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Twisted Mass Fermions

Twisted Mass fermions

◮ the twisted mass Dirac operator:

Dtm = DW + m0 + iµγ5τ3 .

[Frezzotti, Grassi, Sint, Weisz, 1999]

◮ Wilson Dirac operator DW with bare mass m0.

◮ twisted mass parameter µ.

◮ τ3 third Pauli matrix acting in flavour space

◮ Dtm is protected against unphysically small eigenvalues
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Twisted Mass Fermions

Automatic O(a) improvement

If m0 is tuned to its critical value mcrit (maximal twist) then ...

◮ observables are automatically O(a) improved.
[Frezzotti, Rossi, 2003]

Shown to work in practice for various observables in the
quenched approximation [Jansen et al., 2004, 2005; Abdel-Rehim et al., 2004, 2005]

◮ Simplifies mixing during renormalisation

◮ Only one parameter (m0) must be tuned

but...
◮ parity and flavour symmetry explicitly broken
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Twisted Mass Fermions

Idea of the Proof

〈O(x)〉lat = 〈O(x)〉c−a
∫

dy〈O(x)L1(y)〉c+a
∑

k

〈Ok (x)〉c+O(a2)

◮ r.h.s.: all expt. values with cont. action:
must obey symmetries of cont. action

◮ all operators in expansion must share
lattice symmetries of O

◮ example: cont. symmetry modified Parity

P̃ :

{

ψ(~x , t) → γ0 exp(iωγ5τ3)ψ(−~x , t)

ψ̄(~x , t) → ψ̄(−~x , t) exp(iωγ5τ3)γ0 ,

◮ O must be even under P̃ , clover term is odd:
term cancels in the expansion
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A choice? Tuning to full twist

◮ O(a) ambiguity in mcrit does not harm automatic O(a)
improvement

Several definitions available:
1. mcrit where mPS = 0 at µ = 0 (Pion def.)
2. mcrit where mPCAC = 0 at µ = 0 (PCAC def.)
3. mcrit where mPCAC = 0 for each value of aµ seperatly
4. ...

◮ Theoretical discussion in [Frezzotti, Martinelli, Papinutto, Rossi; Sharpe; Aoki, Bär]:
do not use 1.
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Quenched Continuum Scaling of fPS

PCAC def.: 515 MeV

PCAC def.: 298 MeV

pion def.: 515 MeV

pion def.: 298 MeV

r0fPS

(a/r0)
2

0.050

0.4

0.3

0.2

C. Urbach 9



Introduction
Preparing the Ground

Results
Conclusion

Quenched Experiments
Understanding the Phasestructur
Algorithmic Improvements

Generic Phasestructur of Wilson Fermions

0

Β

0

Μ

0

Hm0+4L
-1

0

Β

0

This is generic for Wilson type fermions!
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Chosing the Gauge Action

Wilson
tlSym

DBW2

κ

〈P 〉

0.180.1750.170.165

0.60

0.58

0.56

0.54

0.52

0.50

0.48

◮ tlSym is a theoretically sound compromise
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Speeding up the HMC

Resurrection of
Wilson fermions due
to algorithmic
improvements
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Setup

◮ We are using the tree-level Symanzik improved
gauge action [Weisz, 1983]

◮ Nf = 2 mass-degenrate flavours of maximally twisted mass
quarks

◮ Algorithm: HMC with multiple time scales and mass
preconditioning [Urbach et al., 2005]

◮ Plan:
◮ 3 lattice spacings: 0.075 – 0.125 fm
◮ pseudo scalar masses in the range 250 – 550 MeV
◮ volumes ≥ 2 fm

◮ m0 tuned to mcrit at the lowest mass at each lattice spacing
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Setup

β L3 × T a [fm] mPS [MeV] Ntherm Ntraj

3.9 243 × 24 ≈ 0.095 ≈ 280 1500 5000

≈ 350 1500 5000

≈ 430 1500 5000

≈ 510 1500 5000

4.05 323 × 64 ≈ 0.075 ≈ 280 1500 1200

≈ 350 1500 500

β = 4.05 very preliminary!
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Tuning to full twist

◮ mPCAC = 0 at
lowest aµ

◮ mPCAC = 0
dependence
visible

◮ no news:
known from
quenched

β = 3.9amPCAC

aµ

0.0120.0080.0040

0.0002

0

-0.0002

-0.0004

-0.0006

-0.0008

-0.001

-0.0012
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Some simple observables

