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1. Introduction

Motivation

• Understanding of hadron dynamics based on lattice QCD

Strict test of Standard model requires comparison of theory and experi-

ment. But one of main theoretical uncertainties is hadronic effect.

Especially ππ scattering case, many works employed effective theory such

as chiral perturbation theory (ChPT) to estimate that effect.

In order to calculate the scattering based on QCD,
non-perturbative method is required.

⇓
One of possible methods is lattice QCD.
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• ’Dynamical’ physical quantity

Most of lattice studies have focused on ’static’ physical quantities, e.g.

hadron spectrum. ⇓
non-perturbative test of QCD

It is also important to study ’dynamical’ physical quantities, e.g. scattering

phase shift and decay width, beyond the static physical quantities.

• I = 2 ππ scattering is one of simple hadron scatterings.

Only scattering (ππ) state exists in I = 2 system at low energy region.

In I = 0 or 1 system, not only scattering (ππ) state but also unstable (σ

or ρ) states exist.

• First step toward decays of hadrons

I = 1 Channel ρ → ππ

I = 0 Channel σ → ππ

I = 0,2 Channel K → ππ direct calculation

( Traditional calculation method is K → 0 and K → π relate to K → ππ with ChPT.)

3



Present status of I = 2 ππ scattering on lattice
Isospin I = 2 S-wave ππ Scattering amplitude

T (p) =
16πE

p

1

2i

(

e2iδ(p) − 1
)

, a0 = lim
p→0

δ(p)/p, E = 2
√

m2
π + p2

scattering length a0 and scattering phase shift δ(p)
were calculated by many groups with finite volume method.

Lüscher, CMP105 153(1986)
NPB354 531(1991)

’92 Sharpe, Gupta and Kilcup ’03 BGR Collaboration
’93 Gupta, Patel and Sharpe Kim

Kuramashi et al. ’04 CP-PACS Collaboration
’99 JLQCD Collaboration Du, Meng, Miao and Liu
’01 Liu, Zhang, Chen and Ma ’05 CP-PACS Collaboration
’02 CP-PACS Collaboration BGR Collaboration

NPLQCD Collaboration
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I = 2 ππ scattering length a0
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5



I = 2 ππ scattering phase shift δ(p)
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Quenched a = 0.1 fm Nf = 2 a → 0

Wilson gauge Iwasaki gauge
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L3 ≈ (2.5 ∼ 4.8 fm)3 L3 ≈ (2.5 fm)3

CP-PACS PRD67 014502(2003) CP-PACS PRD70 074513(2004)
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I = 1 ππ scattering phase shift δ(p)

Nf = 2 a−1 = 0.91 fm

Iwasaki gauge

Tad-pole imp. clover quark

mπ/mρ = 0.42 L = 2.53 fm

N. Ishizuka and K. Sasaki

at Lattice2006

tan δ(
√

s) = g2 p3

√
s(M2

R −√
s)

Parameters: g and MR

Γρ = g2 · p3
ρ/M3

ρ
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I = 1 ππ scattering phase shift δ(p)

Nf = 2 a−1 = 0.91 fm

Iwasaki gauge

Tad-pole imp. clover quark

mπ/mρ = 0.42 L = 2.53 fm

Ishizuka and Sasaki

at Lattice2006

MR = 0.883 ± 0.031

mρ = 0.857 ± 0.015

Γρ = 130 ± 31 MeV

(exp. 150 MeV)
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δ(p) was evaluated with

1. Diagonalization of correlation function matrix,

Lüscher and Wolff, NPB339 222(1990)

2. Finite volume method,

tan δ(p) =
π3/2q

Z00(1; q2)
for S-wave (l = 0),

where p2 =

(

2π

L

)2

q2, Z00(1; q2) =
1√
4π

∑

n∈Z3

1

n2 − q2

In previous works for I = 2 ππ scattering, p2 is determined from two-pion

energy E = 2
√

m2
π + p2 through time correlator.

In derivation of method, there is important assumption of size of interac-

tion.

However, we did not confirm assumption is satisfied in previous works.

