HAPPEX: Measuring Strange Quark Contributions to the Charge and Magnetic Distributions of the Proton

Kent Paschke

University of Virginia

MENU 2010
Williamsburg, VA
June 2, 2010
The Sea in the Nucleon

The nucleon contains three quarks... embedded in a teeming sea of gluons and additional quarks and anti-quarks.

The sea is dominated by the three light quark flavors: up, down, strange.

Quark sea contributions to nucleon static properties are unsettled.

strangeness contribution must be from the sea

Spin polarized DIS
\[\Delta S = 0.0-0.10 \]

Strange mass
\[\pi N \text{ scattering: 0-30\%} \]

Strange charge radius and magnetic moment

Goal: Determine the contributions of the strange quark sea \((\bar{s}s)\) to the charge and magnetization distributions in the nucleon: “strange form factors” \(G_{S_E}^s\) and \(G_{S_M}^s\)
Expectations for Nucleon Strangeness

Models - a non-exhaustive list:
kaon loops, vector dominance, Skyrme model,
chiral quark model, dispersion relations, NJL model,
quark-meson coupling model, chiral bag model,
HBChPT, chiral hyperbag, QCD equalities, ...

What about QCD on the lattice?
- Dong, Liu, Williams PRD 58(1998)074504
- Wang et al, PRC 79(2009)065202
- Doi et al., hep-lat 0903.3232
these suggest very small effects

might the strange quark behave in the same way?

![Image of neutron and proton distributions](image-url)
Flavor-separating the Vector Form Factors

\[
G_E^p = \frac{2}{3} G_E^{u,p} - \frac{1}{3} G_E^{d,p} - \frac{1}{3} G_E^s \\
G_E^n = \frac{2}{3} G_E^{u,n} - \frac{1}{3} G_E^{d,n} - \frac{1}{3} G_E^s
\]
Flavor-separating the Vector Form Factors

\[G^p_E = \frac{2}{3} G_{E}^{u,p} - \frac{1}{3} G_{E}^{d,p} - \frac{1}{3} G_{E}^s \]

\[G^n_E = \frac{2}{3} G_{E}^{u,n} - \frac{1}{3} G_{E}^{d,n} - \frac{1}{3} G_{E}^s \]
Flavor-separating the Vector Form Factors

\[G^p_E = \frac{2}{3} G^u_E - \frac{1}{3} G^d_E - \frac{1}{3} G^s_E \]

\[G^n_E = \frac{2}{3} G^d_E - \frac{1}{3} G^u_E - \frac{1}{3} G^s_E \]

Two equations and three unknowns
Flavor-separating the Vector Form Factors

\[G^p_E = \frac{2}{3} G^u_E - \frac{1}{3} G^d_E - \frac{1}{3} G^s_E \]

Two equations and three unknowns

\[G^m_E = \frac{2}{3} G^d_E - \frac{1}{3} G^u_E - \frac{1}{3} G^s_E \]

Three equations and three unknowns

Measure neutral weak
proton form-factor

Measuring all three enables separation of up, down and strange contributions

\[G^{p,Z}_E = \left(1 - \frac{8}{3} \sin^2 \theta_W \right) G^u_E - \left(1 - \frac{4}{3} \sin^2 \theta_W \right) G^u_E - \left(1 - \frac{4}{3} \sin^2 \theta_W \right) G^u_E \]
Measuring Strange Vector Form Factors

\[A = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \propto \frac{-G_F Q^2}{4\pi\alpha\sqrt{2}} \left(\frac{A_E + A_M + A_A}{\sigma_p} \right) \sim 10^{-4} Q^2 / \text{GeV}^2 \]

Interference with EM amplitude makes Neutral Current (NC) amplitude accessible

For a proton:

\[A_E = \epsilon G_E^p G_Z^E \quad A_M = \tau G_M^p G_M^Z \quad A_A = (1 - 4 \sin^2 \theta_W) \epsilon G_M^p \tilde{G}_A \]

Forward angle

Backward angle

Difficult radiative corrections accompany the axial form-factor

For spin=0, T=0 (\(^4\)He):

\(G_s^E \) only!

nuclear corrections:
forward angle, low \(Q^2 \) only

For deuterium:

Enhanced \(G_A \)

Back-angle quasi-elastic.
The Axial Term and the Anapole Moment

Axial form-factors G_A^p, G_A^n:

$$\tilde{G}_A^{p,n} = -\tau_3 \left(1 + R_A^{T=1} \right) G_A^{(3)} + \sqrt{3} R_A^{T=0} G_A^{(8)} + \Delta s$$

- Biggest uncertainty comes from radiative corrections

Anapole Moment Correction:
Multiquark weak interaction modifies axial form-factor

- Large uncertainty estimated to account for specific uncalculated terms
- Uncertainty dominates axial term
- Difficult to achieve tight experimental constraint

This adds a new degree of freedom to the strange quark extraction (really, two, for both isoscaler and isovector anapole terms)
Experimental Overview

HAPPEX

- Precision spectrometer, integrating
- Open geometry, integrating

SAMPLE

- $G_M^s, (G_A)$ at $Q^2 = 0.1 \text{ GeV}^2$

A4

- Open geometry
- Fast counting calorimeter for background rejection

G0

- Open geometry
- Fast counting with magnetic spectrometer + timing for background rejection

