 0$

- Operator insertion method

$$\langle H'(p')|O|H(p)\rangle = \sum_j O_j f_j(q^2)$$
Limitations near $q = 0$

Operator insertion method

$$\langle H'(p')|\mathcal{O}|H(p)\rangle = \sum_j O_j f_j(q^2)$$

![Graph showing $f_j(q^2)$ vs q^2]
Limitations near $q = 0$

- Operator insertion method:
 \[\langle H'(p')|\mathcal{O}|H(p)\rangle = \sum_j O_j f_j(q^2) \]

![Graph showing $f_j(q^2)$ vs. q^2](image)

- $O_j \propto q$

- $L = 24a, a = 2\text{ GeV}^{-1}$: $q_{\text{min}} = 2\pi/L \sim 500\text{ MeV}$
Nucleon isovector form factor

\begin{itemize}
 \item Definition & Chiral expansion
 \[F_2(q^2) = G_M^p(q^2) - G_M^n(q^2) = \mu^{\text{iso}} + f(q^2/4m_\pi^2) \]
\end{itemize}
Nucleon isovector form factor

- Definition & Chiral expansion
 \[F_2(q^2) = G^p_M(q^2) - G^n_M(q^2) = \mu^{\text{iso}} + f(q^2/4m^2_\pi) \]

- Deviation
 \[\Delta F_2(q^2) = \frac{F_2(q^2) - F_2(0)}{q^2 F'_2(0)} \]
Nucleon isovector form factor

- **Definition & Chiral expansion**
 \[F_2(q^2) = G_M^p(q^2) - G_M^n(q^2) = \mu^{\text{iso}} + f(q^2/4m_{\pi}^2) \]

- **Deviation**
 \[\Delta F_2(q^2) = \frac{F_2(q^2) - F_2(0)}{q^2 F_2'(0)} \]

- **Chiral corrections, recoil corrections, lattice point**
Twisted boundary conditions

\[U^\dagger U = 1 \]

global symmetry of action, e.g.

\[U = \exp i \theta^a T^a \]

TwBCs

\[\psi(x_i + L) = U\psi(x_i) \]
Twisted boundary conditions

\[U^\dagger U = 1 \]
\text{global symmetry of action, e.g.} \quad U = \exp i \theta_i^a T_C^a

- TwBCs \quad \psi(x_i + L) = U \psi(x_i)
- \sum_x \overline{\psi}(\not{D} + m_Q)\psi \quad \text{single valued}
Twisted boundary conditions

\[U^\dagger U = 1 \] global symmetry of action, e.g. \(U = \exp i \theta_i^a T^a_C \)

- TwBCs \(\psi(x_i + L) = U \psi(x_i) \)
- \(\sum_x \bar{\psi}(\partial + m_Q) \psi \) single valued
- Momentum modes \(p_i = 2\pi n_i/L + \theta_i/L \)
Twisted boundary conditions

\[U^\dagger U = 1 \] global symmetry of action, e.g. \(U = \exp i \theta^a_i T^a_C \)

- **TwBCs** \(\psi(x_i + L) = U \psi(x_i) \)
- \(\sum_x \overline{\psi}(D + m_Q)\psi \) single valued
- **Momentum modes** \(p_i = 2\pi n_i / L + \theta_i / L \)

\[\tilde{\psi}(x) = \exp(-i \theta^a \cdot x T^a_C / L) \psi(x) \] periodic
Twisted boundary conditions

\[U^\dagger U = 1 \] global symmetry of action, e.g. \(U = \exp i \theta^a_i T^a_c \)

- **TwBCs** \(\psi(x_i + L) = U \psi(x_i) \)
- \(\sum_x \overline{\psi}(D + m_Q)\psi \) single valued
- **Momentum modes** \(p_i = 2\pi n_i / L + \theta_i / L \)

- **Rewrite** \(\tilde{\psi}(x) = \exp(-i \theta^a \cdot x T^a_c / L)\psi(x) \) periodic
- \(\sum_x \overline{\tilde{\psi}}(\tilde{D} + m_Q)\tilde{\psi} \)
Twisted boundary conditions

\(U^\dagger U = 1 \) global symmetry of action, e.g. \(U = \exp i \theta_i^a T_C^a \)

