Highlights of N* experiments at ELSA

Friedrich Klein
Physikalisches Institut
University of Bonn
Highlights of N* experiments at ELSA

- ELSA facility
- Selected recent data
- Projects
NSTAR Mission

• Find laws of nature for hadron formation

• Identify relevant degrees of freedom (constituents and fields) in hadron-spectrum

• search and characterize resonances through excitation and decay

• study and analyze meson production quanta of hadronic interaction
Electromagnetic Approach

Electro-/photoproduction of mesons of various spin, flavour, ...

- measure (over-)complete sets of observables amplitudes feasible for pseudoscalar mesons maximize constraints, minimize redundancy

- well chosen cases to get extra clues e.g. omega-production, -modification, -mesic nucleons, ...
Meson photoproduction cross sections

\[\gamma + p \rightarrow X \]

\[\gamma + p \rightarrow p + \pi^- + \pi^+ \]

\[\gamma + p \rightarrow p + \pi^0 \]

\[\gamma + p \rightarrow p + \pi^0 + \pi^0 \]

\[\gamma + p \rightarrow K^+ + \Lambda \]

\[\gamma + p \rightarrow p + \eta \]
Experimental Toolbox

Successful efforts ➔ comprehensive toolbox for complete experiments

- pol’d e- and γ-beams in resonance region
- pol’d obstruction-less targets (longitudinal + transverse)
- High acceptance detectors w/ excellent sensitivity to ch’s of high impact for resonance search

Available @ Jlab, MAMI, LEPS, ELSA, …
Electron Stretcher Accelerator (ELSA, Univ. Bonn)

SAPHIR, Crystal Barrel, now BGO-OD

booster synchrotron 0.5 - 1.6 GeV

Electron Stretcher Accelerator (ELSA, Univ. Bonn)

W. Hillert, …
ELSA Beam Parameters

Energy Range: \(0.8 \text{ GeV} < E < 3.4 \text{ GeV}\)

Bunch Length: \(1 \text{ mm} < \sigma < 6 \text{ mm}\)

Horizontal Emittance: \(56 \text{ nm} \cdot \text{rad} < \varepsilon_h < 1 \text{ \mu m} \cdot \text{mrad}\)

Vertical Emittance: \(\varepsilon_v < 0.1 \cdot \varepsilon_h\)

Bunch Spacing: \(\Delta s = 2\text{ns}\)

External Current: \(1 \text{ fA} < I < 1 \text{ nA}\)

Duty Factor: \(70\% < DC < 90\%\)

Polarization: \(P > 65\% @ E < 2.4 \text{ GeV}\)
Photoproduction of $K^+ \Lambda(1520)$ @ SAPHIR

Prof. W.J. Schwille
Deceased in 2010

F.W. Wieland et al. EPJA (2011) 47

σ, t-distributions and decay angular distributions determined

all 4 decay channels agree in σ, but deviate from LAMP2 (1980) →

cf. Hosaka, NSTAR2009
Crystal Barrel / Taps set-up

- Polarized Target
- Forward Detector
- Gas-Cherenkov
- Crystal Barrel + Inner detector
- TAPS
- Photon intensity monitor
- Beam Dump
- Electron beam
- Goniometer
- Tagging system
Quasi-free photoproduction of η-mesons off the deuteron

no cut on spectator momentum

spectator momenta $p < 100$ MeV

I. Jaegle et al., subm. to EPJ A

position: $W \approx 1.67$ GeV
width: $\sigma \approx 25$ MeV (FWHM)

narrow structure in excitation fct. of $\gamma n \rightarrow n \eta$:
- GRAAL: $W \approx 1680$ MeV, $\Gamma < 30$ MeV
- Tohoku-LNS: $W \approx 1666$ MeV, $\Gamma < 40$ MeV
- ELSA: $W \approx 1685$ MeV, $\Gamma < 50$ MeV
- MAMI-C: $W \approx 1675$ MeV, $\Gamma < 40$ MeV
Quasi-free photoproduction of η-mesons off the deuteron

