Bottom Spectroscopy at CDF

C. Calancha (CIEMAT, SPAIN)
For the CDF Collaboration

XII International Conference on Meson-Nucleon Physics and the Structure of the Nucleon
June 2nd 2010
Outline

- Motivation
- Review on heavy hadrons spectroscopy during CDF Run II
- Latest results
 - Evidence of $Y(4140)$
 - Observation of Ξ_c^- and Ω_c^-
 - Polarization of $\Upsilon(1S)$
- Conclusion
Delivered luminosity: $\sim 8 \text{ fb}^{-1}$

Acquired luminosity: $\sim 7 \text{ fb}^{-1}$

CDF has excellent vertex and momentum resolution

This talk: analysis covering up to 4.2 fb^{-1}
Heavy Spectroscopy it is important:

- The study of heavy spectroscopy increases our knowledge on QCD.
- Study of B hadrons = study of (non-perturbative) QCD
- Heavy quark hadrons are the hydrogen atom of QCD

B hadrons = hydrogen atom of QCD
Tevatron is a suitable place to study bottom spectroscopy

- All B hadrons are copiously produced.
 - Some states are not accessible to B factories.

- They are produced boosted
 - separation between produced and decay B hadron vertex is measurable.
 - low p_T daughters are tracked.

- CDF has a strong program on heavy hadron spectroscopy that yielded many key results.
Heavy B Hadrons

Until 2006 $\Lambda^0_b = |bdu\rangle$ was only established B baryon

\Rightarrow Search for

$\Sigma^-_b = |bdd\rangle$

$\Xi^-_b = |bds\rangle$, $\Omega^-_b = |bss\rangle$

Total spin: $1/2$ (X_b) or $3/2$ (X^*_b):

$b\{qq\}$, $q = u, d, s$; $J^P = S_Q + s_{qq}$

- Σ^\pm_b and $\Sigma^{*\pm}_b$ discovered in 2007
- Ξ^-_b discovered in 2007
- Ω^-_b discovered in 2008
Review on CDF Charm and Bottom Results
Observed by CDF in 2007:
\[\Sigma_b^{(*)\pm} \rightarrow \Lambda_b^0 \pi^{\pm} \]
\[(\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^-, \Lambda_c^+ \rightarrow PK^- \pi^+) \]
Signals with \(> 5\sigma \) significance

<table>
<thead>
<tr>
<th>State (\Sigma_b)</th>
<th>Yield</th>
<th>(Q) or (\Delta \Sigma_b^{*}) (MeV/c(^2))</th>
<th>Mass (MeV/c(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Sigma_b^+)</td>
<td>(32^{+12+5}_{-12-3})</td>
<td>(Q_{\Sigma_b^+} = 48.5^{+2.0+0.2}_{-2.2-0.3})</td>
<td>(5807.8^{+2.0}_{-2.2} \pm 1.7)</td>
</tr>
<tr>
<td>(\Sigma_b^-)</td>
<td>(59^{+15+9}_{-14-4})</td>
<td>(Q_{\Sigma_b^-} = 55.9 \pm 1.0 \pm 0.2)</td>
<td>(5815.2 \pm 1.0 \pm 1.7)</td>
</tr>
<tr>
<td>(\Sigma_b^{*+})</td>
<td>(77^{+17+10}_{-16-6})</td>
<td>(\Delta \Sigma_b^{*} = 21.2^{+2.0+0.4}_{-1.9-0.3})</td>
<td>(5829.0^{+1.6+1.7}_{-1.8-1.8})</td>
</tr>
<tr>
<td>(\Sigma_b^{*-})</td>
<td>(69^{+18+16}_{-17-5})</td>
<td>(\Delta \Sigma_b^{*-} = 21.2^{+2.0+0.4}_{-1.9-0.3})</td>
<td>(5836.4 \pm 2.0^{+1.8}_{-1.7})</td>
</tr>
</tbody>
</table>
$B_c^{\pm} \rightarrow J/\Psi \pi^{\pm}$

$m = 6275.6 \pm 2.9 \ (stat) \pm 2.5 \ (syst) \ \text{MeV}/c^2$

Theoretical expectations:

- non-relativistic potential models: $6247 - 6286 \ \text{MeV}/c^2$
- lattice QCD: $6304 \pm 12^{+18}_{-0} \ \text{MeV}/c^2$
$X(3872) \rightarrow J/\psi \pi^+ \pi^-$

- $m(X(3872)) = 3871.61 \pm 0.16(\text{stat}) \pm 0.19(\text{syst})$ MeV/c2
 (more precise measurement)
- Angular analysis $\rightarrow J^{PC} = 1^{++}$ or 2^{--} only assumptions compatible with data

(CDF Run II
L \approx 780 pb$^{-1}$
- data points
acc. corrected prediction for

\[B^{**}_s \to B^+ K^- \]

\[B^{**}_s \to B^+ K^- \] and
\[B^{**}_s \to B^{**} K^- (B^{**} \to B^+ \gamma, \text{ with } \gamma \text{ missing}) \]

Two \(B^+ \) Decay channels explored:

- \(B^+ \to J/\psi K^+ (J/\psi \to \mu^+ \mu^-) \)
- \(B^+ \to D^0 \pi^+ (D^0 \to K^- \pi^+) \)

- \(m(B_{s1}) = 5829.41 \pm 0.21 \text{(stat)} \pm 0.14 \text{(syst)} \pm 0.6 \text{(PDG)} \text{ MeV}/c^2 \)
- \(m(B^{*}_{s2}) = 5839.64 \pm 0.39 \text{(stat)} \pm 0.14 \text{(syst)} \pm 0.5 \text{(PDG)} \text{ MeV}/c^2 \)

(first observation of \(B_{s1} \))
Evidence for $Y(4140) \rightarrow J/\psi \Phi$

- Since the discovery of $X(3872)$ more exotic mesons with charmonium-like decay modes have been observed.

- The possible interpretations beyond standard quark model such as hybrid ($q\bar{q}g$) and four-quark states ($q\bar{q}q\bar{q}$) motivates the interest in exotic mesons in the charm sector.

- The observation of $Y(3930)$ near the $J/\psi \Omega^-$ threshold motivates searches for similar phenomena near the $J/\psi \phi$ threshold.
Evidence for $Y(4140) \rightarrow J/\psi \Phi$

$B^+ \rightarrow Y(4140)K^+$; $Y(4140) \rightarrow J/\psi \Phi$
($J/\psi \rightarrow \mu^+\mu^-; \Phi \rightarrow K^+K^-$)

- $m = 4143.0 \pm 2.9$ (stat) ± 1.2 (syst) MeV/c2
- $\Gamma = 11.7^{+8.3}_{-5.0}$ (stat) ± 3.7 (syst) MeV/c2
- statistical significance 3.8 σ

\[\Xi_b^− \rightarrow J/\psi \Xi^− \]
\[(J/\psi \rightarrow \mu^+ \mu^−, \Xi^− \rightarrow \Lambda \pi^−) \]

\[\Omega_b^− \rightarrow J/\psi \Omega^− \]
\[(J/\psi \rightarrow \mu^+ \mu^−, \Omega^− \rightarrow \Lambda K^−) \]

\[\Xi^− \text{ and } \Omega^− \text{ long lived & charged} \]
\[(cτ(\Xi^−) \approx 5 \text{ cm}, cτ(\Omega^−) \approx 2.5 \text{ cm}) \]
- They are tracked in the silicon vertex detector
- This improve significantly the purity of the samples.

Likelihood method to extract mass, yield and significance:
\[\mathcal{L} = \prod_i^N (f_s G(m_i, m_0, s_m \sigma_i^m) + (1 - f_s) P^n(m_i)) \]
M(Ξ⁻) = 5790.9 ± 2.6(stat) ± 0.8(syst) MeV/c²
(Phys.Rev.D80,072003,2009)

Consistent with theory:
5790 – 5814 MeV/c²

lifetime measurement:
τ(Ξ⁻) = 1.56^{+0.27}_{-0.25} ± 0.02 ps
(first exclusive Ξ⁻ lifetime)
CDF observed Ω_b^- in 2009 (Phys.Rev.D80,072003,2009)

