

Overview of N* Physics

- Why study excited states of the nucleon?
- What do we know about N* states?
- What are the goals of the N* program?
- What developments are required to reach these goals?
 - Experimental and theoretical

- What are their relevance to nuclear and strong-interaction physics?
 - The nucleus is a composite system
 - How much would we know about nuclei if we only studied their ground states?
 - The nucleon is a composite system
 - A full understanding of the nucleon requires knowledge of the spectrum and properties of its excited states

- What are their relevance to nuclear and strong-interaction physics?
 - The nucleon is a confined system
 - Confinement is poorly understood
 - Highly-excited states are sensitive to details of how quarks are confined
 - Is the confining interaction screened by quark pair creation?
 - Do such states decay strongly by string breaking?
 - Can we see evidence of excitation of the glue?

- What is the nature of the important effective degrees of freedom in lowenergy QCD?
 - High-energy and Q² (hard) scattering probes QCD at short-distance
 - With care can apply perturbative QCD
 - QCD becomes complex and interesting in the soft (non-perturbative) regime
 - Can we identify effective degrees of freedom and their interactions?
 - Can we see the soft to hard transition?
- The spectrum and properties of N* states are sensitive to their nature

Effective degrees of freedom

Low-energy QCD:

- Constituent quarks (CQs), confined by flux tubes?
- Confined CQs, elementary meson fields?
- Confined CQs, gas of instantons?
- Baryons and mesons interacting via chiral potentials?

P.Page, S.C. Flux-tube model of baryons & hybrids

Ichie, Bornyakov, Struer & Schierholz QQQ action density

D. Leinweber et al. QCD vacuum action density

- The N*s (hadrons) are unique: bound states of strongly-interacting, relativistic confined constituents
- Nucleons interact strongly in nuclei, but:
 - Can isolate relevant low-energy d.f. (nucleons)
 - Can directly probe two-body potential in experiment
 - Few body bound states of most A exist to test model N-N, N-N-N,... potentials
 - Can systematically expand around non-relativistic limit
 - Heavy effective degrees of freedom
 - Relatively large states

Uniqueness...

- Elementary d.f. are confined
 - Can only indirectly infer low-energy interaction
- Only qqq, $q\overline{q}$ exist as bound states
- Not non-relativistic systems (unless all quarks heavy)

N and Δ excited states

- PDG lists many excited N and Δ states discovered in π N elastic scattering
 - Notation is $L_{2I,2J}$
 - L is (π, N) relative angular momentum
 - I = total isospin (N=1/2, Δ =3/2), J is total spin

р	P_{11}	****	∆(1232)	P ₃₃	****
n	P_{11}	****	$\Delta(1600)$	P ₃₃	***
N(1440)	P ₁₁	****	$\Delta(1620)$	S ₃₁	****
N(1520)	D_{13}	****	$\Delta(1700)$	D22	****
N(1535)	S11	****	$\Delta(1750)$	P _m	*
N(1650)	5	****	A(1900)	5 at	**
N(1675)	Die	****	A(1005)	Pai Esc	****
N(1690)	E	****	$\Delta(1905)$	C35	****
N(1000)	- <u>-</u> 15		Z(1910)	P ₃₁	
N(1700)	D_{13}	0.00	$\Delta(1920)$	P ₃₃	***
N(1710)	P_{11}	***	$\Delta(1930)$	D_{35}	***
N(1720)	P_{13}	****	∆(1940)	D ₃₃	*
N(1900)	P ₁₃	**	$\Delta(1950)$	F37	****
N(1990)	F ₁₇	**	$\Delta(2000)$	F35	**
N(2000)	F ₁₅	**	$\Delta(2150)$	S ₃₁	*
N(2080)	D_{13}	**	$\Delta(2200)$	G37	*
N(2090)	S ₁₁	*	$\Delta(2300)$	H_{39}	**
N(2100)	P ₁₁	*	$\Delta(2350)$	D35	*
N(2190)	G17	****	∆(2390)	F37	*
N(2200)	D_{15}	**	$\Delta(2400)$	G20	**
N(2220)	H_{19}	****	$\Delta(2420)$	H ₃ ,11	****
N(2250)	G_{19}	****	$\Delta(2750)$	13.13	**
N(2600)	6.11	***	A(2950)	Kaar	**
N(2700)	Kern	**		^{13,15}	

N and Δ excited states...

 Orbital excitations (two distinct kinds)

 Radial excitations (also two kinds)

"Missing" resonances

- If we were able to classify resonances into SU(6)_{fs}⊗O(3) multiplets
 - Complicated by strong configuration mixing
- Good evidence for all negative parity N* (Δ *) resonances in lowest (N=1) band [SU(6)_{fs},L^P] = [70,1⁻]

Also ∆(1930)D₃₅ & ∆(1950)F₃₇ in N=3
band

"Missing" resonances

- Don't have enough states to fill out the positive-parity (N=2) multiplets
 - Not enough information to rule out a quark-diquark picture
 - Not enough information to establish or refute parity doubling higher in the spectrum

Isgur & Karl Koniuk and Isgur

What do we really know?