I. Jaegle et al., subm. To EPJ A
Observables in meson photo production

single pseudoscalar meson photo production

<table>
<thead>
<tr>
<th>photon</th>
<th>target</th>
<th>recoil</th>
<th>(target + recoil)</th>
</tr>
</thead>
<tbody>
<tr>
<td>unpolarised</td>
<td>σ_0</td>
<td>0</td>
<td>T 0</td>
</tr>
<tr>
<td>linearly pol.</td>
<td>-Σ</td>
<td>H (-P)</td>
<td>-G</td>
</tr>
<tr>
<td>circularly pol.</td>
<td>0</td>
<td>F 0</td>
<td>-E</td>
</tr>
</tbody>
</table>

- γ_{lin}: Linearly polarised photons
- γ_{circ}: Circularly polarised photons
- $P_{T,z}$: Longitudinally polarised protons
- P_{Y}^{lin}, P_{Y}^{circ}: Polarised photons

Example: Longitudinally polarised protons: $P_{T,z}$
Circularly polarised photons: P_{Y}^{circ}

$$d\sigma = d\sigma_0 \left[1 - P_{Y}^{\text{lin}} \left(\Sigma \cos 2\Phi - G P_{T,z} \sin 2\Phi \right) - E P_{Y}^{\text{circ}} P_{T,z} \right]$$

Crystal Barrel / Taps set-up

- Polarized Target
- Crystal Barrel + Inner detector
- Forward Detector
- Gas-Cherenkov
- TAPS
- electron beam
- Gonimeter
- Tagging system
- Photon intensity monitor

Graph showing relative intensity and polarisation grade vs. photon energy.
Polarized Target w/ Crystal Barrel

Running time over 2500 hours in year 2008
over 2200 hours in year 2009

High. polarization

\[P_+ = 83.4\% \]
\[P_- = -80.9\% \]

fast build-up
(May/June)
05h04min

Pol.-time
06h10min

05h39min (August)
Polarised target

Longitudinally polarised

Solenoid with low mass layer

E, G, P data taken

Transversely polarised

Race track coil

T, P and H data taken

H. Dutz and S. Goertz
Double polarisation Observable G in $\gamma + p \rightarrow p + \pi^0$

$E_\gamma = 733$ MeV

$E_\gamma = 767$ MeV

$E_\gamma = 800$ MeV

$E_\gamma = 833$ MeV

$E_\gamma = 867$ MeV

$E_\gamma = 900$ MeV

$E_\gamma = 933$ MeV

$E_\gamma = 967$ MeV

$E_\gamma = 1000$ MeV

$E_\gamma = 1033$ MeV

$E_\gamma = 1067$ MeV

$E_\gamma = 1100$ MeV

$\gamma p \rightarrow p \pi^0$

Maid | Said | BnGa | A. Thiel (Bonn)
Beam asymmetry Σ in $\gamma + p \rightarrow p + \omega$
Crystal Barrel / Taps set-up

- Polarized Target
- Crystal Barrel + Inner detector
- Forward Detector
- Gas-Cherenkov
- TAPS
- electron beam
- Goniometer
- Tagging system
- Photon intensity monitor
- Beam Dump
- Graph with $\frac{P_\gamma}{P_e}$ on the y-axis and $\frac{E_\gamma}{E_e}$ on the x-axis.
Helicity dependent total cross section $\gamma + p \rightarrow p + \eta$

circularly polarised photon beam
longitudinally polarised proton target

Preliminary results (J. Müller)

\begin{align*}
\sigma_{1/2} & \quad \text{photonspin} \quad 1 \quad \text{nucleon-spin} \quad -1/2 \\
\sigma_{3/2} & \quad \text{photonspin} \quad 1 \quad \text{nucleon-spin} \quad +1/2
\end{align*}

$S_{11} (1535)$

$P_{11} (1710)$

$P_{13} (1720)$

$N_{1/2} - N_{3/2}$

$\sigma_{1/2} - \sigma_{3/2}$ [\mu b]

no acceptance correction

E_γ [MeV]

$Maid$

$Said$

$BnGa$

$BnGaCur$

F. Klein – N* 2011
Polarization observables I^s and I^c → contr. Sokhoyan

\[
\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_0 \left\{ 1 + \delta_I [I^s \sin(2\phi) + I^c \cos(2\phi)] \right\}
\]

\[
I^c(\Phi^*) = I^c(2\pi - \Phi^*)
\]
\[
I^s(\Phi^*) = -I^s(2\pi - \Phi^*)
\]

\[\pi^0\] in the production plane

\[\Gamma^s\]

\[\Gamma^{(c)}(\Phi^*) = \Gamma^{(c)}(\Phi^* + \pi)\]

proton in the production plane

\[\Gamma^s\]

\[
\begin{align*}
I^c &= -0.078 \pm 0.053 \\
I^s &= 0.194 \pm 0.053 \\
I^c &= -0.093 \pm 0.054 \\
I^s &= -0.2065 \pm 0.054
\end{align*}
\]

