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Status & Future of the CSSM
• The CSSM is the ARC Special Research Centre for the 

Subatomic Structure of Matter
• Funded as an SRC for 1997-2005 - the ARC explicitly 

provides for the use CSSM title in 2006 and beyond
• Founders: Tony Thomas (Director, now at JLab as 

Theory Head & Scientific Director) & Tony Williams 
(Deputy Director, now Director)

• Current key academic staff: Tony Williams (Dir);  Derek 
Leinweber (Dep Dir); Lorenz von Smekal.

• Other affiliate academic staff: Rod Crewther; Ray 
Protheroe; Max Lohe.

• Current postdoctoral fellows: Ayse Kizilersu, Alan 
O’Cais; Andre Sternbeck; Ben Lasscock (soon, for 1 
year).



Status & Future of the CSSM
• Current graduate students: Sharada Boinepalli 

(submitted); Jonathan Carroll; James Chappell; Ian 
Cloet; Ben Crouch; Marco Ghiotti; John Hedditch 
(submitted); Mariusz Hoppe; Dhagash Metha; Ben 
Lasscock (submit soon); Sarah Lawley; Selim Mahbub; 
Bao-Loc Nguyen; Maria Parappilly (submitted); Skye 
Platten. 

• From 2006 the CSSM will be funded by ARC Discovery 
Project, LIEF, Linkage grants etc.

• Current funding from ARC grants approx 60% of CSSM 
funding - core physics programs maintained

• Most but not all of the CSSM research program focuses 
on studies of QCD and the strong interactions

• In particular, the CSSM hosts a key lattice QCD group – 
the CSSM Lattice Collaboration

• Uses the computing resources of SAPAC and APAC 



Status & Future of the CSSM
• CSSM Lattice Collaboration has access to computing 

resources from SAPAC and APAC
• APAC (typically CSSM uses 10% of cycles): at ANU in 

Canberra, currently an SGI Altix, (1680 Itanium2 1.6GHz 
on NUMA), 10 Teraflops peak; next upgrade approx to 100 
Teraflops in 2 years. 

• SAPAC (typically CSSM uses 50% of total cycles): 
i. IBM1350 (129 dual Xeon nodes on Myrinet), 1.2 Teraflop 

peak;
ii.SGI Altix (160 Itanium2 1.3GHz on NUMA), 0.83 Teraflops 

peak;
iii.New cluster to be purchase Q4 2006, anticipate dual core 

on infiniband, approx 4 Teraflops peak.

Summary :  The CSSM alive and well post “block funding” and 
has a healthy long-term future ahead.



Brief summary of current 
CSSM research

• CSSM Lattice Collaboration work - described later ;
• Strongly interacting matter at high density - neutron stars, 

quark and strange stars;
• Odd-parity baryons;
• Dyson-Schwinger equations and infrared behavior of QCD 

Green’s functions - confinement, triviality of QED4, etc.;
• Fundamental formulation of gauge field theories - BRST, 

Gribov copies, Neuberger problem, gauge-fixing;
• Chiral extrapolations and effective field theory;

Plus some efforts not in the particle-nuclear field:
• Spin glasses, scale free networks, econophysics etc.;
• Protein folding - Nose-Hoover algorithm, multi-body problem 

in contact with heat bath;
• Quantum computing.



Lattice QCD:  CSSM Lattice 
Collaboration Studies



Lattice QCD:  CSSM Lattice 
Collaboration Studies

 Baryon spectrum: ground and excited states (Ben 
L)

 Search for spin 1/2 and 3/2 pentaquarks (Ben L)
 QCD vacuum structure and flux tubes (Derek L)
 Electromagnetic structure of octet baryons (here)
 Dynamical FLIC and other fermions (not covered)
 Form factors of mesons (Ben L at Lattice 06 in 

Tucson)
 Search for the 1-+ and other Exotic Meson (brief)
 Quark and gluon Green’s functions (brief)



Electromagnetic Structure of 
Octet Baryons

S. Boinepalli, D.B. Leinweber, A.G. Williams, J.M. Zanotti 
and J.B. Zhang

CSSM Lattice Collaboration has a primary goal to reveal the
electromagnetic structure of baryons near the chiral regime and
search for evidence of chiral nonanalytic curvature in accord with
quenched chiral effective field theory.  Here is some initial work in 
that direction.



Details of Lattice Simulations
The proton interpolating field is given by

and, e.g., for the Sigma hyperon one uses

 
The above transforms as an SU(2) isospin triplet .  

Replacing “+” with “-” gives an SU(2) isosinglet suitable 
for the Lambda.  An SU(3) octet interpolating field for 
the Lambda is given by
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The electromagnetic properties of the baryon octet are calculated in quenched QCD on a 203 ×
40 lattice with a lattice spacing of 0.128 fm using the fat-link irrelevant clover (FLIC) fermion
action. FLIC fermions enable simulations to be performed efficiently at pion masses as low as
300 MeV. By combining FLIC fermions with an improved-conserved vector current, we ensure
that discretisation errors occur only at O(a2) while maintaining current conservation. Magnetic
moments and electric and magnetic radii are extracted from the electric and magnetic form factors
for each individual quark sector. From these, the corresponding baryon properties are constructed.
Our results are compared with the predictions of quenched chiral perturbation theory. We detect
substantial curvature and environment sensitivity of the quark contributions to electric charge radii
and magnetic moments in the low quark mass region.

PACS numbers: 12.39.Fe, 12.38.Gc, 13.40.Em, 14.20.Dh, 14.20.Jn

I. INTRODUCTION

The study of the electromagnetic properties of baryons
provides valuable insight into the non-perturbative struc-
ture of QCD. Baryon charge radii and magnetic moments
provide an excellent opportunity to observe the chiral
non-analytic behaviour of QCD. Although the first calcu-
lations of hadronic electromagnetic form factors appeared
almost 20 years ago [1–3], until recently the state-of-the-
art calculations of the electromagnetic properties of octet
[4, 5] and decuplet [6] baryons and their electromagnetic
transitions [7] appeared almost 15 years ago.

However, over the last couple years there has been an
increase in activity in the area of octet baryon electro-
magnetic structure, mainly by the Adelaide group [8–11]
and the QCDSF [12] and LHPC collaborations [13]. The
background field method has also been used recently to
explore baryon magnetic moments [14].

In this paper we improve upon our preliminary results
reported in Ref. [8] and describe in detail the origin of
the lattice simulation results featured in Refs. [9, 10] and
[11] determining the strangeness magnetic moment and
charge radius of the nucleon respectively.

The extraction of baryon masses and electromagnetic
form factors proceeds through the calculation of Eu-
clidean two and three-point correlation functions, which
are discussed at the hadronic level in Section II B, and
at the quark level in Sections II C and II D. Throughout
this analysis we employ the lattice techniques introduced
in [4]. We briefly outline the main aspects of these tech-
niques in section III. The correlation functions directly
proportional to the electromagnetic form factors of inter-
est are analysed in Sec. IV. The results are presented and
discussed in Section V, where an extensive comparison is
made with the predictions of quenched chiral perturba-
tion theory (QχPT) [15, 16]. A summary and discussion

of future work is provided in Section VI.

II. THEORETICAL FORMALISM

A. Interpolating fields

In this analysis we work with the standard established
interpolating fields commonly used in lattice QCD simu-
lations. The notation adopted is similar to that of [4]. To
access the proton we use the positive parity interpolating
field

χp+(x) = εabc
(
uaT (x) Cγ5 db(x)

)
uc(x) , (2.1)

where the fields u, d are evaluated at Euclidean space-
time point x, C is the charge conjugation matrix, a, b
and c are colour labels, and the superscript T denotes
the transpose. In this paper we follow the notation of
Sakurai. The Dirac γ matrices are Hermitian and satisfy
{γµ, γν} = 2δµν , with σµν = (1/2i)[γµ, γν ]. This interpo-
lating field transforms as a spinor under a parity trans-
formation. That is, if the quark fields qa(x) (q = u, d, · · ·)
transform as

P qa(x)P† = +γ0 qa(x̃) , (2.2)

where x̃ = (x0,−&x), then

P χp+(x)P† = +γ0 χp+(x̃) . (2.3)

The neutron interpolating field is obtained via the ex-
change u ↔ d, and the strangeness −2, Ξ interpolating
fields are obtained by replacing the doubly represented u
or d quark fields in Eq. (2.1) by s. Similarly, the charged
strangeness −1, Σ interpolating fields are obtained by

replacing the singly represented u or d quark fields in
Eq. (2.1) by s. For the Σ0 hyperon one uses [4]

χΣ0

(x) =
1√
2
εabc

{(
uaT (x) Cγ5 sb(x)

)
dc(x)

+
(
daT (x) Cγ5 sb(x)

)
uc(x)

}
,(2.4)

Note that χΣ0

transforms as a triplet under SU(2)
isospin. An SU(2) isosinglet interpolating field for the
Λ can be constructed by replacing “ + ” −→ “ − ” in
Eq. (2.4). For the SU(3) octet Λ interpolating field, one
has

χΛ(x) =
1√
6
εabc

{
2

(
uaT (x) Cγ5 db(x)

)
sc(x) +

(
uaT (x) Cγ5 sb(x)

)
dc(x) −

(
daT (x) Cγ5 sb(x)

)
uc(x)

}
. (2.5)

We select this interpolating field for studying the Λ in the following.