Our naive question;

Assumption is valid or not in present calculation.
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2. Finite volume method
Lüscher, CMP105 153(1986)

NPB354 531(1991)

Conditions of finite volume method

1. Finite volume L3 in center of mass system

with periodic boundary condition in spatial directions

2. Two-pion wave function satisfies effective Schrödinger equation

(

∇2 + p2
)

φ(r) =

∫

dr′Up(r, r
′)φ(r′)

Up(r, r′) : Fourier transform of modified Bethe-Salpeter kernel
r : relative coordinate of two pions, π(x)π(y) r = x − y

p2 = E2
ππ/4 − m2

π = (2π/L)2 · q2, q2 /∈ Z
mπ is independent of L
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2. Finite volume method
Lüscher, CMP105 153(1986)

NPB354 531(1991)

Conditions of finite volume method

1. Finite volume L3 in center of mass system

with periodic boundary condition in spatial directions

2. Two-pion wave function satisfies effective Schrödinger equation
(

∇2 + p2
)

φ(r) = Vp(r)φ(r)

Vp(r) : effective scattering potential
r : relative coordinate of two pions, π(x)π(y) r = x − y

p2 = E2
ππ/4 − m2

π = (2π/L)2 · q2, q2 /∈ Z
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2. Finite volume method
Lüscher, CMP105 153(1986)

NPB354 531(1991)

Conditions of finite volume method
1. Finite volume L3 in center of mass system

with periodic boundary condition in spatial directions

2. Two-pion wave function satisfies effective Schrödinger equation
(

∇2 + p2
)

φ(r) = Vp(r)φ(r)

Important assumption

1. Two-pion interaction is small.
→ Interaction range R exists.

Vp(r)

{

6= 0 (∼ e−cr)(r ≤ R)
= 0 (∼ e−cr)(r > R)

2. Vp(r) is not affected by boundary. → R < L/2

V(r)=0

V(r)=0

R

L
Helmholtz equation

(

∇2 + p2
)

φ(r) = 0 in r > R (R < L/2)
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One-dimension L case with periodic boundary condition

Two-pion wave function satisfies periodic boundary condition.

Free case Interacting case
(

∇2 + p2
0

)

φ(r) = 0
(

∇2 + p2
)

φ(r) = Vp(r)φ(r)

0−L/2 L/2 0−L/2 L/2

Interaction range

p2
0 = (2π/L)2 · n, n is integer.

L, δ(p) → p2 = (2π/L)2 · q2,
q2 is not integer.

Vp(r) 6= 0 in r < R

p2 has information of δ(p).
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Three-dimensional case with periodic boundary condition

In r > R (Vp(r) = 0), φ(r) satisfies the Helmholtz equation

(∇2 + p2)φ(r) = 0.

1. Solution in r > R (neglecting l ≥ 4 scattering)

φ(r) = C · G(r; p)

= C ·
∑

n∈Z3

eir·n(2π/L)

n2 − q2
, q2 =

(

Lp

2π

)2

2. Expansion by spherical Bessel jl(pr) and Noeman nl(pr) functions:

φ(r) = β0(p)n0(pr) +
∑

lm

√
4πYlm(θr, ϕr)αl(p)jl(pr)

3. Scattering phase shift δl(p) is defined by

tan δl(p) =
βl(p)

αl(p)
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From relations 1.–3. Lüscher found

finite volume formula for S-wave (l = 0)

tan δ(p) =
π3/2q

Z00(1; q2)

where p2 =

(

2π

L

)2

q2, Z00(1; q2) =
1√
4π

∑

n∈Z3

1

n2 − q2

Field theoretical derivation has already done.

C.-J.D. Lin et al. NPB619 465(2001)

CP-PACS PRD71 094504(2005)
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Motivations of this work

1. Is it possible to calculate wave function?

Yes.

Two-pion wave function is useful to check validity of assumptions.

2. ππ interaction is small enough in present calculation?

Yes, at least in L = 3.9 fm box.

Check assumption of finite volume formula

∇2φ(r)

φ(r)
= Vp(r) − p2

1. Vp(r) ≈ 0 in |r| > R, R : interaction range

2. R is included in finite volume (R < L/2)

3. Can we determine physical quantity from wave function?

Yes, if assumptions are satisfied.

In derivation, δ(p) is determined by wave function in r > R.