- TwBCs \(\psi(x_i + L) = U \psi(x_i) \)
- \(\sum_x \overline{\psi}(\slashed{D} + m_Q)\psi \) single valued
- Momentum modes \(p_i = 2\pi n_i/L + \theta_i/L \)

\[\begin{align*}
\text{Rewrite} & \quad \tilde{\psi}(x) = \exp(-i \theta^a \cdot x T_C^a / L) \psi(x) \quad \text{periodic} \\
\sum_x \overline{\tilde{\psi}}(\tilde{\slashed{D}} + m_Q)\tilde{\psi} \\
\tilde{D}_\mu &= D_\mu + i B_\mu \quad \text{uniform gauge field}
\end{align*} \]
Twisted boundary conditions

\[U^\dagger U = 1 \]

Global symmetry of action, e.g.

\[U = \exp i \theta^a_i T^a_C \]

- **TwBCs**
 \[\psi(x_i + L) = U \psi(x_i) \]

- Sum of \[\sum_x \bar{\psi}(\not{D} + m_Q)\psi \] single valued

- **Momentum modes**
 \[p_i = 2\pi n_i/L + \theta_i/L \]

- **Rewrite**
 \[\tilde{\psi}(x) = \exp(-i \theta^a \cdot x T^a_C / L)\psi(x) \] periodic

- Sum of \[\sum_x \bar{\psi}(\tilde{\not{D}} + m_Q)\tilde{\psi} \]

- \[\tilde{D}_\mu = D_\mu + i B_\mu \] uniform gauge field

- \[B_\mu = (\theta^a_i T^a / L, 0) \] flavor charges
Twisted boundary conditions

\[U^\dagger U = 1 \] global symmetry of action, e.g. \[U = \exp i \theta_i^a T_C^a \]

- TwBCs \[\psi(x_i + L) = U\psi(x_i) \]
- \[\sum_x \bar{\psi}(\tilde{D} + m_Q)\psi \] single valued
- Momentum modes \[p_i = 2\pi n_i/L + \theta_i/L \]

Rewrite \[\tilde{\psi}(x) = \exp(-i \theta^a \cdot x T_C^a / L)\psi(x) \] periodic

\[\sum_x \bar{\psi}(\tilde{D} + m_Q)\tilde{\psi} \]

\[\tilde{D}_\mu = D_\mu + iB_\mu \] uniform gauge field

\[B_\mu = (\theta_i^a T^a / L, 0) \] flavor charges

Partial twisting \[T_C^a \in SU(N|N)_{val} \in SU(N + M|N) \]
Hadrons pointlike in chiral EFTs
Field momenta of hadrons

- Hadrons pointlike in chiral EFTs
- Gauge B_μ field for partial twisting
Field momenta of hadrons

- Hadrons pointlike in chiral EFTs
- Gauge B_μ field for partial twisting
- Mesons $\tilde{D}_\mu \phi = D_\mu \phi + i [B_\mu, \phi]$

\[E_{\pi^+} = \sqrt{m_\pi^2 + B_{\pi^+}^2}, \quad B_{\pi^+} = B_u - B_d \]

Sachrajda & Villadoro PLB 609
Field momenta of hadrons

- Hadrons pointlike in chiral EFTs
- Gauge B_μ field for partial twisting
- Mesons $\tilde{D}_\mu \phi = D_\mu \phi + i [B_\mu, \phi]$

$$E_{\pi^+} = \sqrt{m_\pi^2 + B_{\pi^+}^2}, \quad B_{\pi^+} = B_u - B_d$$

Sachrajda & Villadoro PLB 609

- Baryons $\tilde{D}_\mu B^{ijk} = D_\mu B^{ijk} + i (B^i_\mu + B^j_\mu + B^k_\mu) B^{ijk}$

$$E_p = M_p + \frac{B^2_p}{2M_p}, \quad B_p = 2B_u + B_d$$

Tiburzi PLB 617
Numerical investigations

Meson dispersion relations
Quenched de Divitiis, Petronzio & Tantalo PLB595

Dynamical partially twisted Flynn, Jüttner & Sachrajda PLB632
Flavor changing operators

- Twist flavors differently get momentum transfer!
Flavor changing operators

- Twist flavors differently get momentum transfer!
- Nucleon axial current $J_{5\mu}^+ = \bar{u}\gamma_\mu\gamma_5 d$
 Flavor changing operators