B. Correlation functions at the hadronic level

The extraction of baryon masses and electromagnetic form factors proceeds through the calculation of the ensemble
average (denoted

〈
· · ·

〉
) of two and three-point correlation functions. The two-point function is defined as

〈
GBB(t; $p, Γ)

〉
=

∑

!x

e−i!p·!x Γβα
〈

Ω
∣∣ T

(
χα(x)χβ(0)

) ∣∣ Ω
〉

. (2.6)

Here Ω represents the QCD vacuum, Γ is a 4 × 4 matrix in Dirac space and α, β are Dirac indices. At the hadronic
level we insert a complete set of states

∣∣ B, p, s
〉

and define

〈
Ω

∣∣ χ(0)
∣∣ B, p, s

〉
= ZB(p)

√
M

Ep
u(p, s) , (2.7)

where ZB(p) represents the coupling strength of χ(0) to baryon B, and Ep =
√

$p2 + M2. A momentum dependence
for ZB(p) is included for the case where a smeared sink is employed. For large Euclidean time

〈
GBB(t; $p, Γ)

〉
%

ZB(p)ZB(p)

2Ep
e−Ept tr [Γ(−iγ · p + M)] . (2.8)

Here ZB(p) is the coupling strength of the source χ(0) to the baryon. Again, the momentum dependence allows for
the use of smeared fermion sources in the creation of the quark propagators and the differentiation between source
and sink allows for our use of smeared sources and point sinks in the following. Similarly the three-point correlation
function for the electromagnetic current, jµ(x), is defined as

〈
GBjµB(t2, t1; $p′, $p; Γ)

〉
=

∑

!x2, !x1

e−i!p′· !x2e+i(!p′−!p)· !x1Γβα
〈

Ω
∣∣ T

(
χα(x2)j

µ(x1)χ
β(0)

) ∣∣ Ω
〉

. (2.9)

For large Euclidean time separations t2 − t1 >> 1 and t1 >> 1, the three-point function at the hadronic level is
dominated by the contribution from the ground state

〈
GBjµB(t2, t1; $p′, $p; Γ)

〉
=

∑

s,s′

e−Ep′(t2−t1)e−Ept1Γβα
〈

Ω
∣∣ χα

∣∣ p′, s′
〉〈

p′, s′
∣∣ jµ

∣∣ p, s
〉〈

p, s
∣∣ χβ

∣∣ Ω
〉

. (2.10)

The matrix element of the electromagnetic current has the general form

〈
p′, s′

∣∣ jµ
∣∣ p, s

〉
=

(
M2

EpEp′

)1/2

u(p′, s′)

(
F1(q

2)γµ − F2(q
2)σµν qν

2M

)
u(p, s) , (2.11)

where q = p′ − p. To eliminate the time dependence of the three-point functions we construct the following ratio,

R(t2, t1; $p′, $p; Γ, Γ′; µ) =

[〈
GBjµB(t2, t1; $p′, $p; Γ)

〉〈
GBjµB(t2, t1;−$p,−$p′; Γ)

〉
〈

GBB(t2; $p′; Γ′)
〉〈

GBB(t2;−$p; Γ′)
〉

]1/2

. (2.12)

replacing the singly represented u or d quark fields in
Eq. (2.1) by s. For the Σ0 hyperon one uses [4]
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Correlation functions
The 2-point function is given by

and Gamma is a 4x4 spinor matrix.  At the hadronic level
  

For large Euclidean time we have
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where q = p′ − p. To eliminate the time dependence of the three-point functions we construct the following ratio,
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〉
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〉
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For large time separations t2 − t1 >> 1 and t1 >> 1 this ratio is constant in time and is proportional to the

electromagnetic form factors of interest. We further define a reduced ratio R(!p′ , !p; Γ, Γ
′

; µ) as

R(!p′ , !p; Γ, Γ
′

; µ) =

[
2Ep

Ep + M

]1/2
[

2Ep′

Ep′ + M

]1/2

R(t2, t1; !p′, !p; Γ, Γ
′

; µ) , (2.13)

from which the Sachs forms for the electromagnetic form
factors

GE(q2) = F1(q
2) −

q2

(2M)2
F2(q

2) , (2.14)

GM (q2) = F1(q
2) + F2(q

2) , (2.15)

may be extracted through an appropriate choice of Γ and
Γ

′

. A straight forward calculation reveals

GE(q2) = R(!q,!0; Γ4, Γ4, 4) , (2.16)

|εijkqi| GM (q2) = (Eq + M)R(!q,!0; Γj, Γ4, k) , (2.17)

|qk| GE(q2) = (Eq + M)R(!q,!0; Γ4, Γ4, k) , (2.18)

where

Γj =
1

2

(
σj 0
0 0

)
,

Γ4 =
1

2

(
I 0
0 0

)
. (2.19)

C. Correlation functions at the quark level

Here the two and three-point functions of Sec. II B are
calculated at the quark level by using the explicit forms
of the interpolating fields of Sec. II A and contracting out
all possible pairs of quark field operators. These become
quark propagators in the ensemble average. For conve-
nience, we introduce the shorthand notation for the cor-
relation functions G of quark propagators S

G(Sf1
, Sf2

, Sf3
) ≡ εabcεa′b′c′

{
Saa′

f1
(x, 0) tr

[
Sbb′ T

f2
(x, 0)Scc′

f3
(x, 0)

]
+ Saa′

f1
(x, 0)Sbb′ T

f2
(x, 0)Scc′

f3
(x, 0)

}
, (2.20)

where Saa′

f1−3
(x, 0) are the quark propagators in the background link-field configuration U corresponding to flavours

f1−3. This allows us to express the correlation functions in a compact form. The associated correlation function for
χp+ can be written as

Gp+(t, !p; Γ) =

〈
∑

!x

e−i!p·!xtr
[
Γ G

(
Su, C̃SdC̃

−1, Su

)]〉

, (2.21)

where 〈· · ·〉 is the ensemble average over the link fields, Γ is the Γ± projection operator that separates the positive
and negative parity states, and C̃ = Cγ5. For ease of notation, we will drop the angled brackets, 〈· · ·〉, and all the
following correlation functions will be understood to be ensemble averages.

Two-point correlation functions for other octet baryons composed of a doubly-represented quark flavour and a
singly-represented quark flavour follow from Eq. (2.21) with the appropriate substitution of flavour subscripts. The
correlation function for the neutral member Σ0 is given by the average of correlation functions for the charged states
Σ+ and Σ−. Finally the correlation function for Λ obtained from the octet-interpolating field of Eq. (2.5) is

GΛ8

(t, !p; Γ) =
1

6

∑

!x

e−i!p·!xtr

[
Γ

{
2G

(
Ss, C̃SuC̃−1, Sd

)
+ 2G

(
Ss, C̃SdC̃

−1, Su

)

+ 2G
(
Sd, C̃SuC̃−1, Ss

)
+ 2G

(
Su, C̃SdC̃

−1, Ss

)

− G
(
Sd, C̃SsC̃

−1, Su

)
− G

(
Su, C̃SsC̃

−1, Sd

)}]
. (2.22)

D. Three-point functions at the quark level

In determining the three point function, one encoun-
ters two topologically different ways of performing the

current insertion. Figure 1 displays skeleton diagrams
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GM (q2) = F1(q
2) + F2(q

2) , (2.15)

may be extracted through an appropriate choice of Γ and
Γ

′

. A straight forward calculation reveals

GE(q2) = R(!q,!0; Γ4, Γ4, 4) , (2.16)

|εijkqi| GM (q2) = (Eq + M)R(!q,!0; Γj, Γ4, k) , (2.17)

|qk| GE(q2) = (Eq + M)R(!q,!0; Γ4, Γ4, k) , (2.18)

where

Γj =
1

2

(
σj 0
0 0

)
,

Γ4 =
1

2

(
I 0
0 0

)
. (2.19)

C. Correlation functions at the quark level

Here the two and three-point functions of Sec. II B are
calculated at the quark level by using the explicit forms
of the interpolating fields of Sec. II A and contracting out
all possible pairs of quark field operators. These become
quark propagators in the ensemble average. For conve-
nience, we introduce the shorthand notation for the cor-
relation functions G of quark propagators S

G(Sf1
, Sf2

, Sf3
) ≡ εabcεa′b′c′

{
Saa′

f1
(x, 0) tr

[
Sbb′ T

f2
(x, 0)Scc′

f3
(x, 0)

]
+ Saa′

f1
(x, 0)Sbb′ T

f2
(x, 0)Scc′

f3
(x, 0)

}
, (2.20)

where Saa′

f1−3
(x, 0) are the quark propagators in the background link-field configuration U corresponding to flavours

f1−3. This allows us to express the correlation functions in a compact form. The associated correlation function for
χp+ can be written as

Gp+(t, !p; Γ) =

〈
∑

!x

e−i!p·!xtr
[
Γ G

(
Su, C̃SdC̃

−1, Su

)]〉

, (2.21)

where 〈· · ·〉 is the ensemble average over the link fields, Γ is the Γ± projection operator that separates the positive
and negative parity states, and C̃ = Cγ5. For ease of notation, we will drop the angled brackets, 〈· · ·〉, and all the
following correlation functions will be understood to be ensemble averages.

Two-point correlation functions for other octet baryons composed of a doubly-represented quark flavour and a
singly-represented quark flavour follow from Eq. (2.21) with the appropriate substitution of flavour subscripts. The
correlation function for the neutral member Σ0 is given by the average of correlation functions for the charged states
Σ+ and Σ−. Finally the correlation function for Λ obtained from the octet-interpolating field of Eq. (2.5) is

GΛ8
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)
− G
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Su, C̃SsC̃

−1, Sd

)}]
. (2.22)

D. Three-point functions at the quark level

In determining the three point function, one encoun-
ters two topologically different ways of performing the

current insertion. Figure 1 displays skeleton diagrams

For large time separations t2 − t1 >> 1 and t1 >> 1 this ratio is constant in time and is proportional to the

electromagnetic form factors of interest. We further define a reduced ratio R(!p′ , !p; Γ, Γ
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; µ) as
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from which the Sachs forms for the electromagnetic form
factors
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2) , (2.14)

GM (q2) = F1(q
2) + F2(q

2) , (2.15)

may be extracted through an appropriate choice of Γ and
Γ

′

. A straight forward calculation reveals

GE(q2) = R(!q,!0; Γ4, Γ4, 4) , (2.16)

|εijkqi| GM (q2) = (Eq + M)R(!q,!0; Γj, Γ4, k) , (2.17)

|qk| GE(q2) = (Eq + M)R(!q,!0; Γ4, Γ4, k) , (2.18)

where
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C. Correlation functions at the quark level

Here the two and three-point functions of Sec. II B are
calculated at the quark level by using the explicit forms
of the interpolating fields of Sec. II A and contracting out
all possible pairs of quark field operators. These become
quark propagators in the ensemble average. For conve-
nience, we introduce the shorthand notation for the cor-
relation functions G of quark propagators S

G(Sf1
, Sf2

, Sf3
) ≡ εabcεa′b′c′

{
Saa′

f1
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f3
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f3
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, (2.20)

where Saa′

f1−3
(x, 0) are the quark propagators in the background link-field configuration U corresponding to flavours

f1−3. This allows us to express the correlation functions in a compact form. The associated correlation function for
χp+ can be written as

Gp+(t, !p; Γ) =
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e−i!p·!xtr
[
Γ G

(
Su, C̃SdC̃

−1, Su

)]〉

, (2.21)

where 〈· · ·〉 is the ensemble average over the link fields, Γ is the Γ± projection operator that separates the positive
and negative parity states, and C̃ = Cγ5. For ease of notation, we will drop the angled brackets, 〈· · ·〉, and all the
following correlation functions will be understood to be ensemble averages.