In principle we can obtain δ(p) from wave function.
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4. Definition of wave function
C.-J.D. Lin et al. NPB619 465(2001)
J. Balog et al. NPB618[FS] 315(2001)

Definition of wave function φ(r)

φ(r) =
∑

R

∑

X

〈0|π(R[r] + X)π(X)|ππ; p〉,

∑

X

: projection to zero total momentum

∑

R

: projection to A+
1 sector ∼ S-wave up to l ≥ 4

|ππ; p〉 : two-pion state with Eππ = 2

√

m2
π + p2

We calculate wave function on lattice

Gππ(r, t) =
∑

R

∑

X

〈0|π(R[r] + X, t)π(X, t)(W (t0)W (t0 + 1))†|0〉

→ C · φ(r) · e−Eππt, t � t0 + 1, Eππ = 2

√

m2
π + p2

Wall source : W (t) =
∑

x

π(x, t)
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4. Definition of wave function
C.-J.D. Lin et al. NPB619 465(2001)
J. Balog et al. NPB618[FS] 315(2001)

Definition of wave function φ(r)

φ(r) =
∑

R

∑

X

〈0|π(R[r] + X)π(X)|ππ; p〉,

Calculation of wave function

Gππ(r, t) =
∑

R

∑

X

〈0|π(R[r] + X, t)π(X, t)(W (t0)W (t0 + 1))†|0〉

→ C · φ(r) · e−Eππt, t � t0 + 1, Eππ = 2

√

m2
π + p2

Wall source : W (t) =
∑

x

π(x, t)

Gππ(t) =
∑

r

Gππ(r, t) is usual wall-point two-pion four-point function.

φ(r) =
Gππ(r, t)

Gππ(r0, t)
up to normalization
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Parameters

• Only ground state (p2 ≈ 0) ∼ only scattering length a0

• Iwasaki gauge action β = 2.334

Clover quark action with tad-pole improved cSW = 1.398

a−1 = 1.207[GeV], a = 0.1632[fm]

• quenched approximation

• L3 × T = 243(203,163) × 80 L = 3.92(3.26,2.61) fm

• Source position t0 = 12

• mπ = 0.52,0.58,0.66,0.76,0.85[GeV]

• # of Conf. = 506
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5. Results

Wave function φ(r) at (z, t) = (0,52) slice

normalized at r0 ∼ 9 with mπ = 0.52 GeV
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5. Results

Wave function φ(r) at (z, t) = (0,52) slice

normalized at r0 ∼ 9 with mπ = 0.52 GeV

0 4 8 12 16 20 24

r

0.55

0.7

0.85

1

φ(r)/φ(r
0
)  r

0
~9

mπ=0.52[GeV]

t=52

Signal is very clean.

φ(r) increases as r increases, which is consistent with repulsive interaction

of I = 2 ππ channel.
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Effective potential Vp(r) − p2 ≡ ∇2φ(r)

φ(r)
at (z, t) = (0,52) slice

with mπ = 0.52 GeV
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Repulsive, localized effective potential is seen.

We do not focus on form or structure of effective potential.

(∇2φ(r))/φ(r) in large r region seems to be flat.
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Effective potential Vp(r) − p2 ≡ ∇2φ(r)

φ(r)
at t = 52 with mπ = 0.52 GeV
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flat 

Flat region starts from smaller than L/2 = 12.

Interaction range R ≤ L/2. → Assumption is satisfied.

Value in flat region is consistent with −p2 obtained from Eππ = 2
√

m2
π + p2.

R does not have direct relation to effective range r0
p cot δ(p) = 1/a + r0p2/2 + O(p4)
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Time dependence of (∇2φ(r))/φ(r) with mπ = 0.52 GeV

Dashed line :

−p2 from

Eππ = 2
√

m2
π + p2

(∇2φ(r))/φ(r) is sta-

ble in t ≥ 44.

In larger t and r,

(∇2φ(r))/φ(r) agrees

with −p2.
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mπ dependence of effective potential Vp(r) − p2 and Vp(r)/p2 at t = 52

Vp(r) − p2 ≡ ∇2φ(r)

φ(r)

Vp(r)

p2
≡ ∇2φ(r) + p2

p2φ(r)

Vp(r) − p2 at all mπ in

large r are flat and agree

with p2 from time corre-

lator.

Vp(r)/p2 agrees with zero

at r ≤ L/2 = 12.