- Twist flavors differently get momentum transfer!
- Nucleon axial current $J_{5\mu}^+ = \bar{u}\gamma_\mu\gamma_5 d$

Lattice correlator

$$C(t, t') = \sum_{x, x'} \langle 0 | \hat{P}(x, t) \tilde{J}_5^+ (x', t') \tilde{N}(0, 0) | 0 \rangle$$
- Twist flavors differently get momentum transfer!
- Nucleon axial current $J_{5\mu}^+ = \bar{u}\gamma_\mu\gamma_5 d$

Lattice correlator

$$C(t, t') = \sum_{x, x'} \langle 0 | \tilde{\mathcal{P}}(x, t) \tilde{J}_{5\mu}^+(x', t') \tilde{\mathcal{N}}(0, 0) | 0 \rangle$$

$$C(t, t') = \langle \mathcal{P}_{B_p}(t) J_{5\mu}^+(t') \mathcal{N}_{B_n}(0) \rangle$$
Flavor changing operators

- Twist flavors differently get momentum transfer!
- Nucleon axial current \(J_{5\mu}^+ = \bar{u} \gamma_\mu \gamma_5 d \)

Lattice correlator

\[
C(t, t') = \sum_{x, x'} \langle 0 | \tilde{P}(x, t) \tilde{J}_{5\mu}^+ (x', t') \tilde{N}(0, 0) | 0 \rangle
\]

\[
C(t, t') = \langle P_{Bp}(t) J_{5\mu}^+ (t') N_{Bn}(0) \rangle
\]

- Momentum transfer \(q = B_p - B_n = B_{\pi^+} \)

Tiburzi PLB 617
Further numerical investigations

Meson decay constants Flynn, Jüttner & Sachrajda PLB632

\[\langle \tilde{\pi}^+(0) | \tilde{J}_5^+ | 0 \rangle = i f_\pi B_{\pi^+} \]

\(f_\pi \) reliably extracted

\(|\Delta S| = 1 \) currents Guadagnoli, Mescia and Simula PRD73

\[\langle \pi^-(p') | \bar{s}_\gamma_\mu u | K^0(p) \rangle \]

\(K \to \pi \) form factors

Systematics?
Flavor non-changing currents?
Isospin relations

- Flavor non-changing currents?
- Isospin rotation \rightarrow isovector currents

\[
\langle p | \bar{u} \Gamma d | n \rangle = \langle p | \bar{u} \Gamma u | p \rangle - \langle n | \bar{u} \Gamma u | n \rangle
\]
Isospin relations

- Flavor non-changing currents?
- Isospin rotation → isovector currents

\[\langle p | \bar{u} \Gamma d | n \rangle = \langle p | \bar{u} \Gamma u | p \rangle - \langle n | \bar{u} \Gamma u | n \rangle \]

- Calculate isospin change with TwBCs relate to isovector observables
Isospin relations

- Flavor non-changing currents?
- Isospin rotation \rightarrow isovector currents

\[
\langle p \mid \bar{u} \Gamma d \mid n \rangle = \langle p \mid \bar{u} \Gamma u \mid p \rangle - \langle n \mid \bar{u} \Gamma u \mid n \rangle
\]

- Calculate isospin change with TwBCs relate to isovector observables
- Arbitrary bilinears, e.g. $\Gamma = \gamma_5\gamma_\mu D_{\mu_1} \ldots D_{\mu_n}$
Isospin relations

- Flavor non-changing currents?
- Isospin rotation \rightarrow isovector currents

$$\langle p \mid \bar{u} \Gamma d \mid n \rangle = \langle p \mid \bar{u} \Gamma u \mid p \rangle - \langle n \mid \bar{u} \Gamma u \mid n \rangle$$

- Calculate isospin change with TwBCs relate to isovector observables
- Arbitrary bilinears, e.g. $\Gamma = \gamma_5 \gamma \{ \mu D_{\mu_1} \ldots D_{\mu_n} \}$
- Vector current \rightarrow electromagnetic current

$$\langle p \mid \bar{u} \gamma_{\mu} d \mid n \rangle = \langle p \mid J_{\mu}^{em} \mid p \rangle - \langle n \mid J_{\mu}^{em} \mid n \rangle$$
Dynamical effects due to twisting