Two-point correlation functions for other octet baryons composed of a doubly-represented quark flavour and a
singly-represented quark flavour follow from Eq. (2.21) with the appropriate substitution of flavour subscripts. The
correlation function for the neutral member Σ0 is given by the average of correlation functions for the charged states
Σ+ and Σ−. Finally the correlation function for Λ obtained from the octet-interpolating field of Eq. (2.5) is
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D. Three-point functions at the quark level

In determining the three point function, one encoun-
ters two topologically different ways of performing the

current insertion. Figure 1 displays skeleton diagrams

For large time separations t2 − t1 >> 1 and t1 >> 1 this ratio is constant in time and is proportional to the

electromagnetic form factors of interest. We further define a reduced ratio R(!p′ , !p; Γ, Γ
′

; µ) as
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]1/2
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from which the Sachs forms for the electromagnetic form
factors

GE(q2) = F1(q
2) −
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(2M)2
F2(q

2) , (2.14)

GM (q2) = F1(q
2) + F2(q

2) , (2.15)

may be extracted through an appropriate choice of Γ and
Γ

′

. A straight forward calculation reveals

GE(q2) = R(!q,!0; Γ4, Γ4, 4) , (2.16)

|εijkqi| GM (q2) = (Eq + M)R(!q,!0; Γj, Γ4, k) , (2.17)

|qk| GE(q2) = (Eq + M)R(!q,!0; Γ4, Γ4, k) , (2.18)

where
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C. Correlation functions at the quark level

Here the two and three-point functions of Sec. II B are
calculated at the quark level by using the explicit forms
of the interpolating fields of Sec. II A and contracting out
all possible pairs of quark field operators. These become
quark propagators in the ensemble average. For conve-
nience, we introduce the shorthand notation for the cor-
relation functions G of quark propagators S

G(Sf1
, Sf2

, Sf3
) ≡ εabcεa′b′c′

{
Saa′

f1
(x, 0) tr

[
Sbb′ T

f2
(x, 0)Scc′

f3
(x, 0)

]
+ Saa′

f1
(x, 0)Sbb′ T

f2
(x, 0)Scc′

f3
(x, 0)

}
, (2.20)

where Saa′

f1−3
(x, 0) are the quark propagators in the background link-field configuration U corresponding to flavours

f1−3. This allows us to express the correlation functions in a compact form. The associated correlation function for
χp+ can be written as

Gp+(t, !p; Γ) =

〈
∑

!x

e−i!p·!xtr
[
Γ G

(
Su, C̃SdC̃

−1, Su

)]〉

, (2.21)

where 〈· · ·〉 is the ensemble average over the link fields, Γ is the Γ± projection operator that separates the positive
and negative parity states, and C̃ = Cγ5. For ease of notation, we will drop the angled brackets, 〈· · ·〉, and all the
following correlation functions will be understood to be ensemble averages.

Two-point correlation functions for other octet baryons composed of a doubly-represented quark flavour and a
singly-represented quark flavour follow from Eq. (2.21) with the appropriate substitution of flavour subscripts. The
correlation function for the neutral member Σ0 is given by the average of correlation functions for the charged states
Σ+ and Σ−. Finally the correlation function for Λ obtained from the octet-interpolating field of Eq. (2.5) is

GΛ8

(t, !p; Γ) =
1
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∑

!x

e−i!p·!xtr

[
Γ
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2G

(
Ss, C̃SuC̃−1, Sd

)
+ 2G
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−1, Su

)

+ 2G
(
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)
+ 2G
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Su, C̃SdC̃
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)

− G
(
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. (2.22)

D. Three-point functions at the quark level

In determining the three point function, one encoun-
ters two topologically different ways of performing the

current insertion. Figure 1 displays skeleton diagrams

replacing the singly represented u or d quark fields in
Eq. (2.1) by s. For the Σ0 hyperon one uses [4]

χΣ0

(x) =
1√
2
εabc

{(
uaT (x) Cγ5 sb(x)

)
dc(x)

+
(
daT (x) Cγ5 sb(x)

)
uc(x)

}
,(2.4)

Note that χΣ0

transforms as a triplet under SU(2)
isospin. An SU(2) isosinglet interpolating field for the
Λ can be constructed by replacing “ + ” −→ “ − ” in
Eq. (2.4). For the SU(3) octet Λ interpolating field, one
has

χΛ(x) =
1√
6
εabc

{
2

(
uaT (x) Cγ5 db(x)

)
sc(x) +

(
uaT (x) Cγ5 sb(x)

)
dc(x) −

(
daT (x) Cγ5 sb(x)

)
uc(x)

}
. (2.5)

We select this interpolating field for studying the Λ in the following.

B. Correlation functions at the hadronic level

The extraction of baryon masses and electromagnetic form factors proceeds through the calculation of the ensemble
average (denoted

〈
· · ·

〉
) of two and three-point correlation functions. The two-point function is defined as

〈
GBB(t; $p, Γ)

〉
=

∑

!x

e−i!p·!x Γβα
〈

Ω
∣∣ T

(
χα(x)χβ(0)

) ∣∣ Ω
〉

. (2.6)

Here Ω represents the QCD vacuum, Γ is a 4 × 4 matrix in Dirac space and α, β are Dirac indices. At the hadronic
level we insert a complete set of states

∣∣ B, p, s
〉

and define

〈
Ω

∣∣ χ(0)
∣∣ B, p, s

〉
= ZB(p)

√
M

Ep
u(p, s) , (2.7)

where ZB(p) represents the coupling strength of χ(0) to baryon B, and Ep =
√

$p2 + M2. A momentum dependence
for ZB(p) is included for the case where a smeared sink is employed. For large Euclidean time

〈
GBB(t; $p, Γ)

〉
%

ZB(p)ZB(p)

2Ep
e−Ept tr [Γ(−iγ · p + M)] . (2.8)

Here ZB(p) is the coupling strength of the source χ(0) to the baryon. Again, the momentum dependence allows for
the use of smeared fermion sources in the creation of the quark propagators and the differentiation between source
and sink allows for our use of smeared sources and point sinks in the following. Similarly the three-point correlation
function for the electromagnetic current, jµ(x), is defined as

〈
GBjµB(t2, t1; $p′, $p; Γ)

〉
=

∑

!x2, !x1

e−i!p′· !x2e+i(!p′−!p)· !x1Γβα
〈

Ω
∣∣ T

(
χα(x2)j

µ(x1)χ
β(0)

) ∣∣ Ω
〉

. (2.9)

For large Euclidean time separations t2 − t1 >> 1 and t1 >> 1, the three-point function at the hadronic level is
dominated by the contribution from the ground state

〈
GBjµB(t2, t1; $p′, $p; Γ)

〉
=

∑

s,s′

e−Ep′(t2−t1)e−Ept1Γβα
〈

Ω
∣∣ χα

∣∣ p′, s′
〉〈

p′, s′
∣∣ jµ

∣∣ p, s
〉〈

p, s
∣∣ χβ

∣∣ Ω
〉

. (2.10)

The matrix element of the electromagnetic current has the general form

〈
p′, s′

∣∣ jµ
∣∣ p, s

〉
=

(
M2

EpEp′

)1/2

u(p′, s′)

(
F1(q

2)γµ − F2(q
2)σµν qν

2M

)
u(p, s) , (2.11)

where q = p′ − p. To eliminate the time dependence of the three-point functions we construct the following ratio,

R(t2, t1; $p′, $p; Γ, Γ′; µ) =

[〈
GBjµB(t2, t1; $p′, $p; Γ)

〉〈
GBjµB(t2, t1;−$p,−$p′; Γ)

〉
〈

GBB(t2; $p′; Γ′)
〉〈

GBB(t2;−$p; Γ′)
〉

]1/2

. (2.12)
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components.
Define a function of three quark propagators, Sf, for 
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Using this we can the write, e.g., the proton channel 2-

point correlation function in a shorthand form

and more complicated but similar forms for other baryon 
channels.

For large time separations t2 − t1 >> 1 and t1 >> 1 this ratio is constant in time and is proportional to the

electromagnetic form factors of interest. We further define a reduced ratio R(!p′ , !p; Γ, Γ
′

; µ) as

R(!p′ , !p; Γ, Γ
′

; µ) =

[
2Ep

Ep + M

]1/2
[

2Ep′

Ep′ + M

]1/2

R(t2, t1; !p′, !p; Γ, Γ
′

; µ) , (2.13)

from which the Sachs forms for the electromagnetic form
factors

GE(q2) = F1(q
2) −

q2

(2M)2
F2(q

2) , (2.14)

GM (q2) = F1(q
2) + F2(q

2) , (2.15)

may be extracted through an appropriate choice of Γ and
Γ

′

. A straight forward calculation reveals

GE(q2) = R(!q,!0; Γ4, Γ4, 4) , (2.16)

|εijkqi| GM (q2) = (Eq + M)R(!q,!0; Γj, Γ4, k) , (2.17)

|qk| GE(q2) = (Eq + M)R(!q,!0; Γ4, Γ4, k) , (2.18)

where

Γj =
1

2

(
σj 0
0 0

)
,

Γ4 =
1

2

(
I 0
0 0

)
. (2.19)

C. Correlation functions at the quark level

Here the two and three-point functions of Sec. II B are
calculated at the quark level by using the explicit forms
of the interpolating fields of Sec. II A and contracting out
all possible pairs of quark field operators. These become
quark propagators in the ensemble average. For conve-
nience, we introduce the shorthand notation for the cor-
relation functions G of quark propagators S

G(Sf1
, Sf2

, Sf3
) ≡ εabcεa′b′c′

{
Saa′

f1
(x, 0) tr

[
Sbb′ T

f2
(x, 0)Scc′

f3
(x, 0)

]
+ Saa′

f1
(x, 0)Sbb′ T

f2
(x, 0)Scc′

f3
(x, 0)

}
, (2.20)

where Saa′

f1−3
(x, 0) are the quark propagators in the background link-field configuration U corresponding to flavours

f1−3. This allows us to express the correlation functions in a compact form. The associated correlation function for
χp+ can be written as

Gp+(t, !p; Γ) =

〈
∑

!x

e−i!p·!xtr
[
Γ G

(
Su, C̃SdC̃

−1, Su

)]〉

, (2.21)

where 〈· · ·〉 is the ensemble average over the link fields, Γ is the Γ± projection operator that separates the positive
and negative parity states, and C̃ = Cγ5. For ease of notation, we will drop the angled brackets, 〈· · ·〉, and all the
following correlation functions will be understood to be ensemble averages.