Assumptions are satisfied

in all mπ region.

Interaction range R

seems to increase as mπ

increases.
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Physical quantities from φ(r)
Two parameters fit C, q2 of wave function φ(r) in r > R ( R ∼ 9 )

Solution of Helmholtz equation on L3

G(r) = C
∑

n∈Z3

eir·n(2π/L)

n2 − q2

8 12 16 20

r

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

φ(r)/φ(r
0
)  r

0
~9

fit result

We can fit φ(r) in r > R very well.

O(100) data is fitted by two pa-

rameters.

p2 = (2π/L)2 ·q2 is extracted from

φ(r).

→ We can obtain δ(p) from p2

through finite volume formula.
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Comparisons of a0/mπ

1. p2 from Gππ(t) ≡
∑

r Gππ(r, t) → A · e−Eππt, Eππ = 2
√

m2
π + p2

2. p2 from two parameter fit of φ(r) at t = 52

3. p2 from Vp(r) − p2 at t = 52 with constant fit in r > R

obtain a0 using finite volume method

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

mπ
2
[GeV

2
]

−1.8

−1.6

−1.4

−1.2

−1

−0.8

time correlator

φ(r) at t=52

V(r)−p
2
 at t=52

a
0
/mπ[1/GeV

2
]

Consistency is very well.

Errors of φ(r) and Vp(r) − p2 are

smaller than Gππ(t) in L = 24.

• Eππ − 2mπ ∝ 1/L3

disadvantage of Gππ(t)

• large # of φ(r) in r > R

advantage of φ(r) and Vp(r) − p2
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Comparisons of a0/mπ

1. p2 from Gππ(t) ≡
∑

r Gππ(r, t) → A · e−Eππt, Eππ = 2
√

m2
π + p2

2. p2 from two parameter fit of φ(r) at t = 52

3. p2 from Vp(r) − p2 at t = 52 with constant fit in r > R

obtain a0 using finite volume method
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V(r)−p
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 at t=52

poly.

log

a
0
/mπ[1/GeV

2
]

Fit with Vp(r) − p2

Fitting forms

• A1 + B1m2
π + C1m4

π

• A2/(1 + B2m2
π log(m2

π/C2))

Both fits are reasonable.

a0/mπ [1/GeV2] at chiral limit

−2.117(83) (A1)
−2.39(16) (A2)
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Smaller volume L = 20 (3.27 fm) at t = 52

Vp(r) − p2 ≡ ∇2φ(r)

φ(r)

Vp(r)

p2
≡ ∇2φ(r) + p2

p2φ(r)

Vp(r)−p2 at all mπ are flat

and agree with p2 from

time correlator in large r.

But Vp(r)/p2 seems to

disagree with zero at r ≤
L/2 = 10 at heavier mπ.

Because interaction

range R seems to in-

crease as mπ increases.
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Volume dependence of a0/mπ

Vp(r)/p2 6= 0 at r = L/2 in

heavier mπ.

φ(r) and Vp(r) − p2 analyses

are not applied.

However,

significant volume depen-

dence of a0/mπ obtained

from Gππ(t) (T ) is not seen

in L = 16,20,24 (2.61,

3.26, 3.92 fm).

Effects of deformation of two-pion interaction due to finite size effects is

smaller than statistical error in L ≥ 2.6 fm.
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6. Conclusions

• We have investigated validity of finite volume formula.

Assumptions are satisfied in L = 3.92 fm.

R increases as mπ increases.

Effects of deformation of two-pion interaction is smaller than statistical

error in L ≥ 2.6 fm.

• Physical quantity can be extracted from two-pion wave function

◦ solution of Helmholtz equation

◦ flat region of effective potential

Consistency between two methods and traditional method is very well.

Statistical error of two methods are smaller than traditional method at

larger volume.

34



Future works

• Higher energy state

Scattering phase shift from two-pion wave function

• Non-zero total momentum system

Similar wave function discussion has been done

in Rummukainen and Gottlieb NPB450, 397(1995).