- Exploited isospin breaking $B^u \neq B^d$ for kinematical gain
Dynamical effects due to twisting

- Exploited isospin breaking $B^u \neq B^d$ for kinematical gain
- Boundary conditions affect long-distance physics: VOLUME EFFECTS
Dynamical effects due to twisting

- Exploited isospin breaking $B^u \neq B^d$ for kinematical gain
- Boundary conditions affect long-distance physics: VOLUME EFFECTS
- Exactly what EFTs address: long-range dynamical effects, model independent
Dynamical effects due to twisting

- Exploited isospin breaking $B^u \neq B^d$ for kinematical gain
- Boundary conditions affect long-distance physics: VOLUME EFFECTS
- Exactly what EFTs address: long-range dynamical effects, model independent
- Isospin splittings with $m_u = m_d$

$$m_{\pi \pm}^2 - m_{\pi 0}^2 = \frac{m_\pi^2}{f^2_{\pi}} \left[\mathcal{I}(0, m_{\pi}^2) - \mathcal{I}(B_{\pi^+}, m_{\pi}^2) \right]$$
Dynamical effects due to twisting

- Exploited isospin breaking $B^u \neq B^d$ for kinematical gain
- Boundary conditions affect long-distance physics: VOLUME EFFECTS
- Exactly what EFTs address: long-range dynamical effects, model independent
- Isospin splittings with $m_u = m_d$

$$m_{\pi^\pm}^2 - m_{\pi^0}^2 = \frac{m_{\pi}^2}{f_{\pi}^2} \left[\mathcal{I}(0, m_{\pi}^2) - \mathcal{I}(B_{\pi^+}, m_{\pi}^2) \right]$$

- Similar for nucleon $M_p - M_n \neq 0$
Dynamical effects due to twisting

- Exploited isospin breaking $B^u \neq B^d$ for kinematical gain
- Boundary conditions affect long-distance physics: VOLUME EFFECTS
- Exactly what EFTs address: long-range dynamical effects, model independent
- Isospin splittings with $m_u = m_d$

$$m_{\pi^\pm}^2 - m_{\pi^0}^2 = \frac{m_{\pi^0}^2}{f_{\pi}^2} \left[\mathcal{I}(0, m_{\pi}^2) - \mathcal{I}(B_{\pi^+, m_{\pi}^2}) \right]$$

- Similar for nucleon $M_p - M_n \neq 0$
- Shifts $\sim 1\%$ for $m_{\pi} \sim 300$ MeV, 2.5 fm
Axial form factors in finite volume

• Special: besides tree-level, q^2 dependence arises from recoil terms that are competitive with two-loops
Axial form factors in finite volume

- Special: besides tree-level, q^2 dependence arises from recoil terms that are competitive with two-loops.
- Axial radius and pseudoscalar form factor have negligible volume dependence.

\[
\langle \tilde{p}(0)|\tilde{J}_5^+|\tilde{n}(0)\rangle = \sigma \left[G_A(0) - \frac{<r_A^2>}{6} B_{\pi^+}^2 \right] + B_{\pi^+} (B_{\pi^+} \cdot \sigma) \left[\frac{g_A}{B_{\pi^+}^2 + m_\pi^2} + \frac{<r_A^2>}{3} \right]
\]
Axial form factors in finite volume

- Special: besides tree-level, q^2 dependence arises from recoil terms that are competitive with two-loops
- Axial radius and pseudoscalar form factor have negligible volume dependence

$$\langle \tilde{p}(0) | \tilde{J}_5^+ | \tilde{n}(0) \rangle = \sigma \left[G_A(0) - \frac{<r_A^2>}{6} B_{\pi^+}^2 \right]$$

$$+ B_{\pi^+} (B_{\pi^+} \cdot \sigma) \left[\frac{g_A}{B_{\pi^+}^2 + m_{\pi}^2} + \frac{<r_A^2>}{3} \right]$$

- Ideal testing ground • TwBCs • Chiral physics
Take $B_2^u = B \neq 0$ and $J_{\mu=3}^+$

$$\langle \tilde{p}(0) | \tilde{J}_3^+ | \tilde{n}(0) \rangle = -\frac{iB}{2M} F_2(B^2) + L_{FV} + K_{FV}$$
Isovector magnetic moment