Two-point correlation functions for other octet baryons composed of a doubly-represented quark flavour and a
singly-represented quark flavour follow from Eq. (2.21) with the appropriate substitution of flavour subscripts. The
correlation function for the neutral member Σ0 is given by the average of correlation functions for the charged states
Σ+ and Σ−. Finally the correlation function for Λ obtained from the octet-interpolating field of Eq. (2.5) is
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)
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)}]
. (2.22)

D. Three-point functions at the quark level

In determining the three point function, one encoun-
ters two topologically different ways of performing the

current insertion. Figure 1 displays skeleton diagrams

For large time separations t2 − t1 >> 1 and t1 >> 1 this ratio is constant in time and is proportional to the
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from which the Sachs forms for the electromagnetic form
factors
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2) , (2.14)
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2) , (2.15)

may be extracted through an appropriate choice of Γ and
Γ
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. A straight forward calculation reveals

GE(q2) = R(!q,!0; Γ4, Γ4, 4) , (2.16)

|εijkqi| GM (q2) = (Eq + M)R(!q,!0; Γj, Γ4, k) , (2.17)

|qk| GE(q2) = (Eq + M)R(!q,!0; Γ4, Γ4, k) , (2.18)

where
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C. Correlation functions at the quark level

Here the two and three-point functions of Sec. II B are
calculated at the quark level by using the explicit forms
of the interpolating fields of Sec. II A and contracting out
all possible pairs of quark field operators. These become
quark propagators in the ensemble average. For conve-
nience, we introduce the shorthand notation for the cor-
relation functions G of quark propagators S

G(Sf1
, Sf2

, Sf3
) ≡ εabcεa′b′c′

{
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f1
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[
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+ Saa′

f1
(x, 0)Sbb′ T

f2
(x, 0)Scc′

f3
(x, 0)

}
, (2.20)

where Saa′

f1−3
(x, 0) are the quark propagators in the background link-field configuration U corresponding to flavours

f1−3. This allows us to express the correlation functions in a compact form. The associated correlation function for
χp+ can be written as

Gp+(t, !p; Γ) =
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∑
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[
Γ G

(
Su, C̃SdC̃
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)]〉

, (2.21)

where 〈· · ·〉 is the ensemble average over the link fields, Γ is the Γ± projection operator that separates the positive
and negative parity states, and C̃ = Cγ5. For ease of notation, we will drop the angled brackets, 〈· · ·〉, and all the
following correlation functions will be understood to be ensemble averages.

Two-point correlation functions for other octet baryons composed of a doubly-represented quark flavour and a
singly-represented quark flavour follow from Eq. (2.21) with the appropriate substitution of flavour subscripts. The
correlation function for the neutral member Σ0 is given by the average of correlation functions for the charged states
Σ+ and Σ−. Finally the correlation function for Λ obtained from the octet-interpolating field of Eq. (2.5) is
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D. Three-point functions at the quark level

In determining the three point function, one encoun-
ters two topologically different ways of performing the

current insertion. Figure 1 displays skeleton diagrams
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For large time separations t2 − t1 >> 1 and t1 >> 1 this ratio is constant in time and is proportional to the

electromagnetic form factors of interest. We further define a reduced ratio R(!p′ , !p; Γ, Γ
′

; µ) as

R(!p′ , !p; Γ, Γ
′

; µ) =

[
2Ep

Ep + M

]1/2
[

2Ep′

Ep′ + M

]1/2

R(t2, t1; !p′, !p; Γ, Γ
′

; µ) , (2.13)

from which the Sachs forms for the electromagnetic form
factors

GE(q2) = F1(q
2) −

q2

(2M)2
F2(q

2) , (2.14)
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may be extracted through an appropriate choice of Γ and
Γ

′

. A straight forward calculation reveals
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where
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C. Correlation functions at the quark level

Here the two and three-point functions of Sec. II B are
calculated at the quark level by using the explicit forms
of the interpolating fields of Sec. II A and contracting out
all possible pairs of quark field operators. These become
quark propagators in the ensemble average. For conve-
nience, we introduce the shorthand notation for the cor-
relation functions G of quark propagators S

G(Sf1
, Sf2

, Sf3
) ≡ εabcεa′b′c′

{
Saa′

f1
(x, 0) tr

[
Sbb′ T

f2
(x, 0)Scc′

f3
(x, 0)

]
+ Saa′

f1
(x, 0)Sbb′ T

f2
(x, 0)Scc′

f3
(x, 0)

}
, (2.20)

where Saa′

f1−3
(x, 0) are the quark propagators in the background link-field configuration U corresponding to flavours

f1−3. This allows us to express the correlation functions in a compact form. The associated correlation function for
χp+ can be written as

Gp+(t, !p; Γ) =

〈
∑

!x

e−i!p·!xtr
[
Γ G

(
Su, C̃SdC̃

−1, Su

)]〉

, (2.21)

where 〈· · ·〉 is the ensemble average over the link fields, Γ is the Γ± projection operator that separates the positive
and negative parity states, and C̃ = Cγ5. For ease of notation, we will drop the angled brackets, 〈· · ·〉, and all the
following correlation functions will be understood to be ensemble averages.

Two-point correlation functions for other octet baryons composed of a doubly-represented quark flavour and a
singly-represented quark flavour follow from Eq. (2.21) with the appropriate substitution of flavour subscripts. The
correlation function for the neutral member Σ0 is given by the average of correlation functions for the charged states
Σ+ and Σ−. Finally the correlation function for Λ obtained from the octet-interpolating field of Eq. (2.5) is

GΛ8
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6
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)}]
. (2.22)

D. Three-point functions at the quark level

In determining the three point function, one encoun-
ters two topologically different ways of performing the

current insertion. Figure 1 displays skeleton diagrams
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                      b)

Connected (a) and disconnected (b) contributions to the 
e.m. form factors in terms of quark flow lines.  

In the SU(3) flavor limit the disconnected contributions 
vanish, since charges sum to zero.  We work in the 
quenched limit here and so only consider connected 
contributions (a) in any case.

FIG. 1: Diagrams illustrating the two topologically different
insertions of the current within the framework of lattice QCD.

for these two insertions. These diagrams may be dressed
with an arbitrary number of gluons (and additional sea-
quark loops in full QCD). Diagram (a) illustrates the
connected insertion of the current to one of the quarks

created via the baryon interpolating field. This simple
skeleton diagram does indeed contain a sea-quark compo-
nent, as upon dressing the diagram with gluon exchange,
quark-loop and Z-diagrams flows become possible. It is
here that “Pauli-blocking” in the sea contributions, cen-
tral to obtaining violation of the Gottfried sum rule, are
taken into account. Diagram (b) accounts for an alterna-
tive quark-field contraction where the current first pro-
duces a disconnected q q loop-pair which in turn interacts
with the valence quarks of the baryon via gluons.

Thus, the number of terms in the three-point function
is four times that in Eq. (2.21). The correlation function
for proton matrix elements obtained from the interpola-
tor of Eq. (2.1) is

T
(
χp+(x2) jµ(x1)χ p+(0)

)
=

G
(
Ŝu(x2, x1, 0), C̃Sd(x2, 0)C̃−1, Su(x2, 0)
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+G
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)

+
∑

q=u, d, s
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i
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[
Sii

q (x1, x1) γµ

]
G

(
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)
, (2.23)

where

Ŝaa′

q (x2, x1, 0) = eq

∑

i

Sai
q (x2, x1) γµ Sia′

q (x1, 0) ,

(2.24)
denotes the connected insertion of the electromagnetic
current to a quark of charge eq.

The first two terms of Eq. (2.23) provide the connected
insertion contribution of the u-quark sector to the pro-
ton’s electromagnetic properties, whereas the third term
provides the connected d-quark contribution. The latter
term of Eq. (2.23) accounts for the “disconnected” loop
contribution depicted in Fig. 1b. Here, the sum over the
quarks running around the loop has been restricted to
the flavours relevant to the ground state baryon octet.
In the SU(3)-flavour limit the sum vanishes for the elec-
tromagnetic current. However, the heavier strange quark
mass allows for a non-trivial result.

The “disconnected” current insertion requires a numer-
ical estimate of Sii

q (x1, x1) for the lattice volume of di-
agonal spatial indices. As this requires numerous source
vectors in the fermion-matrix inversion, determination of
this propagator is numerically intensive [17–19]. Indeed,
an indirect method using experimental results, chiral ef-
fective field theory and the lattice results from the con-
nected current insertion presented herein, provides the
most precise determinations of these quark loop contri-
butions to the nucleon’s electromagnetic structure [9–11]
at present. This approach should be viewed as comple-

mentary to an ab initio determination via lattice QCD
which awaits a next-generation dynamical-fermion simu-
lation of QCD [15].

It is interesting to examine the structure of the con-
nected insertion contributions to the proton’s structure.
Here, we see very different roles played by u and d quarks
in the correlation function, in that only the d-quark ap-
pears in the second position of G. The absence of equiv-
alence for u and d contributions allows the connected
quark sector to give rise to a non-trivial neutron charge
radius, a large neutron magnetic moment, or a violation
of the Gottfried sum rule. As each term of Eq. (2.23) can
be calculated individually, it is a simple task to isolate
the quark sector contributions to the baryon electromag-
netic properties.

Another interesting point to emphasise, is that there is
no simple relationship between the properties of a partic-
ular quark flavour bound in different baryons. For exam-
ple, the correlator for Σ+ is given by (2.23) with d → s.
Hence, a u-quark propagator in Σ+ is multiplied by an
s-quark propagator, whereas in the proton the u-quark
propagators are multiplied by a d-quark propagator. The
different mass of the neighbouring quark gives rise to an
environment sensitivity in the u-quark contributions to
observables[4, 6, 7, 9, 20–22]. This point sharply con-
trasts the concept of an intrinsic quark property which is
independent of the quark’s environment. This concept of
an intrinsic quark property is a fundamental foundation

a)
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Using our shorthand, the 3-point function for, e.g., the 

proton becomes

The 4th piece is the disconnected piece and not 
calculated.  The “caret” (^) on a propagator signifies that 
it has the e.m. current insertion, i.e., it represents

In this way we can deconstruct the form factors for each 
valence quark species in the baryon.
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∑

q=u, d, s

eq

∑

i

tr
[
Sii

q (x1, x1) γµ

]
G

(
Su(x2, 0), C̃Sd(x2, 0)C̃−1, Su(x2, 0)

)
, (2.23)
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Ŝaa′

q (x2, x1, 0) = eq

∑

i

Sai
q (x2, x1) γµ Sia′

q (x1, 0) ,

(2.24)
denotes the connected insertion of the electromagnetic
current to a quark of charge eq.

The first two terms of Eq. (2.23) provide the connected
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We perform a high-statistics analysis using a large
sample of 400 configurations for our lightest eight quark
masses. We also consider a subset of 200 configurations
for our three heaviest quark masses to explore the ap-
proach to the heavy-quark regime. A sub-ensemble bias
correction is applied multiplicatively to the heavy quark
results, by matching the central values of the 200 con-
figuration sub-ensemble and 400 configuration ensemble
averages at κ = 0.12780. The error analysis is performed
by a third-order, single-elimination jackknife.