• Other scattering system

wave function of 1S0 NN scattering system, Ishii et al. at Lattice2006

• Decay system
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∆I = 3/2K → ππ decay
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Calculation of Re(ε′/ε) with reduction method
(K → 0, K → π) → (K → ππ)

’03 CP-PACS, RBC Collaboration

Re

(

ε′

ε

)

=

{

(−7.7 ± 2.0) × 10−4 (CP−PACS)

(−4.0 ± 2.3) × 10−4 (RBC)

Sign is opposite to experiment. (Re
(

ε′/ε
)

= 16.6 ± 1.6)

Main systematic errors

• Reduction method
• Leading order Chiral perturbation theory(ChPT)
• Quenched approximation
• Finite lattice spacing

Reduction method may cause large systematic error, because final state
interaction effect is expected to play an important role in the decay process.

To get rid of the systematic errors,
it is important to calculate with direct method.

(without reduction method and ChPT)
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Problems of direct calculation

1. K → π(p)π(−p) with p = 206 MeV

We cannot directly treat K → π(p)π(−p) by traditional analysis method,

because |π(0)π(0)〉 is ground state. ‘90 Maiani and Testa

solutions: Diagonalization (’02 Ishizuka), H-Parity boundary condition (’04 Kim)

Non-zero total momentum (Lab) system (’05 Boucaud et al.)

|π(P )π(0)〉 is ground state, which relates to |π(p)π(−p)〉 with p 6= 0 in

center-of-mass(CM) system.

2. Calculation on finite volume (2-3 fm)

Finite volume effect of two-particle state is large, we need LL formula

to connect decay amplitude in infinite volume to finite volume.

|ACM
∞ | = F (Eππ, δ)|MCM

V | (‘01 Lellouch and Lüscher)

However, LL formula is in CM system.

Extension of LL formula to Lab system ’05 Kim et al. and Christ et al.

|ACM
∞ | = F (Eππ, δ, γ)|MLab

V |

To apply two methods to ∆I = 3/2 K → ππ decay
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I = 2 ππ Scattering phase shift
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p
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[GeV

2
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0

m
u
=0.015

m
u
=0.03

m
u
=0.04

m
u
=0.05

ChPT+exp.

δ(deg.)

CM

Lab

To obtain
∂δ

∂p
, we employ

global fitting for m2
π and p2.

tan δ(p)

p

Eππ

2
= A10m2

π + A20m4
π

+A01p2 + A11m2
πp2

where Eππ = 2

√

m2
π + p2

A10[GeV−2] A20[GeV−4] A01[GeV−2] A11[GeV−4] χ2/d.o.f.

-1.813(99) 1.26(21) -2.8(1.0) 3.2(2.2) 0.98

∂δ/∂p is extracted from fit result.(Solid lines)
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Preliminary result of ReA2[GeV]

CM p~0.08GeV

Lab p~0.26GeV

p=0.206 GeV

0 0.1 0.2 0.3 0.4

mπ
2
 [GeV

2
]

0

4e−08

8e−08

1.2e−07

1.6e−07

experiment

ReA
2
[GeV]

Preliminary

Non-perturbative renormaliza-

tion at µ = 1.44[GeV]

’04 Kim for RBC

Physical point m2
K = 4(m2

π + p2)

mπ = 0.140[GeV]

mK = 0.498[GeV]

p = 0.206[GeV]

To extract ReA2 at physical

point, we employ global fitting

of ReA2 for m2
π and p2.

(p2 = m2
K/4 − m2

π)

Fitting form C10m2
π + C01p2 + C11m2

πp2

Calculation with non-zero total momentum is possible.
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Preliminary result of ReA2[GeV] (cont’d)
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this work

0

5e−09

1e−08

1.5e−08

2e−08
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RBC K−>π (µ=1.51GeV)

CP−PACS K−>π (µ=1.3GeV)

JLQCD K−>ππ (µ=2GeV)

experiment

ReA
2
[GeV] Preliminary

Physical point m2
K = 4(m2

π + p2)

mπ = 0.140[GeV]

mK = 0.498[GeV]

p = 0.206[GeV]

To extract ReA2 at physical

point, we employ global fitting

of ReA2 for m2
π and p2.

(p2 = m2
K/4 − m2

π)

Fitting form C10m2
π + C01p2 + C11m2

πp2

ReA2 experiment this work CP-PACS RBC JLQCD

[×10−8GeV] 1.50 1.59(40) 1.53(19) 1.151(52) 1.64(22)

Error is large, but result is consistent with experiment.
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