First results with two light flavours of maximally twisted mass quarks

C. Urbach ETM and UKQCD Collaborations

The University of Liverpool Institute for Theoretical Physics Dept. of Mathematical Sciences

LHP 2006, JLAB

European Twisted Mass Collaboration

Members from all over Europe:

B. Blossier, Ph. Boucaud, P. Dimopoulos,
F. Farchioni, R. Frezzotti, V. Gimenez,
G. Herdoiza, K. Jansen, V. Lubicz,
G. Martinelli, C. McNeile, C. Michael,
I. Montvay, M. Papinutto, O. Pène,
J. Pickavance, G.C. Rossi, L. Scorzato,
A. Shindler, S. Simula, C. Urbach,
U. Wenger

Outline

Introduction Twisted Mass Fermions Preparing the Ground Quenched Experiments Understanding the Phasestructur Algorithmic Improvements

Results Setup First Results Scaling

Conclusion

Twisted Mass fermions

the twisted mass Dirac operator:

$$D_{\mathrm{tm}} = D_{\mathrm{W}} + m_0 + i\mu\gamma_5\tau_3$$
 .

[Frezzotti, Grassi, Sint, Weisz, 1999]

- Wilson Dirac operator D_W with bare mass m_0 .
- twisted mass parameter μ .
- τ_3 third Pauli matrix acting in flavour space
- D_{tm} is protected against unphysically small eigenvalues

Automatic $\mathcal{O}(a)$ improvement

If m_0 is tuned to its critical value $m_{\rm crit}$ (maximal twist) then ...

• observables are automatically $\mathcal{O}(a)$ improved.

[Frezzotti, Rossi, 2003]

Shown to work in practice for various observables in the quenched approximation [Jansen et al., 2004, 2005; Abdel-Rehim et al., 2004, 2005]

- Simplifies mixing during renormalisation
- Only one parameter (m_0) must be tuned

but...

parity and flavour symmetry explicitly broken

6

Twisted Mass Fermions

Idea of the Proof

$$\langle O(x) \rangle^{\text{lat}} = \langle O(x) \rangle^{\text{c}} - a \int dy \langle O(x) \mathcal{L}_1(y) \rangle^{\text{c}} + a \sum_k \langle O_k(x) \rangle^{\text{c}} + \mathcal{O}(a^2)$$

- r.h.s.: all expt. values with cont. action: must obey symmetries of cont. action
- all operators in expansion must share lattice symmetries of O
- example: cont. symmetry modified Parity

$$ilde{\mathcal{P}}: \qquad egin{cases} \psi(ec{x},t) & o \ \gamma_0 \exp(i\omega\gamma_5 au_3)\psi(-ec{x},t) \ ar{\psi}(ec{x},t) & o \ ar{\psi}(-ec{x},t)\exp(i\omega\gamma_5 au_3)\gamma_0 \ eta \end{cases}$$

 O must be even under *P*, clover term is odd: term cancels in the expansion

Quenched Experiments Understanding the Phasestructur Algorithmic Improvements

A choice? Tuning to full twist

▷ O(a) ambiguity in m_{crit} does not harm automatic O(a) improvement

Several definitions available:

- 1. $m_{\rm crit}$ where $m_{\rm PS} = 0$ at $\mu = 0$ (Pion def.)
- 2. m_{crit} where $m_{\text{PCAC}} = 0$ at $\mu = 0$ (PCAC def.)
- 3. m_{crit} where $m_{\text{PCAC}} = 0$ for each value of $a\mu$ seperatly 4. ...
- Theoretical discussion in [Frezzotti, Martinelli, Papinutto, Rossi; Sharpe; Aoki, Bär]: do not use 1.

8

Quenched Experiments Understanding the Phasestructur Algorithmic Improvements

Quenched Continuum Scaling of f_{PS}

Quenched Experiments Understanding the Phasestructur Algorithmic Improvements

Generic Phasestructur of Wilson Fermions

This is generic for Wilson type fermions!

Quenched Experiments Understanding the Phasestructur Algorithmic Improvements

Chosing the Gauge Action

tlSym is a theoretically sound compromise

Quenched Experiments Understanding the Phasestructur Algorithmic Improvements

Speeding up the HMC

Resurrection of Wilson fermions due to algorithmic improvements

Setup First Results Scaling

Setup

- We are using the tree-level Symanzik improved gauge action [Weisz, 1983]
- N_f = 2 mass-degenrate flavours of maximally twisted mass quarks
- Algorithm: HMC with multiple time scales and mass preconditioning [Urbach et al., 2005]
- Plan:
 - ► 3 lattice spacings: 0.075 0.125 fm
 - pseudo scalar masses in the range 250 550 MeV
 - volumes \geq 2 fm
- m_0 tuned to m_{crit} at the lowest mass at each lattice spacing

Introduction Setup Preparing the Ground First Results Results Scaling

Setup

eta	$L^3 imes T$	a [fm]	<i>m</i> _{PS} [MeV]	<i>N</i> _{therm}	N _{traj}
3.9	$24^3 imes 24$	pprox 0.095	pprox 280	1500	5000
			pprox 350	1500	5000
			pprox 430	1500	5000
			pprox 510	1500	5000
4.05	$32^3 imes 64$	pprox 0.075	pprox 280	1500	1200
			pprox 350	1500	500

$\beta = 4.05$ very preliminary!