For the quark fields, we use the Fat-Link Irrelevant
Clover fermion action [25]

SFL
SW = SFL

W −
i g CSW κ r

2(uFL
0 )4

ψ̄(x)σµνFµν ψ(x) , (3.1)

where Fµν is an O(a4)-improved lattice definition [26]
constructed using fat links and uFL

0 is the plaquette mea-
sure of the mean link calculated with fat links. The mean-
field improved Fat-Link Irrelevant Wilson action is

SFL
W =

∑
x ψ̄(x)ψ(x) + κ

∑

x,µ

ψ̄(x)

[
γµ

(
Uµ(x)

u0
ψ(x + µ̂)

−
U †

µ(x − µ̂)

u0
ψ(x − µ̂)

)
− r

(
UFL

µ (x)

uFL
0

ψ(x + µ̂)

+
UFL†

µ (x − µ̂)

uFL
0

ψ(x − µ̂)

)]
. (3.2)

with κ = 1/(2m+8r). We take the standard value r = 1.
Our notation uses the Pauli representation of the Dirac
γ-matrices [27], where the γ-matrices are hermitian and
σµν = [γµ, γν ]/(2i). Fat links are constructed by per-
forming nAPE = 6 sweeps of APE smearing, where in
each sweep the weights given to the original link and the
six transverse staples are 0.3 and (0.7/6) respectively.
The FLIC action is closely related to the mean-field im-
proved clover (MFIC) fermion action in that the latter
is described by Eqs. (3.1) and (3.2) with all fat-links re-
placed by untouched thin links and Fµν defined by the
1 × 1-loop clover definition.

For fat links, the mean link u0 ≈ 1, indicating that
perturbative renormalisations are small for smeared links
and are accurately accounted for by small mean-field im-
provement corrections. As a result, mean-field improve-
ment of the coefficients of the clover and Wilson terms of
the fermion action is sufficient to accurately match these
terms and eliminate O(a) errors from the fermion action
[28]. An added advantage is that access to the light quark
mass regime is enabled by the improved chiral properties
of the FLIC fermion action [29].

Time slices are labeled from 1 to 40, and a fixed bound-
ary condition at t = 40 is used for the fermions. An anal-
ysis of the pion correlator indicates that the effects of this
boundary condition are negligible for t ≤ 30, and all of
our correlation-function fits are performed well within
this regime.

Gauge-invariant Gaussian smearing [30, 31] in the spa-
tial dimensions is applied at the source at t = 8 to in-
crease the overlap of the interpolating operators with the
ground state while suppressing excited state contribu-
tions.

Table I provides the kappa values used in our simula-
tions, together with the calculated π and octet baryon
masses. While we refer to m2

π to infer the quark masses,
we note that the critical value where the pion mass van-
ishes is κcr = 0.13135.

We select κ = 0.12885 to represent the strange quark
in this simulation. At this κ the ss̄ pseudoscalar mass is
0.697 GeV, which compares well with the experimental
value of 2 m2

K−m2
π = (0.693 GeV)2, motivated by leading

order chiral perturbation theory.

B. Improved conserved vector current

For the construction of the O(a)-improved conserved
vector current, we follow the technique proposed by Mar-
tinelli et al. [32]. The standard conserved vector current
for Wilson-type fermions is derived via the Noether pro-
cedure

jC
µ ≡

1

4

[
ψ(x)(γµ − r)Uµ(x)ψ(x + µ̂)

+ ψ(x + µ̂)(γµ + r)U †
µ(x)ψ(x)

+ (x → x − µ̂)
]
. (3.3)

The O(a)-improvement term is also derived from the
fermion action and is constructed in the form of a to-
tal four-divergence, preserving charge conservation. The
O(a)-improved conserved vector current is

jCI
µ ≡ jC

µ (x) +
r

2
CCV C a

∑

ρ

∂ρ

(
ψ(x)σρµψ(x)

)
, (3.4)

where CCV C is the improvement coefficient for the con-
served vector current and we define

∂ρ

(
ψ(x)ψ(x)

)
≡ ψ(x)

(←−∇ρ +
−→∇ρ

)
ψ(x) , (3.5)
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Kappa values and masses
TABLE I: Hadron masses in appropriate powers of GeV for various values of the hopping parameter, κ. For reference,
experimentally measured values are indicated at the end of the table.

κ m2
π N Λ Σ Ξ

0.12630 0.9972(55) 1.829(8) 1.728(10) 1.700(9) 1.612(11)

0.12680 0.8947(54) 1.763(9) 1.681(10) 1.656(10) 1.586(12)

0.12730 0.7931(53) 1.695(9) 1.632(11) 1.566(11) 1.558(12)

0.12780 0.6910(35) 1.629(10) 1.584(10) 1.570(10) 1.531(10)

0.12830 0.5925(33) 1.554(10) 1.530(10) 1.521(10) 1.502(10)

0.12885 0.4854(31) 1.468(11) 1.468(11) 1.468(11) 1.468(11)

0.12940 0.3795(31) 1.383(11) 1.406(11) 1.417(11) 1.435(11)

0.12990 0.2839(33) 1.301(11) 1.347(11) 1.371(11) 1.404(11)

0.13025 0.2153(35) 1.243(12) 1.303(12) 1.341(12) 1.382(11)

0.13060 0.1384(43) 1.190(15) 1.256(13) 1.313(12) 1.359(11)

0.13080 0.0939(44) 1.159(21) 1.226(16) 1.296(14) 1.346(11)

experiment 0.0196 0.939 1.116 1.189 1.315

where the forward and backward derivatives are defined
as

−→∇µψ(x) =
1

2a
[Uµ(x)ψ(x + µ̂)

−U †
µ(x − µ̂)ψ(x − µ̂)

]
,

ψ(x)
←−∇µ =

1

2a

[
ψ(x + µ̂)U †

µ(x)

−ψ(x − µ̂)Uµ(x − µ̂)
]

.

The terms proportional to the Wilson parameter r in
Eq. (3.3) and the four-divergence in Eq. (3.4) have their
origin in the irrelevant operators of the fermion action
and vanish in the continuum limit. Non-perturbative im-
provement is achieved by constructing these terms with
fat-links. As we have stated, perturbative corrections are
small for fat-links and the use of the tree-level value for
CCV C = 1 together with small mean-field improvement
corrections ensures that O(a) artifacts are accurately re-
moved from the vector current. This is only possible
when the current is constructed with fat-links. Other-
wise, CCV C needs to be appropriately tuned to ensure
all O(a) artifacts are removed.

In order to suppress contributions from excited states,
large Euclidean times are required, both following the
source at t0, and following the current insertion at t1.
Our two-point function analysis indicates that the ground
state is isolated well by t = 14, largely due to an excellent
selection for the source smearing parameters. Therefore
the current insertion is performed at t1 = 14.

We note that the precision of our results is sufficient
to reveal a small excited state contamination in the cor-
relation function at the position of the current insertion.
There is always a systematic error associated with excited
state contaminations and ideally this error is simply hid-
den in the statistical uncertainties.

A comparison of the asymptotic masses with those ob-
tained from a fit including the onset of the point-split

current reveals a 2% admixture of excited state contam-
ination in our lightest five quark masses and smaller for
heavier quark masses. This error is typically small rela-
tive to the statistical errors of the quantities of interest
and do not affect the interpretation of our results.

C. Improved unbiased estimators

The two and three-point correlation functions are de-
fined as averages over an infinite ensemble of equilibrium
gauge field configurations, but are approximated by an
average over a finite number of configurations. To min-
imise the noise in the results, we exploit the parity of the
correlation functions [33]

G("p′, "p, "q; Γ) = sP G(−"p′,−"p,−"q; Γ), sP = ±1,
(3.6)

and calculate them for both "p, "p′, "q and −"p, −"p′, −"q.
While this requires an extra matrix inversion to deter-
mine Ŝ(x2, 0; t1,−"q, µ), the ratio of three- to two-point
functions is determined with a substantial reduction in
the statistical uncertainties. The improvement is better
than that obtained by doubling the number of configura-
tions.

Similarly, the link variables {U} and {U∗} are gauge
field configurations of equal weight, and therefore we ac-
count for both sets of configurations in calculating the
correlation functions [34]. With the fermion matrix prop-
erty

M({U∗}) =
(
C̃M({U})C̃−1

)∗

, (3.7)

it follows that

S(x, 0; {U∗}) =
(
C̃S(x, 0; {U})C̃−1

)∗

, (3.8)
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of many constituent based quark models and is not in
accord with QCD.

III. LATTICE TECHNIQUES

A. Gauge and quark actions

The simulations are performed using the mean-field
O(a2)-improved Luscher-Weisz [23] plaquette plus rect-
angle gauge action on a 203 × 40 lattice with periodic
boundary conditions. The lattice spacing a = 0.128 fm
is determined by the Sommer scale r0 = 0.50 fm [24].
This large volume lattice ensures a good density of low-
lying momenta which are key to giving rise to chiral non-
analytic behaviour in the observables simulated on the
lattice [9–11].

We perform a high-statistics analysis using a large
sample of 400 configurations for our lightest eight quark
masses. We also consider a subset of 200 configurations
for our three heaviest quark masses to explore the ap-
proach to the heavy-quark regime. A sub-ensemble bias
correction is applied multiplicatively to the heavy quark
results, by matching the central values of the 200 con-
figuration sub-ensemble and 400 configuration ensemble
averages at κ = 0.12780. The error analysis is performed
by a third-order, single-elimination jackknife.

For the quark fields, we use the Fat-Link Irrelevant
Clover fermion action [25]

SFL
SW = SFL

W −
i g CSW κ r

2(uFL
0 )4

ψ̄(x)σµνFµν ψ(x) , (3.1)

where Fµν is an O(a4)-improved lattice definition [26]
constructed using fat links and uFL

0 is the plaquette mea-
sure of the mean link calculated with fat links. The mean-
field improved Fat-Link Irrelevant Wilson action is

SFL
W =

∑
x ψ̄(x)ψ(x) + κ

∑

x,µ

ψ̄(x)

[
γµ

(
Uµ(x)

u0
ψ(x + µ̂)

−
U †

µ(x − µ̂)

u0
ψ(x − µ̂)

)
− r

(
UFL

µ (x)

uFL
0

ψ(x + µ̂)

+
UFL†

µ (x − µ̂)

uFL
0

ψ(x − µ̂)

)]
. (3.2)

with κ = 1/(2m+8r). We take the standard value r = 1.
Our notation uses the Pauli representation of the Dirac
γ-matrices [27], where the γ-matrices are hermitian and
σµν = [γµ, γν ]/(2i). Fat links are constructed by per-
forming nAPE = 6 sweeps of APE smearing, where in
each sweep the weights given to the original link and the
six transverse staples are 0.3 and (0.7/6) respectively.
The FLIC action is closely related to the mean-field im-
proved clover (MFIC) fermion action in that the latter
is described by Eqs. (3.1) and (3.2) with all fat-links re-
placed by untouched thin links and Fµν defined by the
1 × 1-loop clover definition.

