bottom and charm hadron spectroscopy from lattice QCD

\[m_u \approx m_d < m_s \sim \Lambda_{\text{QCD}} < m_c < \frac{1}{a} < m_b \]

randy.lewis@yorku.ca
Mass differences between these multiplets, eg. \(m(\Sigma^*) - m(\Sigma) \), vanish as \(m_b \to \infty \).
MDLW also have preliminary results for bb and b baryons (see LAT2009 proceedings).

ALSO:

They see a curious systematic dependence:
O_5 for Λ_b, Ξ_b versus O_{μ} for $\Sigma_b, \Xi'_b, \Omega_b$.
Fine lattice results produce systematically large splittings of (Λ_b, Ξ_b) versus $(\Sigma_b, \Xi'_b, \Omega_b)$ relative to other lattice results and experiment.

The thesis suggests a possible cause: “we cannot separate $J^p = \frac{1}{2}^+$ and $\frac{3}{2}^+$ states using the spin projection operators” for \mathcal{O}_μ. See the thesis for a thorough discussion.
ALSO:
Meinel, Detmold, Lin, Wingate LAT2009

(Preliminary. Systematic errors unavailable.)

Lewis, Woloshyn PRD, 2009

AUTHORS: u, d, s ACTION

LW: nonpert-tuned clover
NG: improved staggered
BHLLS: chirally improved
DLW: domain wall
LCMO: sea = impr. staggered
: valence = domain wall
MDLW: domain wall

ALSO:
contains valuable data for mass differences of b and bb baryons.
Meinel, Detmold, Lin, Wingate LAT2009

(Preliminary. Systematic errors unavailable.)

Lewis, Woloshyn PRD, 2009

Lewis, Woloshyn PRD, 2009

Burch, Hagan, Lang, Limmer, Schafer PRD, 2009

Detmold, Lin, Wingate NPB, 2009

Lin, Cohen, Mathur, Orginos PRD, 2009

CDF

D0

mass \ [\text{GeV/c}^2]

(Preliminary. Systematic errors unavailable.)

AUTHORS : LATTICE SPACING

LW : 0.104 fm
NG : 0.15, 0.12, 0.09 fm
BHLLS : 0.11, 0.16 fm
DLW : 0.114 fm
LCMO : 0.124 fm
MDLW : 0.11 fm

ALSO:
Na (and Gottlieb) PhD thesis, 2008 contains valuable data for mass differences of \(b \) and \(\bar{b}b \) baryons.
Meinel, Detmold, Lin, Wingate LAT2009

(Preliminary. Systematic errors unavailable.)

Meinel, Detmold, Lin, Wingate LAT2009

Lewis, Woloshyn PRD, 2009

Lewis, Woloshyn PRD, 2009

Burch, Hagan, Lang, Limmer, Schafer PRD, 2009

Lin, Cohen, Mathur, Orginos PRD, 2009

CDF

D0

ALSO:

AUTHORS: LATTICE VOLUME

LW: (2.1 fm)3

NG: (2.4 fm)3

BHLLS: (1.35 fm)3, (2.5 fm)3

DLW: (2.7 fm)3

LCMO: (2.5 fm)3

MDLW: (2.7 fm)3
AUTHORS: PION MASS

- LW: 4; minimum ~ 600 MeV
- NG: 2 or 3; min ~ 290 MeV
- BHLLS: 461 MeV and 525 MeV
- DLW: 3 sea + 6 valence; minimum ~ 275 MeV
- LCMO: 4; minimum ~ 290 MeV
- MDLW: 331 MeV

ALSO:
Na (and Gottlieb) PhD thesis, 2008 contains valuable data for mass differences of b and $\bar{b}b$ baryons.
AUTHORS: s MASS

LW: 2; interpolate to physical
NG: \sim\text{physical}
BHLLS: s quark is absent
DLW: \mathcal{O}(10\%) > \text{physical}
LCMO: \sim\text{physical}
MDLW: \mathcal{O}(10\%) > \text{physical}