Introduction reparing the Ground Results Setup First Results Scaling

Tuning to full twist

- ► m_{PCAC} = 0 at lowest aµ
- *m*_{PCAC} = 0 dependence visible
- no news: known from quenched

Setup First Results Scaling

Some simple observables

- First observables to look at: m_{PS} and f_{PS}
- f_{PS} at maximal twist can be obtained from

$$f_{
m PS}=rac{2\mu}{m_{
m PS}^2}|\langle 0|m{P}^1(0)|\pi
angle|$$

- Note that at maximal twist f_{PS} does not need to be renormalised
- We estimate finite size (FS) effects with NLO ChPT formula from Gasser and Leutwyler [Gasser, Leutwyler, 1987]
- Checked against resummed Lüscher formula

[Lüscher, 1986; Colangelo, Dürr, Haefeli, 2005]

► We use spin diluted random time slice sources, fuzzing [Michael] and variational methods [Michael, 1985 ;Lüscher, Wolff, 1990] Introduction Preparing the Ground Results Setup First Results Scaling

am_{PS} versus $a\mu$ at $\beta = 3.9$

$f_{\rm PS}$ at $\beta = 3.9$

$f_{\rm PS}$ at $\beta = 3.9$

 $f_{\rm PS}$ at $\beta = 3.9$

- Fits to the data with ChPT formulae in progress
- when the data is extrapolated linearly to the physical point we obtain:

 $f_{\pi} = 126.3 \pm 0.8 \pm 0.7 \text{ MeV}$

- ► First error comes from m_{PS}, f_{PS} and extrapolation, the second from r₀/a
- $r_0 = 0.5 \text{ fm}$ was used
- In our normalisation $f_{\rm PS} = 131 \, {\rm MeV}$

Setup First Results Scaling

Effects of Isospin breaking

Flavour symmetry explicitly broken by twisted mass term at finite *a*

- ► Expected to be largest in m[±]_{PS} - m⁰_{PS}
- ► $\beta = 3.9, a\mu = 0.004, am_{PS} = 0.1358(5):$ $m_{PS}^{\pm} - m_{PS}^{0} = 0.03(1)$
- A factor of 2 smaller than quenched
- Splitting in the vector mass compatible with 0

Introduction paring the Ground Results Setup First Results Scaling

Setting the scale

- ► Using the Sommer scale *r*₀
- ▶ Value of *r*⁰ not very well known
- ► Scale setting with f.i. f_K, m_{K*} etc. in progress
- Here I use $r_0 = 0.5$ fm
- μ dependence seems to be weak

$\beta = 3.9$

22

Introduction eparing the Ground Results

Setup First Results Scaling

$\langle x \rangle$ for the Pion

Lowest moment of Non-Singlet Pion Parton Distribution Function $\langle x \rangle$

Results

First Results

Exploring p-decay [McNeile, Michael, 2003]

• ρ does not (yet) decay at $\beta = 3.9$: $a\Delta m \approx 0.15$ at $a\mu = 0.004$

uncharged vector meson at rest:

$$R(t) = \frac{\rho_0(0) \to \pi_+\pi_-(t)}{\sqrt{(\rho_0(0) \to \rho_0(0))(\pi_+\pi_-(0) \to \pi_+\pi_-(t))}}$$

• Assuming $m_{\rho} \approx m_{\pi\pi}$, $\mathbf{x} = \langle \rho | \pi \pi \rangle$:

$$R \propto \sum_{t=0}^{T} \mathbf{x} \mathbf{e}^{-m_{
ho}t} \mathbf{e}^{-m_{\pi\pi}(T-t)} = \mathbf{e}^{-mT} \cdot \mathbf{x} \cdot t$$

for $xt \ll 1$

Setup First Results Scaling

Exploring ρ -decay

• We extract $\bar{g} = 1.2(2)$, with

 $ar{g}=\Gamma m_
ho E_{\pi\pi}/k^3$

- experimental number: $\bar{g} = 1.39$
- Already well compatible
- Larger lattices needed for a decaying ρ.

Introduction eparing the Ground Results

Setup First Results Scaling

Preliminary continuum scaling

► r₀/a value at the lowest µ value

 masses not yet exactly matched

Conclusion

- mtmQCD stands on a sound basis
- First encouraging results with N_f = 2 flavours of maximally twisted mass quarks
- ▶ We can reach values for *m*_{PS} as low as 280 MeV
- Flavour symmetry breaking effects are visible, but significantly smaller than quenched
- Lattice artifacts in f_{PS} seem to be small
- First physics applications in progress
- $N_f = 2 + 1 + 1$ in progress: talk of Enno