For fat links, the mean link u0 ≈ 1, indicating that
perturbative renormalisations are small for smeared links
and are accurately accounted for by small mean-field im-
provement corrections. As a result, mean-field improve-
ment of the coefficients of the clover and Wilson terms of
the fermion action is sufficient to accurately match these
terms and eliminate O(a) errors from the fermion action
[28]. An added advantage is that access to the light quark
mass regime is enabled by the improved chiral properties
of the FLIC fermion action [29].

Time slices are labeled from 1 to 40, and a fixed bound-
ary condition at t = 40 is used for the fermions. An anal-
ysis of the pion correlator indicates that the effects of this
boundary condition are negligible for t ≤ 30, and all of
our correlation-function fits are performed well within
this regime.

Gauge-invariant Gaussian smearing [30, 31] in the spa-
tial dimensions is applied at the source at t = 8 to in-
crease the overlap of the interpolating operators with the
ground state while suppressing excited state contribu-
tions.

Table I provides the kappa values used in our simula-
tions, together with the calculated π and octet baryon
masses. While we refer to m2

π to infer the quark masses,
we note that the critical value where the pion mass van-
ishes is κcr = 0.13135.

We select κ = 0.12885 to represent the strange quark
in this simulation. At this κ the ss̄ pseudoscalar mass is
0.697 GeV, which compares well with the experimental
value of 2 m2

K−m2
π = (0.693 GeV)2, motivated by leading

order chiral perturbation theory.

B. Improved conserved vector current

For the construction of the O(a)-improved conserved
vector current, we follow the technique proposed by Mar-
tinelli et al. [32]. The standard conserved vector current
for Wilson-type fermions is derived via the Noether pro-
cedure

jC
µ ≡

1

4

[
ψ(x)(γµ − r)Uµ(x)ψ(x + µ̂)

+ ψ(x + µ̂)(γµ + r)U †
µ(x)ψ(x)

+ (x → x − µ̂)
]
. (3.3)

The O(a)-improvement term is also derived from the
fermion action and is constructed in the form of a to-
tal four-divergence, preserving charge conservation. The
O(a)-improved conserved vector current is

jCI
µ ≡ jC

µ (x) +
r

2
CCV C a

∑

ρ

∂ρ

(
ψ(x)σρµψ(x)

)
, (3.4)

where CCV C is the improvement coefficient for the con-
served vector current and we define

∂ρ

(
ψ(x)ψ(x)

)
≡ ψ(x)

(←−∇ρ +
−→∇ρ

)
ψ(x) , (3.5)

of many constituent based quark models and is not in
accord with QCD.

III. LATTICE TECHNIQUES

A. Gauge and quark actions

The simulations are performed using the mean-field
O(a2)-improved Luscher-Weisz [23] plaquette plus rect-
angle gauge action on a 203 × 40 lattice with periodic
boundary conditions. The lattice spacing a = 0.128 fm
is determined by the Sommer scale r0 = 0.50 fm [24].
This large volume lattice ensures a good density of low-
lying momenta which are key to giving rise to chiral non-
analytic behaviour in the observables simulated on the
lattice [9–11].

We perform a high-statistics analysis using a large
sample of 400 configurations for our lightest eight quark
masses. We also consider a subset of 200 configurations
for our three heaviest quark masses to explore the ap-
proach to the heavy-quark regime. A sub-ensemble bias
correction is applied multiplicatively to the heavy quark
results, by matching the central values of the 200 con-
figuration sub-ensemble and 400 configuration ensemble
averages at κ = 0.12780. The error analysis is performed
by a third-order, single-elimination jackknife.

For the quark fields, we use the Fat-Link Irrelevant
Clover fermion action [25]

SFL
SW = SFL

W −
i g CSW κ r

2(uFL
0 )4

ψ̄(x)σµνFµν ψ(x) , (3.1)

where Fµν is an O(a4)-improved lattice definition [26]
constructed using fat links and uFL

0 is the plaquette mea-
sure of the mean link calculated with fat links. The mean-
field improved Fat-Link Irrelevant Wilson action is

SFL
W =

∑
x ψ̄(x)ψ(x) + κ

∑

x,µ

ψ̄(x)

[
γµ

(
Uµ(x)

u0
ψ(x + µ̂)

−
U †

µ(x − µ̂)

u0
ψ(x − µ̂)

)
− r

(
UFL

µ (x)

uFL
0

ψ(x + µ̂)

+
UFL†

µ (x − µ̂)

uFL
0

ψ(x − µ̂)

)]
. (3.2)

with κ = 1/(2m+8r). We take the standard value r = 1.
Our notation uses the Pauli representation of the Dirac
γ-matrices [27], where the γ-matrices are hermitian and
σµν = [γµ, γν ]/(2i). Fat links are constructed by per-
forming nAPE = 6 sweeps of APE smearing, where in
each sweep the weights given to the original link and the
six transverse staples are 0.3 and (0.7/6) respectively.
The FLIC action is closely related to the mean-field im-
proved clover (MFIC) fermion action in that the latter
is described by Eqs. (3.1) and (3.2) with all fat-links re-
placed by untouched thin links and Fµν defined by the
1 × 1-loop clover definition.

For fat links, the mean link u0 ≈ 1, indicating that
perturbative renormalisations are small for smeared links
and are accurately accounted for by small mean-field im-
provement corrections. As a result, mean-field improve-
ment of the coefficients of the clover and Wilson terms of
the fermion action is sufficient to accurately match these
terms and eliminate O(a) errors from the fermion action
[28]. An added advantage is that access to the light quark
mass regime is enabled by the improved chiral properties
of the FLIC fermion action [29].

Time slices are labeled from 1 to 40, and a fixed bound-
ary condition at t = 40 is used for the fermions. An anal-
ysis of the pion correlator indicates that the effects of this
boundary condition are negligible for t ≤ 30, and all of
our correlation-function fits are performed well within
this regime.

Gauge-invariant Gaussian smearing [30, 31] in the spa-
tial dimensions is applied at the source at t = 8 to in-
crease the overlap of the interpolating operators with the
ground state while suppressing excited state contribu-
tions.

Table I provides the kappa values used in our simula-
tions, together with the calculated π and octet baryon
masses. While we refer to m2

π to infer the quark masses,
we note that the critical value where the pion mass van-
ishes is κcr = 0.13135.

We select κ = 0.12885 to represent the strange quark
in this simulation. At this κ the ss̄ pseudoscalar mass is
0.697 GeV, which compares well with the experimental
value of 2 m2

K−m2
π = (0.693 GeV)2, motivated by leading

order chiral perturbation theory.

B. Improved conserved vector current

For the construction of the O(a)-improved conserved
vector current, we follow the technique proposed by Mar-
tinelli et al. [32]. The standard conserved vector current
for Wilson-type fermions is derived via the Noether pro-
cedure

jC
µ ≡

1

4

[
ψ(x)(γµ − r)Uµ(x)ψ(x + µ̂)

+ ψ(x + µ̂)(γµ + r)U †
µ(x)ψ(x)

+ (x → x − µ̂)
]
. (3.3)

The O(a)-improvement term is also derived from the
fermion action and is constructed in the form of a to-
tal four-divergence, preserving charge conservation. The
O(a)-improved conserved vector current is

jCI
µ ≡ jC

µ (x) +
r

2
CCV C a

∑

ρ

∂ρ

(
ψ(x)σρµψ(x)

)
, (3.4)

where CCV C is the improvement coefficient for the con-
served vector current and we define

∂ρ

(
ψ(x)ψ(x)

)
≡ ψ(x)

(←−∇ρ +
−→∇ρ

)
ψ(x) , (3.5)



Proton charge radius

Figure: Proton charge radius compared with previous quenched lattice results.
The solid squares indicate current lattice QCD results with FLIC fermions.
The stars indicate the lattice results of [Leinweber et al., 1991] while the crosses
indicate the results of [Wilcox et al., 1992], both of which use the standard
Wilson actions for the gauge and fermion fields.



Proton magnetic moment

Figure: Proton magnetic moment (in nuclear magnetons) from a variety of
lattice simulations. Solid squares = [current FLIC results], stars = [Leinweber
et al., 1991], crosses (only one point) = [Wilcox et al., 1992]. Open symbols =
[QCDSF collaboration, Gockeler et al., 2005]. Open squares = β = 6.0, open
triangles = β = 6.2, open diamonds = β = 6.4.



Strange quark charge radii 

Figure: Electric charge distribution radii of strange quarks including sΛ, sΞ0

and sΣ0 . The data for sΞ0 and sΛ are plotted at shifted m2
π values for clarity.

Results are presented for a single quark of unit charge. Note the sensitivity to
the environment in which the strange quark sits.



Strange quark magnetic moment

Figure: Magnetic moments of the strange quark in the Λ and the Ξ0, sΛ and
sΞ0 respectively, as a function of quark mass. Results are presented for a single
quark of unit charge. Note the strong sensitivity of the strange quark to its
environment here. The strange quark mass is held fixed, yet the strange quark
properties change substantially as the light quark masses change



Magnetic moment of u quark

Figure: Magnetic moment contribution of the u-quark sector (or equivalently
the d-quark sector) to the Λ0 magnetic moment. This shows the nontrivial role
for light quarks in the Lambda magnetic moment. In simple quark models the
light quarks are in a isospin and spin singlet configuration and do not contribute.



Chiral artefact in Delta  m.m.

Figure: Comparison of the proton and ∆+ magnetic moments in quenched
QCD with FLIC quarks. Note the evidence of quenched chiral artefacts in the
Delta baryon magnetic moment.



Figure: Evidence of quenching artifacts through the signature of the decay of
a0 to the negative metric π-η′ channel is obvious as G(t) changes sign. This is
our quenched a0 meson two-point correlation function for our second lightest
quark mass. The signature of the decay of a0 to the negative metric π-η′ channel
is obvious as G(t) changes sign.
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Exotic and Hybrid Mesons3.5. Hybrid Mesons

Fig. 3.1: Author’s sketch of a quark-model meson vs a hybrid meson

3.5 Hybrid Mesons

3.5.1 Introduction

A hybrid meson is a boson formed by coupling quark-antiquark pairs with the gauge field

in order to produce a colour singlet.