ALSO:
\begin{align*}
\text{mass [GeV/c}^2\text{]} & \begin{array}{c}
\Omega_{\text{bbb}}^* \\
\Omega_{\text{bb}} \\
\Xi_{\text{bb}} \\
\Xi_{\text{bb}}^* \\
\Omega_{\text{bb}}^* \\
\end{array} \\
\end{align*}

\text{AUTHORS : b MASS} \\
\text{LW} : 3; \text{interpolate to physical} \\
\text{NG} : 1; \sim \text{physical} \\
\text{BHLLS} : \infty \\
\text{DLW} : \infty \\
\text{LCMO} : \infty \\
\text{MDLW} : 1; \text{physical}

\text{ALSO:} \\
\text{Na (and Gottlieb) PhD thesis, 2008 contains valuable data for mass differences of b and bb baryons.}
charmed baryons in context

spin 1/2

spin 3/2
LLOW use Symanzik gauge, staggered sea, domain wall valence, Fermilab charm, $a = 0.125$ fm, volume = $(2.4 \text{ fm})^3$, $m_{\pi} \geq 290$ MeV.

NG study many mass differences, including Ξ_{cc}^{*} and Ω_{cc}^{*}.

Flynn+, Mathur+, and Chiu+ are quenched results, including spin 3/2.

This is figure 14 of Liu, Lin, Orginos, Walker-Loud arxiv:0909.3294.
As $m_b \to \infty$, heavy quark symmetry \(\Rightarrow m(B^-) = m(B^{*-}), \quad m(B^0) = m(B^{*0}), \quad m(B_s) = m(B_s^*) \).

These doublets are named $1S$. Excited doublets are named $1P_-, 1P_+, 1D_-, 1D_+, \ldots 2S, \ldots$
Status of the static-strange ($\sim B_s$) spectrum for $N_f = 2$ in 2007

This is figure 21 of Koponen Phys.Rev.D78:074509,2008.

Warning: Do not attempt continuum extrapolations with different actions.
spectrum of static-light mesons with $N_f = 2$

JMSW use tree-level Symanzik gauge, two twisted mass light quarks, static "b", $a = 0.0855$ fm, volume = $(2.05 \text{ fm})^3$, $m_\pi \geq 300$ MeV.

MSW is similar but $a = 0.051, 0.064, 0.080$ fm and a partially-quenched s quark.
spectrum of bottom mesons

HPQCD: tune parameters to Υ, η_c, pion and kaon.
charmed mesons in context

pseudoscalars

vectors
Mass (MeV)

$D_s(0^-)$, $D_s^*(0^+)$, $D_{s1}(1^+)$, $D_{s1}(1^+)$, $D_{s1}^*(1^-)$

This is figure 5 of Dong, Alexandru, Draper, Liu, Li, Streuer, Zhang LAT2009.

Iwasaki gauge, domain wall sea, overlap valence, $a = 0.08$ fm, volume = $(2.7$ fm$)^3$, $m_\pi = 331$ MeV.
References mentioned on the preceding pages

Flynn, Mescia, Tariq JHEP0307:066, 2003
Burch, Chakrabarti, Hagen, Maurer, Schafer, Lang, Limmer (BGR) LAT2007 arxiv:0709.3708
Jansen, Michael, Shindler, Wagner (ETMC) LAT2008 arxiv:0808.2121
Na, Gottlieb LAT2008 arxiv:0812.1235
Liu, Lin, Orginos, Walker-Loud arxiv:0909.3294
Meinel, Detmold, Lin, Wingate LAT2009 arxiv:0909.3837
Dong, Alexandru, Draper, Liu, Li, Steuer, Zhang LAT2009 arxiv:0911.0868
Gregory, Davies, Follana, Gamiz, Kendall, Lepage, Na, Shigemitsu, Wong LAT2009 arxiv:0911.2133
Michael, Shindler, Wagner arxiv:1004.4235