- $m(\Omega_b^-) = 6054.4 \pm 6.8 \text{(stat)} \pm 0.9 \text{(syst)}$ MeV/c2
- $\tau(\Omega_b^-) = 1.13^{+0.53}_{-0.40} \pm 0.8$ ps (first time)

Consistent with theory:

- theory expect: $6010 - 6070$ MeV/c2
\(\Omega_b^- \) Discrepancy DØ - CDF

\(\Omega_b^- \) first observation by DØ: \(6165 \pm 10 \) (stat) \(\pm 13 \) (syst) MeV/c²

6σ disagreement with CDF!

\[\Delta m = (111 \pm 12 \pm 14) \text{ MeV/c}^2 \]

Discrepancy also in \(\Omega_b^- \) production rate:

- DØ: \[\frac{f(b \rightarrow \Omega_b^-) B(\Omega_b^- \rightarrow J/\psi \Omega^-)}{f(b \rightarrow \Xi_b^-) B(\Xi_b^- \rightarrow J/\psi \Xi^-)} = 0.80 \pm 0.32^{+0.14}_{-0.22} \]

- CDF: \[\frac{\sigma B(\Omega_b^- \rightarrow J/\psi \Omega^-)}{\sigma B(\Xi_b^- \rightarrow J/\psi \Xi^-)} = 0.27 \pm 0.12 \pm 0.01 \]

→ DØ working on an update of \(\Omega_b^- \) with more data

Measured and Predicted Masses for the \(\Xi_b^- \) and \(\Omega_b^- \)

- Jenkins (PRD 77,034012(2008))
- Lewis et al, (PRD 79,014502(2009))
- Systematic Uncertainties
Vector meson production and polarization is discussed within the framework of non-relativistic QCD.

Theory predicts the vector meson polarization become transverse in the perturbative regime (at large p_T).

Recent CDF measurements of polarization for J/ψ and $\psi(2S)$ do not support this prediction.

It is helpfull for our understanding test if $\Upsilon(1S)$ also is in disagreement with the theoretical predictions.
\(\Upsilon(1S) \) Polarization

- \(\Upsilon(1S) \rightarrow \mu^+ \mu^- \)
- \(|y| < 0.6 \)
- \(2 < p_T(\Upsilon(1S)) < 40 \text{ GeV/c} \)

→ NRQCD expect transversal polarization at high \(p_T \)
→ CDF observe longitudinal polarization at high \(p_T \)

\(\theta^* \) is the angle between \(\mu^+ \) and \(\Upsilon(1S) \) lab direction in \(\Upsilon(1S) \) rest frame.
Conclusions
Conclusions

- Very rich heavy flavour program at CDF

- Many results on properties of heavy B hadrons:
 - Heavy baryons Σ^\pm_b, $\Sigma^{*\pm}_b$, Ξ_b^- established
 - Ω^-_b observation
 - $\Upsilon(1S)$ polarization

- CDF will keep as a reference in the study of heavy hadrons next years
 - CDF accumulates more data until end of Run II
CDF:

\[
\frac{\sigma(\Xi_b^-)B(\Xi_b^- \to J/\psi \Xi^-)}{\sigma(\Lambda_b^0)B(\Lambda_b^0 \to J/\psi \Lambda)} = 0.167^{+0.037}_{-0.025} \pm 0.012
\]

\[
\frac{\sigma(\Omega_b^-)B(\Omega_b^- \to J/\psi \Omega^-)}{\sigma(\Lambda_b^0)B(\Lambda_b^0 \to J/\psi \Lambda)} = 0.045^{+0.017}_{-0.012} \pm 0.004
\]

DØ:

\[
\frac{\sigma(\Xi_b^-)B(\Xi_b^- \to J/\psi \Xi^-)}{\sigma(\Lambda_b^0)B(\Lambda_b^0 \to J/\psi \Lambda)} = 0.28 \pm 0.09(stat)^{+0.09}_{-0.08}(syst)
\]

CDF, DØ results and theoretical prediction are consistent.
Excellent momentum resolution

particle ID (TOF & dE/dx)

Displaced track trigger and di-muon triggers