Results

- $G_E^s + 0.39 G_M^s$ at $Q^2 = 0.48 \text{ GeV}^2$
- $G_E^s + 0.08 G_M^s$ at $Q^2 = 0.1 \text{ GeV}^2$
- G_E^s at $Q^2 = 0.1 \text{ GeV}^2$ (^4He)
- $G_E^s + 0.48 G_M^s$ at $Q^2 = 0.62 \text{ GeV}^2$
- $G_E^s + \eta G_M^s$ over $Q^2 = [0.12, 1.0] \text{ GeV}^2$
- G_M^s, G_A^e at $Q^2 = 0.23, 0.62 \text{ GeV}^2$
Goal: Small Asymmetry Measured to a Few Percent
Goal: Small Asymmetry Measured to a Few Percent

Psuedo-random, rapid helicity flip

Flux ~ 1-100 MHz
Goal: Small Asymmetry Measured to a Few Percent

Pockels Cell

Psuedo-random, rapid helicity flip

Flux ~ 1-100 MHz

Measure the asymmetry to high precision, millions of times

HAPPEX-II

Pairs = 25.3 M
RMS = 538

25 million trials

0.05% precision
Goal: Small Asymmetry Measured to a Few Percent

Psuedo-random, rapid helicity flip

Flux ~ 1-100 MHz

Calorimeter

electron flux

Pairs = 25.3 M
RMS = 538

25 million trials
50 MHz @ 15 Hz
\(\sigma_A \sim 540 \text{ ppm} \)

\[\delta(A_{PV}) = \frac{540 \text{ ppm}}{\sqrt{25 \times 10^6}} \sim 110 \text{ ppb} \]
Experimental Techniques for PVeS

Statistical Precision
- High beam current, high polarization
- High power cryotargets with small density fluctuations
- Large acceptance
- Precision beam monitoring
- Large acceptance, or very forward angle, spectrometer
- Integrating Detection: low noise, linear

Systematic Accuracy - False Asymmetries
- Large acceptance or very forward angle
- Spectrometers: separate background channels, minimize re-scattered backgrounds (especially magnetized material)
- Helicity-correlated beam asymmetries small: $\frac{\Delta I}{I} < 1 \text{ ppm}, \Delta x \sim 1 \text{ nm}, \Delta E/E \sim 1 \text{ ppb}$
- Measurements of sensitivity to beam position changes
- sign flips (g-2, laser optics)

Systematic Accuracy - Normalization
- beam polarimetry
- absolute energy scale and angle measurement (Q^2)
- detector linearity
- background dilutions
HAPPEX at JLab

HRS: twin high-resolution spectrometers
- Limited acceptance (~5-8 msr) but very clean.
- Statistical FOM suitable for forward-angle studies
- 6-14° angles, 2.8-3.5 GeV
- 500 kHz - 50 MHz signal rates: analog integration

- **H$_2$ at** Q^2 ~ 0.1, 0.5, 0.62 GeV2
- **Helium-4** at Q^2 ~ 0.1 GeV2

- Highest statistical precision at specific kinematics
- Very clean isolation of 4He elastic
- Very low backgrounds (f ~ 1.5%)

clean measurement of G_M^s, G_E^s
Precision Data at $Q^2 \sim 0.1 \text{ GeV}^2$ shows small G^s

- $\sim 3\% \pm 2.3\%$ of G^p_M
- $\sim 0.2 \% \pm 0.5\%$ of G^p_E

Excellent consistency between data sets

Caution: the combined fit is approximate. Correlations due to common assumptions or sources of error are not taken into account.

For a more rigorous treatment, see published fits by:
World Data vs. Q^2

Simple fit to “leading order” in Q^2

\[G_E^s = \rho_s \tau \]
\[G_M^s = \mu_s \]

Includes only data $Q^2 < 0.3 \text{ GeV}^2$

Sizeable contributions at higher Q^2 are not still not definitively ruled out.

G0 Global error allowed to float with unit constraint
Zhu et al axial constraints are used
Includes backangle results as constraint on G_M^s
only (neglects correlations with G_E^s from extraction)
Sources of correlated error, such as electromagnetic form factor assumptions are neglected

Again, a more careful fit with somewhat different assumptions is available::
Expected data at higher Q^2

\[\eta \sim Q^2 \]

\[G_E^s \pm \eta G_M^s \]

\[Q^2 \sim 0.62 \text{ GeV}^2 \]

Data taking completed in 2009

\[\delta(G_E^s + 0.48 G_M^s) \sim 0.015 \]

Statistics-limited error bar, with leading systematic error from polarimetry

Analysis proceeding similarly to HAPPEX-I:

Beam Polarization for HAPPEX-III

- Energy-weighted integration minimizes calibration uncertainties
- Non-statistical jitter dominated by background instabilities
- Analysis still in progress

Compton: $<P> \sim 90\%$
Moller: $<P> \sim 89\%$

Expected systematic error
1-2% on each
HAPPEX-III analysis underway

(Blinded) asymmetry analysis nearly complete

Background, Q^2, polarimetry, PMT linearity analyses underway

Results expected Fall 2010
Outlook for improved precision

Anapole correction and other $\Upsilon \Upsilon$ and ΥZ box

- The uncertainties in the axial form-factor continue to complicate interpretation in terms of $G_{E/M}^s$
- Anapole uncertainty contribution to H-III: 1.5%

Charge Symmetry Breaking

Old Story: theoretical CSB estimates indicate <1% violations

New Story: effects could be large as statistical error on HAPPEx-II data

New improvements on precision (in the forward angle) may test charge symmetry

Electromagnetic Form Factors

- Limited to few percent precision (including 2-γ uncertainties)

Further improvements in precision would require additional theoretical and empirical input for interpretation
Summary

- Significant and accessible contributions are still allowed... but the range has been narrowed.

- No more than a few percent of the neutron charge or proton magnetic moment can be due to strange quarks.

- Precision data at middle Q^2 can finish the question of large contributions to the vector form-factors.

Further improvements in precision would require additional theoretical and empirical input for interpretation.