Table 1. The status of the N and Δ resonances. Only those with an overall status of *** or **** are included in the main Baryon Summary Table.

			Status as seen in —						
Particle	$L_{2I\cdot 2J}$	Overall status	$N\pi$	$N\eta$	ΛK	ΣK	$\Delta \pi$	$N\rho$	$N\gamma$
N(939)	P ₁₁	****							
N(1440)	P_{11}	****	****	*			***	*	***
N(1520)	D_{13}	alakakak	****	*			aakakak	****	dedede de
N(1535)	S_{11}	alayay ay	aatatak	atatak ak			*	akak	statest -
N(1650)	S_{11}	ana an	****	*	ak akak	**	alate de	at at	***
N(1675)	D_{15}	****	****	*	*		****	*	****
N(1680)	F_{15}	****	****				****	****	****
N(1700)	D_{13}	at the second	***	*	akak	*	**	*	**
N(1710)	P_{11}	***	***	**	**	*	**	*	***
N(1720)	P_{13}	****	****	*	**	*	*	**	**
N(1900)	P_{13}	**	**					*	
N(1990)	F_{17}	**	**	*	*	*			*
N(2000)	F_{15}	**	**	*	*	*	*	**	
N(2080)	D_{13}	**	**	*	*				*
N(2090)	S_{11}	*	*						
N(2100)	P_{11}	*	*	*					
N(2190)	G_{17}	****	****	*	*	*		*	*
N(2200)	D_{15}	**	**	*	*				
N(2220)	H_{19}	****	****	*					
N(2250)	G_{19}	****	****	*					
N(2600)	I_{111}	***	***						
N(2700)	K_{113}	**	**						

			Status as seen in —						
Particle	$L_{2I\cdot 2J}$	Overall status	$N\pi$	$N\eta$	ΛK	ΣK	$\Delta \pi$	$N\rho$	$N\gamma$
$\Delta(1232)$	P_{33}	****	****	F				****	
$\Delta(1600)$	P_{33}	***	***	0		***	*	**	
$\Delta(1620)$	S_{31}	****	****	r		****	****	***	
$\Delta(1700)$	D_{33}	****	statestatesta	b	*	statest	state -	***	
$\Delta(1750)$	P_{31}	*	*	i					
$\Delta(1900)$	S_{31}	**	**	(1 *	*	**	*	_
$\Delta(1905)$	F_{35}	****	****		d*	**	**	***	
$\Delta(1910)$	P_{31}	****	****		e:	*	*	*	
$\Delta(1920)$	P_{33}	***	***		*n	**		*	
$\Delta(1930)$	D_{35}	***	statest -		*			**	
$\Delta(1940)$	D_{33}	*	*	\mathbf{F}					
$\Delta(1950)$	F_{37}	****	antoine	0	*	appear	*	****	
$\Delta(2000)$	F_{35}	**		r			**		
$\Delta(2150)$	S_{31}	*	*	ь					
$\Delta(2200)$	G_{37}	*	*	i					
$\Delta(2300)$	H_{39}	**	**	(1				
$\Delta(2350)$	D_{35}	*	*		d				
$\Delta(2390)$	F_{37}	*	*		е				
$\Delta(2400)$	G_{39}	**	**		n				
$\Delta(2420)$	H_{311}	****	****					*	
$\Delta(2750)$	I_{313}	**	**						
$\Delta(2950)$	K_{315}	**	**						

**** Existence is certain, and properties are at least fairly well explored.

*** Existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions, *etc.* are not well determined.

** Evidence of existence is only fair.

Evidence of existence is poor.

A paragraph of caution

• From the PDG note on N and Δ resonances written by G. Hohler and R. Workman (GWU) in 2002:

"In the search for 'missing' quark-model states, indications of new structures occasionally are found. Often these are associated (if possible) with the one- and two-star states listed in Table 1. We caution against this: The status of the oneand two-star states found in the Karlsruhe-Helsinki (KH80) and Carnegie-Mellon/Berkeley (CMB80) fits is now doubtful."

More caution

"I can make no objective statement that any of the states S₁₁(2090) [3rd N1/2⁻], P₁₁(2100) [3rd N*1/2⁺], and D₁₃(2080) [3rd N3/2⁻] exist."

"1* states are a dream, 2* states are a fantasy."