- Take $B_2^u = B \neq 0$ and $J^+_{\mu=3}$

$$\langle \tilde{p}(0) | \tilde{J}_3^+ | \tilde{n}(0) \rangle = -\frac{IB}{2M} F_2(B^2) + L_{FV} + K_{FV}$$

- L_{FV} ordinary FV modified with TwBCs Beane PRD70
Take $B_2^u = B \neq 0$ and $J_{\mu=3}^+$

$$\langle \tilde{p}(0) | \tilde{J}_3^+ | \tilde{n}(0) \rangle = -\frac{iB}{2M} F_2(B^2) + L_{FV} + K_{FV}$$

- L_{FV} ordinary FV modified with TwBCs Beane PRD70
- K_{FV} new effect due to TwBCs
Isovector magnetic moment

- **Take** $B^u_2 = B \neq 0$ and $J_{\mu=3}^+ $

\[
\langle \tilde{p}(0) | \tilde{J}_3^+ | \tilde{n}(0) \rangle = -\frac{iB}{2M}F_2(B^2) + L_{\text{FV}} + K_{\text{FV}}
\]

- L_{FV} ordinary FV modified with TwBCs Beane PRD70
- K_{FV} new effect due to TwBCs

![Diagram with graphs and equations]
Isovector magnetic moment

Extracting $F_2(B^2)$: Volume Effects, B^2 resolving power

$q \sim 500\,\text{MeV} \rightarrow 25\,\text{MeV}$ in fixed volume
Comparison with background fields

- Study dependence of observables with continuous parameter: TwBCs θ, BFs A_μ
Comparison with background fields

- Study dependence of observables with continuous parameter: TwBCs θ, BFs A_μ

- BFs multivalued action, FV? or Dirichlet BCs, FV? TwBCs single valued, FV effects calculable
Comparison with background fields

- Study dependence of observables with continuous parameter: TwBCs θ, BFs A_μ
- BFs multivalued action, FV? or Dirichlet BCs, FV?
 TwBCs single valued, FV effects calculable
- BFs Each observable, vector, axial, twist-two new fields
 TwBCs different operator insertion, some propagators can be recycled
Comparison with background fields

- Study dependence of observables with continuous parameter: TwBCs θ, BFs A_μ
- BFs multivalued action, FV? or Dirichlet BCs, FV? TwBCs single valued, FV effects calculable
- BFs Each observable, vector, axial, twist-two new fields TwBCs different operator insertion, some propagators can be recycled
- BFs radii, curvature calculable with increasingly complicated fields TwBCs access form factors directly
Comparison with background fields

- Study dependence of observables with continuous parameter: TwBCs θ, BFs A_μ
- BFs multivalued action, FV? or Dirichlet BCs, FV? TwBCs single valued, FV effects calculable
- BFs Each observable, vector, axial, twist-two new fields TwBCs different operator insertion, some propagators can be recycled
- BFs radii, curvature calculable with increasingly complicated fields TwBCs access form factors directly
- BFs isoscalar can be done time consumingly TwBCs ???
TwBCs produce continuous hadron momentum
TwBCs produce continuous hadron momentum

Flavor changing currents
Summary

- TwBCs produce continuous hadron momentum
- Flavor changing currents
- Isospin symmetry & isovector currents
Summary

- TwBCs produce continuous hadron momentum
- Flavor changing currents
- Isospin symmetry & isovector currents
- VOLUME EFFECTS
TwBCs produce continuous hadron momentum
Flavor changing currents
Isospin symmetry & isovector currents
VOLUME EFFECTS
Nucleon axial current
TwBCs produce continuous hadron momentum
Flavor changing currents
Isospin symmetry & isovector currents
VOLUME EFFECTS
Nucleon axial current
Nucleon isovector magnetic moment
TwBCs produce continuous hadron momentum
- Flavor changing currents
- Isospin symmetry & isovector currents

VOLUME EFFECTS
- Nucleon axial current
- Nucleon isovector magnetic moment

Further studies needed: EFT & Lattice
TwBCs produce continuous hadron momentum
Flavor changing currents
Isospin symmetry & isovector currents
VOLUME EFFECTS
Nucleon axial current
Nucleon isovector magnetic moment
Further studies needed: EFT & Lattice
Isoscalar ????