Table 3.1: JPC quantum numbers and their associated meson interpolating fields.

0++ 0+− 0−+ 0−−

q̄aqa iq̄aγ5γjBab
j qb q̄aγ5qa q̄aγ5γjEab

j qb

q̄aγjEab
j qb q̄aγ4qa q̄aγ5γ4qa

iq̄aγjγ4γ5Bab
j qb iq̄aγjBab

j qb

q̄aγjγ4Eab
j qb iq̄aγ4γjBab

j qb

1++ 1+− 1−+ 1−−

q̄aγ5γjqa q̄aγ5γ4γjqa q̄aγ4Eab
j qb iq̄aγ5Bab

j qb

iq̄aγ4Bab
j qb q̄aγ5γ4Eab

j qb iεjklq̄aγkBab
l qb q̄aγ4γjqa

εjklq̄aγkEab
l qb q̄aγ5Eab

j qb iεjklq̄aγ4γkBab
l qb q̄aEab

j qb

εjklq̄aγkγ4Eab
l qb iq̄aBab

j qb εjklq̄aγ5γ4γkEab
l qb q̄aγjqa

iq̄aγ4γ5Bab
j qb

We consider the local interpolating fields summarized in Table 3.1. Gauge-invariant

Gaussian smearing [19, 46] is applied at the fermion source (t = 8), and local sinks are
used to maintain strong signal in the two-point correlation functions. Chromo-electric and

-magnetic fields are created from 3-D APE-smeared links [1, 18] at both the source and

sink using the highly-improvedO(a4)-improved lattice field strength tensor [8] described
in greater detail below.

3.5.2 Method

Fat-Link Irrelevant Fermion Action

Propagators are generated using the fat-link irrelevant clover (FLIC) fermion action [48]

where the irrelevant Wilson and clover terms of the fermion action are constructed using
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• Exotic mesons are mesons with quantum numbers that cannot be carried by
a simple q-q̄ pair, e.g., JPC = 0+−, 0−−, 1−+, etc.
• A hybrid meson is exotic with explicit gluon content.
• Major experimental efforts (e.g. GlueX in future Hall D at JLab) aim to
search for and probe exotic mesons.
• The 12 GeV upgrade will provide a photon beam to excite flux tubes to
produce “explicit glue” in mesons.
• Exotics and hybrids provide a powerful new tool to elucidate aspects of QCD
which are relatively unexplored.



Local exotic meson 
interpolating fields

JPC quantum numbers and their associated meson interpolating fields.

0++ 0+− 0−+ 0−−

q̄aqa q̄aγ4qa q̄aγ5qa −iq̄aγ5γjEab
j qb

−iq̄aγjEab
j qb q̄aγ5γjBab

j qb q̄aγ5γ4qa

−q̄aγjγ4γ5Bab
j qb −q̄aγjBab

j qb

−q̄aγjγ4Eab
j qb −q̄aγ4γjBab

j qb

1++ 1+− 1−+ 1−−

−iq̄aγ5γjqa −iq̄aγ5γ4γjqa q̄aγ4Eab
j qb −iq̄aγjqa

iq̄aγ4Bab
j qb iq̄aBab

j qb −εjklq̄aγkBab
l qb q̄aEab

j qb

iεjklq̄aγkEab
l qb q̄aγ5Eab

j qb εjklq̄aγ4γkBab
l qb −iq̄aγ5Bab

j qb

iεjklq̄aγkγ4Eab
l qb q̄aγ5γ4Eab

j qb −iεjklq̄aγ5γ4γkEab
l qb iq̄aγ4γ5Bab

j qb



•We consider the local interpolating fields summarized in 
previous table
• Gauge-invariant Gaussian smearing applied at the fermion 
source (t = 8), and local sinks are used to maintain strong signal in 
the two-point correlation functions.
•Chromo-electric and  -magnetic fields created from 3-D APE-
smeared links at source and sink using the highly-improved O(a4) 
-improved field strength tensor

3.5. Hybrid Mesons

fat links, while the relevant operators use the untouched (thin) gauge links. Fat links

are created via APE smearing [1, 18]. In the FLIC action, this reduces the problem of

exceptional configurations encountered with clover actions [9], and minimizes the effect

of renormalization on the action improvement terms [26]. Access to the light quark mass

regime is enabled by the improved chiral properties of the lattice fermion action [9].

By smearing only the irrelevant, higher dimensional terms in the action, and leaving the

relevant dimension-four operators untouched, short distance quark and gluon interactions

are retained. Details of this approach may be found in reference [48]. FLIC fermions

provide a new form of nonperturbative O(a) improvement [9, 26] where near-continuum
results are obtained at finite lattice spacing.

Gauge Action

We use quenched-QCD gauge fields created by the CSSM Lattice Collaboration with

theO(a2)mean-field improved Lüscher-Weisz plaquette plus rectangle gauge action [34]
using the plaquette measure for the mean link. The gauge-field parameters are defined by

SG =
5β

3

∑

x µ ν
ν>µ

1

3
Re Tr (1 − Pµν(x))

−
β

12 u2
0

∑

x µ ν
ν>µ

1

3
Re Tr (2 − Rµν(x)) ,

where Pµν and Rµν are defined in the usual manner and the link product Rµν contains the

sum of the rectangular 1 × 2 and 2 × 1Wilson loops.
The CSSM configurations are generated using the Cabibbo-Marinari pseudo-heat-bath

algorithm [13] using a parallel algorithm with appropriate link partitioning [10]. To im-

prove the ergodicity of the Markov chain process, the three diagonal SU(2) subgroups of

SU(3) are looped over twice [11] and a parity transformation [30] is applied randomly to

each gauge field configuration saved during the Markov chain process.

Simulation Parameters

The calculations of meson masses are performed on 203 × 40 lattices at β = 4.53, which
provides a lattice spacing of a = 0.128(2) fm set by the Sommer parameter r0 = 0.49 fm.

A fixed boundary condition in the time direction is used for the fermions by setting

Ut("x, Nt) = 0 ∀ "x in the hopping terms of the fermion action, with periodic boundary
conditions imposed in the spatial directions.

Eight quark masses are considered in the calculations and the strange quark mass is

taken to be the third heaviest quark mass. This provides a pseudoscalar mass of 697

MeV which compares well with the experimental value of (2M2
K − M2

π)1/2 = 693 MeV
motivated by leading order chiral perturbation theory.
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Results survey for 1-+ meson3.6. Exotic Mesons

Fig. 3.5: A survey of results in this field. The MILC results are taken from [7] and show

their Q4, 1−+ → 1−+ results, fitted from t = 3 to t = 11. Open and closed symbols
denote dynamical and quenched simulations respectively.

Unfortunately, little is known about the chiral nonanalytic behavior of the 1−+ me-

son. Ref. [40] provides a full QCD exploration of the chiral curvature to be expected

from transitions to nearby virtual states and channels which are open at physical quark

masses. While virtual channels act to push the lower-lying single-particle 1−+ state down

in mass, it is possible to have sufficient strength lying below the 1−+ in the decay chan-

nels such that the 1−+ mass is increased [3,29]. Depending on the parameters considered

in Ref. [40] governing the couplings of the various channels, corrections due to chiral

curvature are estimated at the order of +20 to −40MeV.
Generally speaking, chiral curvature is suppressed in the quenched approximation.

For mesons, most of the physically relevant diagrams involve a sea-quark loop and are

therefore absent [3, 39]. However, the light quenched η′ meson can provide new non-

analytic behavior, with the lowest order contributions coming as a negative-metric con-

tribution through the double-hairpin diagrams. Not only do these contributions alter the

1−+ mass through self-energy contributions, but at sufficiently light quarks masses, open

decay channels can dominate the two-point correlator and render its sign negative.

For the quenched 1−+ meson, the a1η′ channel can be open. Using the pion mass as

the η′ mass a direct calculation of the mass of an a1η′ two-particle state indicates that

the 1−+ hybrid lies lower than the two-particle state for heavy input quark mass. This

indicates that the hybrid interpolator is effective at isolating a single-particle bound state
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1-+ meson vs its decay channel3.6. Exotic Mesons

Fig. 3.6: The 1−+ exotic meson mass obtained from fits of the effective mass of the hybrid

interpolator χ2 from t = 10 → 12 (full triangles) are compared with the a1η′ two-particle

state (open triangles). The extrapolation curves include a quadratic fit to all eight quark

masses (dashed line) and a linear fit through the four lightest quark masses (solid line).

The full square is result of linear extrapolation to the physical pion mass, while the open

square (offset for clarity) indicates the π1(1600) experimental candidate. .

The quadratic fit, with formula

m1−+ = a0 + a2 m2
π + a4 m4

π ,

returns parameters

a0 = +1.74 ± 0.15 GeV,

a2 = +0.91 ± 0.39 GeV−1,

a4 = −0.46 ± 0.35 GeV−3 .

3.6.3 Summary

We have found a compelling signal for the JPC = 1−+ exotic meson , from which we can

extrapolate a physical mass of 1.74(24) GeV. Thus for the first time in lattice studies, we
find a 1−+ mass in agreement with the π1(1600) candidate.

The χ2 interpolating field appears to be extremely useful for avoiding contamination

from the a1η′ channel, and thus is an excellent choice for this kind of study.
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Note: decay channel = 4 quarks, so at large quark masses 
expect 1-+ to become stable as seen here
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Abstract. We present an unquenched calculation of the quark propagator in Landau gauge with
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on two lattices with different lattice spacings and similar physical volume. We use configurations
generated with an improved staggered (“Asqtad”) action by the MILC collaboration.
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Due to the difficulties of simulating dynamical fermions, most of the QCD simulations

in the past were done in the quenched approximation, that is, ignoring the dynamics

of sea quarks. In the quenched approximation the determinant of the Dirac operator is

replaced by a constant. This would be reasonable if quarks were very heavy, but as they

are not, this approximation results in uncontrolled systematic errors that can be as large

as 30% [1].
Computing resources now available are powerful enough to treat up, down and strange

quarks dynamically. In particular there has been a great deal of progress using the stag-

gered formalism for lattice fermions.We have calculated the gluon and quark propagator

in Landau gauge using configurations generated by the MILC collaboration [2, 3] avail-

able from the Gauge Connection http://www.qcd-dmz.nersc.gov.

The MILC configurations were generated with the O(a2) one-loop Symanzik-
improved Lüscher–Weisz gauge action. The dynamical configurations use the Asqtad

quark action, an O(a2) Symanzik-improved staggered fermion action. First results for
the gluon propagator and quark propagator in full QCD were published in Ref. [4] and

Ref. [5] respectively. We here extend those results by using a finer lattice. As well as

being interesting in themselves, the study of the propagators is proving to be a fruitful
area of interaction between lattice gauge theory and Dyson-Schwinger equations. See,

for example, Refs. [6, 7].