Steve Dytman, 2005

Scattering data analysis

- How do we extract baryon resonance parameters from data?
- Data is πN and $\gamma N \rightarrow \pi N$, $\pi \pi N$ (ρN , $\Delta \pi$,...), $\pi \pi \pi N$ (ωN , $\rho \Delta$...), ηN , $K\Lambda$, $K\pi \Lambda$ ($K\Sigma$),...
 - For $\pi N \rightarrow \pi N$ have nearly complete data (missing some polarization observables); some inconsistencies
 - EM scattering labs (JLab, Mainz, Bonn,...) are rapidly improving γN data in various final states, with beam and recently target polarization
- Find the mass, total width, final state channel couplings $\gamma_{B'M}$ of each resonance B with a given J^P
 - Recently done in two steps:
 - Partial-wave analysis (PWA) of scattering observables
 - Resonance parameters are extracted from fitting a model of scattering T matrix to PW amplitudes

GWU PWA / Pitt-ANL fit to $\pi N{\rightarrow}~\pi N$

• Focus on $J^{P} = 3/2^{-}$ (D₁₃ in πN), where PDG lists N(1520)****, N(1700)***, N(2080)**

- No solid evidence for N(1700) in $\pi N{\rightarrow}\pi N$

KSU isobar / Pitt-ANL fit, $\pi N \rightarrow (\pi \Delta)_D$

• Masses, widths and couplings of states consistent between πN elastic and $\pi N \rightarrow \pi \Delta$

- D₁₃(1700) weakly present in $\pi\Delta$ and also KA, with π and γ beams

Simon Capstick, Florida State University

CMB energy-dependent PWA

- Points are CMU-LBL PWA of same $\pi N \to \pi N$ elastic data, curves are Pitt-ANL fit to GWU PWA

KH80 energy-dependent PWA

- Points are KH80 energy-dependent PWA of same $\pi N \rightarrow \pi N$ elastic data, curves are Pitt-ANL fit to GWU PWA

Δ model states and N π couplings

What do we know about N* states?

- EM transition amplitudes
 - Photo-couplings to proton and neutron
 - Allow calculation of partial widths $N^*\!\!\rightarrow \gamma N$
 - Resolved into helicity amplitudes $A^{p,n}_{1/2}$ and $A^{p,n}_{3/2}$ (photon spin || or anti-|| nucleon spin)
 - Include the relative signs of $\gamma N \to N^{\bigstar} \to \pi N$
 - Largely from $\gamma N \to \pi N$
 - also $\gamma N \rightarrow \eta N$ [S11(1535)]
 - This yields different photo-coupling $A_{1/2}^{p}$!

What do we know about N* states?

- EM transition form factors
 - Single- π electro-production form factors

• $e^-N \rightarrow e^-N^* \rightarrow e^-\pi N$

- High-precision amplitudes published for $\Delta(1232)$ up to 6 GeV²
- Amplitudes published at low and intermediate Q^2 for N(1440)P₁₁, N(1535)S₁₁, N(1520)D₁₃
 - Analysis near completion for higher Q^2 values, and for $N(1680)F_{\rm 15}$
- Sensitive to structure of nucleon and N*
 - Also to reaction mechanism !
 - Can probe evolution from soft to hard physics

Δ (1232) EM transition form factors

Δ (1232) EM transition form factors

Ratios of small E1+,S1+ amplitudes to dominant M1+ amplitude

$S_{11}(1535)$ EM transition form factor

What are the goals of the N* program?

- Firmly establish the existence of several positive-parity baryons (esp. N* above 1800 MeV) that are currently missing or needing confirmation
 - Evidence for same state (mass, total width) in at least two channels
 - Extract photo-couplings and strong decay amplitudes into each channel

What are the goals of the N* program?

- Find convincing evidence for additional highly-excited (N=3 band) negative-parity baryons
- Extend measurements of EM transition form factors
 - Higher Q²
 - Second resonance in a given partial wave
 - Significant differences in structure?

Developments required to meet our goals

- Experiment
 - Photo- and electro-production:
 - Polarization measurements (target, beam, recoil) currently underway and planned
 - Extraction of amplitudes for production off neutron
 - Talks in next session (1)
- Hadronic beams
 - E.g. a few hours of running with modern detection systems would replace world data set on $\pi N \rightarrow \pi \pi N$
 - See Winston Roberts' talk

Required developments...

- Theory
 - Maintain and extend database and PWA for hadronic and EM production
 - Develop unitary, couple-channel models of EM and strong transitions to multiparticle final states
 - Strong focus of this afternoon's second session and tomorrow morning's session

Required developments...

- Theory...
 - Develop ab-initio and model approaches to the spectrum and properties of N*s
 - Lattice QCD
 - Chiral models based on hadronic d.f., constituent quark models
 - Predict EM and strong transition form factors (models and lattice QCD)
 - Direct comparison to extracted values
 - Required input for calculation of rescattering in dynamical models

Backup slides...

OBE spectrum...

- OBE Results for spectrum: Glozman, Plessas, Theussl, Wagenbrunn, & Varga

Instanton-induced interactions...

- spectrum
 of ∆* only
 from
 confining
 potential
- Blask, Bohn, Huber, Metsch & Petry

N* spectrum from 't Hooft's force

Simon Capstick, Florida State University