◮ First observables to look at: mPS and fPS

◮ fPS at maximal twist can be obtained from

fPS =
2µ
m2

PS

|〈0|P1(0)|π〉|

◮ Note that at maximal twist fPS does not need to be
renormalised

◮ We estimate finite size (FS) effects with NLO ChPT
formula from Gasser and Leutwyler [Gasser, Leutwyler, 1987]

◮ Checked against resummed Lüscher formula
[Lüscher, 1986; Colangelo, Dürr, Haefeli, 2005]

◮ We use spin diluted random time slice sources, fuzzing
[Michael] and variational methods [Michael, 1985 ;Lüscher, Wolff, 1990]
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amPS versus aµ at β = 3.9

β = 4.05

β = 3.9a2m2
PS

aµ

0.0160.0120.0080.0040

0.08

0.06

0.04

0.02

0
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fPS at β = 3.9

β = 3.9

afPS

a2m2
PS

0.080.060.040.020

0.085

0.075

0.065

0.055
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fPS at β = 3.9

β = 3.9, FS corrected

β = 3.9

afPS

a2m2
PS

0.080.060.040.020

0.085

0.075

0.065

0.055
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fPS at β = 3.9

◮ Fits to the data with ChPT formulae in progress

◮ when the data is extrapolated linearly to the physical point
we obtain:

fπ = 126.3 ± 0.8 ± 0.7 MeV

◮ First error comes from mPS, fPS and extrapolation, the
second from r0/a

◮ r0 = 0.5 fm was used

◮ In our normalisation fPS = 131 MeV
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Effects of Isospin breaking

Flavour symmetry explicitly broken by twisted mass term at
finite a

◮ Expected to be largest in
m±

PS − m0
PS

◮ β = 3.9,aµ = 0.004,amPS =
0.1358(5):
m±

PS − m0
PS = 0.03(1)

◮ A factor of 2 smaller than
quenched

◮ Splitting in the vector mass
compatible with 0
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Setting the scale

◮ Using the Sommer scale r0

◮ Value of r0 not very well known

◮ Scale setting with f.i. fK , mK∗ etc.
in progress

◮ Here I use r0 = 0.5 fm

◮ µ dependence seems to be weak

β = 3.9

aµ

(r0/a)

0.010.0050

5.5

5.3

5.1

4.9
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〈x〉 for the Pion

Lowest moment of Non-Singlet Pion Parton Distribution
Function 〈x〉
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Exploring ρ-decay[McNeile, Michael, 2003]

◮ ρ does not (yet) decay at β = 3.9:
a∆m ≈ 0.15 at aµ = 0.004

◮ uncharged vector meson at rest:

R(t) =
ρ0(0) → π+π−(t)

√

(ρ0(0) → ρ0(0))(π+π−(0) → π+π−(t))

ρ0

π+

π−

◮ Assuming mρ ≈ mππ, x = 〈ρ|ππ〉:

R ∝

T
∑

t=0

xe−mρte−mππ(T−t) = e−mT · x · t

for xt ≪ 1

C. Urbach 24



Introduction
Preparing the Ground

Results
Conclusion

Setup
First Results
Scaling

Exploring ρ-decay

◮ We extract ḡ = 1.2(2), with

ḡ = ΓmρEππ/k3

◮ experimental number: ḡ = 1.39
◮ Already well compatible
◮ Larger lattices needed for a

decaying ρ.
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Preliminary continuum scaling

◮ r0/a value at the
lowest µ value

◮ masses not yet
exactly matched

510MeV

430MeV

350MeV

280MeV

Preliminary

(a/r0)
2

r0fPS

0.040.030.020.010

0.45

0.41

0.37

0.33

0.29
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Conclusion

◮ mtmQCD stands on a sound basis
◮ First encouraging results with Nf = 2 flavours of maximally

twisted mass quarks

◮ We can reach values for mPS as low as 280 MeV

◮ Flavour symmetry breaking effects are visible, but
significantly smaller than quenched

◮ Lattice artifacts in fPS seem to be small
◮ First physics applications in progress
◮ Nf = 2 + 1 + 1 in progress: talk of Enno
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