Effects of dynamical sea-quarks

First we discuss the gluon dressing function, q2D(q), where D(q) = 〈A(q)A(−q)〉, is
the gluon propagator. The addition of dynamical quarks to the gauge fields produces a



Details of simulations
TABLE 1. Lattice parameters used in this study. The dynamical con-

figurations each have two degenerate light quarks (up/down) and a

heavier quark (strange).

Dimensions ! a Bare Quark Mass #Config

283×96 7.09 0.090 fm 14.0 MeV, 67.8 MeV 108

283×96 7.11 0.090 fm 27.1 MeV, 67.8 MeV 110

203×64 6.76 0.125 fm 15.7 MeV, 78.9 MeV 203

203×64 6.79 0.125 fm 31.5 MeV, 78.9 MeV 249

203×64 6.81 0.125 fm 47.3 MeV, 78.9 MeV 268

203×64 6.83 0.125 fm 63.1 MeV, 78.9 MeV 318

FIGURE 1. The gluon dressing function in Landau gauge is left. Full triangles correspond to the

quenched calculation, while open circles correspond to 2+1 flavor QCD. As the lattice spacing and volume

are the same, the difference between the two results is entirely due to the presence of quark loops. Right is

the comparison of the unquenched (full QCD) and quenched quark propagator for non-zero quark mass.

The mass function for the unquenched dynamical-fermion propagator has been interpolated so that it

agrees with the quenched mass function for ma = 0.01 at the renormalization point, q = 3 GeV. For the

unquenched propagator this corresponds to a bare quark mass of ma= 0.0087.

clearly visible effect in the dressing function in the region of the infrared hump. Un-

quenching results in a reduction of around 30% at 1 GeV. The qualitative features of the

propagator – enhancement of the intermediate infrared momenta followed by suppres-

sion in the deep infrared – are, however, unchanged. Spectral positivity is violated in full

QCD just as in the quenched theory, something that will be discussed in more detail in

an upcoming publication.

On the right-hand side of Fig. 1 we compare both quenched and dynamical data for the

quark mass function. For the comparison, we select a bare quark mass for the quenched

case (ma = 0.01) and interpolate the dynamical mass function so that it agrees with

the quenched result at the renormalization point, q = 3 GeV. The quark propagator is

not strongly altered by the presence of sea quarks. The dynamical mass generation is
somewhat supressed, the quark mass function at zero four-momentum being reduced by

about 20% in the chiral limit. For a given bare quark mass, the running mass is larger

in full QCD than in quenched QCD. The wavefunction renormalization function, Z, is



Quenched vs Unquenched

TABLE 1. Lattice parameters used in this study. The dynamical con-

figurations each have two degenerate light quarks (up/down) and a

heavier quark (strange).

Dimensions ! a Bare Quark Mass #Config

283×96 7.09 0.090 fm 14.0 MeV, 67.8 MeV 108

283×96 7.11 0.090 fm 27.1 MeV, 67.8 MeV 110

203×64 6.76 0.125 fm 15.7 MeV, 78.9 MeV 203

203×64 6.79 0.125 fm 31.5 MeV, 78.9 MeV 249

203×64 6.81 0.125 fm 47.3 MeV, 78.9 MeV 268

203×64 6.83 0.125 fm 63.1 MeV, 78.9 MeV 318

FIGURE 1. The gluon dressing function in Landau gauge is left. Full triangles correspond to the

quenched calculation, while open circles correspond to 2+1 flavor QCD. As the lattice spacing and volume

are the same, the difference between the two results is entirely due to the presence of quark loops. Right is

the comparison of the unquenched (full QCD) and quenched quark propagator for non-zero quark mass.

The mass function for the unquenched dynamical-fermion propagator has been interpolated so that it

agrees with the quenched mass function for ma = 0.01 at the renormalization point, q = 3 GeV. For the

unquenched propagator this corresponds to a bare quark mass of ma= 0.0087.

clearly visible effect in the dressing function in the region of the infrared hump. Un-

quenching results in a reduction of around 30% at 1 GeV. The qualitative features of the

propagator – enhancement of the intermediate infrared momenta followed by suppres-

sion in the deep infrared – are, however, unchanged. Spectral positivity is violated in full

QCD just as in the quenched theory, something that will be discussed in more detail in

an upcoming publication.

On the right-hand side of Fig. 1 we compare both quenched and dynamical data for the

quark mass function. For the comparison, we select a bare quark mass for the quenched

case (ma = 0.01) and interpolate the dynamical mass function so that it agrees with

the quenched result at the renormalization point, q = 3 GeV. The quark propagator is

not strongly altered by the presence of sea quarks. The dynamical mass generation is
somewhat supressed, the quark mass function at zero four-momentum being reduced by

about 20% in the chiral limit. For a given bare quark mass, the running mass is larger

in full QCD than in quenched QCD. The wavefunction renormalization function, Z, is

TABLE 1. Lattice parameters used in this study. The dynamical con-

figurations each have two degenerate light quarks (up/down) and a

heavier quark (strange).

Dimensions ! a Bare Quark Mass #Config

283×96 7.09 0.090 fm 14.0 MeV, 67.8 MeV 108

283×96 7.11 0.090 fm 27.1 MeV, 67.8 MeV 110

203×64 6.76 0.125 fm 15.7 MeV, 78.9 MeV 203

203×64 6.79 0.125 fm 31.5 MeV, 78.9 MeV 249

203×64 6.81 0.125 fm 47.3 MeV, 78.9 MeV 268

203×64 6.83 0.125 fm 63.1 MeV, 78.9 MeV 318

FIGURE 1. The gluon dressing function in Landau gauge is left. Full triangles correspond to the

quenched calculation, while open circles correspond to 2+1 flavor QCD. As the lattice spacing and volume

are the same, the difference between the two results is entirely due to the presence of quark loops. Right is

the comparison of the unquenched (full QCD) and quenched quark propagator for non-zero quark mass.

The mass function for the unquenched dynamical-fermion propagator has been interpolated so that it

agrees with the quenched mass function for ma = 0.01 at the renormalization point, q = 3 GeV. For the

unquenched propagator this corresponds to a bare quark mass of ma= 0.0087.

clearly visible effect in the dressing function in the region of the infrared hump. Un-

quenching results in a reduction of around 30% at 1 GeV. The qualitative features of the

propagator – enhancement of the intermediate infrared momenta followed by suppres-

sion in the deep infrared – are, however, unchanged. Spectral positivity is violated in full

QCD just as in the quenched theory, something that will be discussed in more detail in

an upcoming publication.

On the right-hand side of Fig. 1 we compare both quenched and dynamical data for the

quark mass function. For the comparison, we select a bare quark mass for the quenched

case (ma = 0.01) and interpolate the dynamical mass function so that it agrees with

the quenched result at the renormalization point, q = 3 GeV. The quark propagator is

not strongly altered by the presence of sea quarks. The dynamical mass generation is
somewhat supressed, the quark mass function at zero four-momentum being reduced by

about 20% in the chiral limit. For a given bare quark mass, the running mass is larger

in full QCD than in quenched QCD. The wavefunction renormalization function, Z, is

TABLE 1. Lattice parameters used in this study. The dynamical con-

figurations each have two degenerate light quarks (up/down) and a

heavier quark (strange).

Dimensions ! a Bare Quark Mass #Config

283×96 7.09 0.090 fm 14.0 MeV, 67.8 MeV 108

283×96 7.11 0.090 fm 27.1 MeV, 67.8 MeV 110

203×64 6.76 0.125 fm 15.7 MeV, 78.9 MeV 203

203×64 6.79 0.125 fm 31.5 MeV, 78.9 MeV 249

203×64 6.81 0.125 fm 47.3 MeV, 78.9 MeV 268

203×64 6.83 0.125 fm 63.1 MeV, 78.9 MeV 318

FIGURE 1. The gluon dressing function in Landau gauge is left. Full triangles correspond to the

quenched calculation, while open circles correspond to 2+1 flavor QCD. As the lattice spacing and volume

are the same, the difference between the two results is entirely due to the presence of quark loops. Right is

the comparison of the unquenched (full QCD) and quenched quark propagator for non-zero quark mass.

The mass function for the unquenched dynamical-fermion propagator has been interpolated so that it

agrees with the quenched mass function for ma = 0.01 at the renormalization point, q = 3 GeV. For the

unquenched propagator this corresponds to a bare quark mass of ma= 0.0087.

clearly visible effect in the dressing function in the region of the infrared hump. Un-

quenching results in a reduction of around 30% at 1 GeV. The qualitative features of the

propagator – enhancement of the intermediate infrared momenta followed by suppres-

sion in the deep infrared – are, however, unchanged. Spectral positivity is violated in full

QCD just as in the quenched theory, something that will be discussed in more detail in

an upcoming publication.

On the right-hand side of Fig. 1 we compare both quenched and dynamical data for the

quark mass function. For the comparison, we select a bare quark mass for the quenched

case (ma = 0.01) and interpolate the dynamical mass function so that it agrees with

the quenched result at the renormalization point, q = 3 GeV. The quark propagator is

not strongly altered by the presence of sea quarks. The dynamical mass generation is
somewhat supressed, the quark mass function at zero four-momentum being reduced by

about 20% in the chiral limit. For a given bare quark mass, the running mass is larger

in full QCD than in quenched QCD. The wavefunction renormalization function, Z, is

Note that the effect of unquenching is to move propagators toward 
their tree-level form, i.e., more Abelian-like as expected naively



Scaling of quark propagator

Test of scaling for full QCD (i.e., unquenched) quark propagator:
• Quark propagator is a fundamental quantity in QCD. Shows nonperturbative be-
havior such as mass generation explicitly.
• Comparison of wave-function renormalization function Z(q2) and mass function
M(q2) for two different 2+1 flavor MILC lattices renormalized to agree at 3 GeV
and with similar volumes.
• The triangles corresponds to a 283 × 96 lattice with spacing a = 0.09 fm, while
the open circles are for a 203 × 64 lattice with spacing a = 0.125 fm (obtained by
interpolating four different set of light quark masses).
Good scaling is seen!



Conclusions
The CSSM continues to do well in its post “block 
funding” era.  (Note: future Cairns workshops may be 
a little more difficult ...)

Range of results shown by Ben, Derek and I are a 
good sample of current lattice research efforts: baryon 
masses and pentaquarks, flux tubes and QCD vacuum, 
e.m. structure of octet, exotics and hybrids, 
unquenched quark and gluon propagators, ...

Future may include finite T and density, unquenched 
simulations, and other activities.

New computer to arrive by end of year will help.