36° < Φ^* < 54°

306° < Φ^* < 324°
Double polarisation observable E in $\gamma + p \rightarrow p + \omega$

$\cos \theta^\omega$

E

1109 MeV < E_γ < 1200 MeV

1200 MeV < E_γ < 1300 MeV

1300 MeV < E_γ < 1400 MeV

1400 MeV < E_γ < 1500 MeV

1500 MeV < E_γ < 1600 MeV

1600 MeV < E_γ < 1700 MeV

1700 MeV < E_γ < 1800 MeV

1800 MeV < E_γ < 1900 MeV

1900 MeV < E_γ < 2000 MeV

Photoproduction of $K^0\Sigma^+$ @ CBELSA/TAPS

6 particles identified (red)
7 particles identified (green)
All events

R Ewald, PhD thesis, Universität Bonn, 2010

→ contrib. T. Jude
Cross sections $\gamma p \rightarrow K^0 \Sigma^+$

Cross section measurements suggest strong t-channel dependency

Average $K^*\Sigma^+$ / $K^*\Lambda$ threshold

Black points: Ewald [1]
Red points: Casteljins [2]
Taken from [1]

Beam-target double polarisation observable E in $K^0 \Sigma^+$

H. Schmieden: does c contribute to $K^0 \Sigma^+$???

check E

Diagram:

- $\gamma$$
- K$\n- K^*
- K\n- Λ / Σ
- Λ / Σ

Counts vs K^0 invariant mass [MeV]

1.25 - 1.50 GeV

Parallel ($\sigma_{3/2}$)

Anti-Parallel ($\sigma_{1/2}$)

\rightarrow contrib. T. Jude
ω meson line shape near the production threshold

\[E_v = 900 \text{ – } 1300 \text{ MeV}; \quad E_{vN}^{\text{thr}} = 1109 \text{ MeV} \]

\[\omega \text{ signal shows no significant deviation from the reference signals} \]

\[\text{higher statistics needed} \]

\[\rightarrow \text{BGO-OD} \]

comparison of the \(\omega \) line shape to the GiBUU calculations (J. Weil)

experimental data do not allow to distinguish between the various theoretical scenarios also near threshold!
New BGO - OD set-up

- ToF Walls
- Drift Chambers
- Dipole Magnet
- Scifi2 & MOMO
- Open Dipole – forward spectrometer
- Beam dump
- Photon tagging
- BGO – calorimeter
- MWPCs – inner tracking
- Si strips – fw tracking
- Target system
- Electron beam

F. Klein – N* 2011
BGO - OD experiment

Focus on vector meson production, recoil polarisation, strangeness photoproduction, excited hyperons, eg. $\Lambda(1405)$
BGO - OD experiment

member institutions:

Univ. of Bonn, Phys. Inst.
Univ. of Bonn, HISKP
Univ. of Messina, Italy
Univ. of Edinburgh, UK
Univ. of Moscow, Russia
INFN-LNF Frascati, Inst. Sup. di Sanità & INFN Roma1, Italy
Univ. of Pavia, INFN Pavia, Univ. of Torino & INFN Torino, Italy
Univ. of Roma “Tor Vergata” and INFN Roma2, Italy
Nat. Sc. Center Kharkov Inst. of Phys. & Techn., Ukraine
Petersburg Nucl. Phys. Inst. (PNPI), Gatchina, Russia
Univ. of Basel, Switzerland
Contributions to NSTAR2011 from ELSA

Tue
• **T. Jude** - Double polarization asymmetry in neutral kaon production w/ CBELSA/TAPS

Wed
• **J. Hartmann** - Double polarization observables in meson photoproduction w/ CBELSA/TAPS
• **N. Sparks** - π^0 photoproduction off the proton at forward angles using CBELSA/TAPS

Thu
• **V. Sokhoyan** - Polarization observables I_s and I_c in $\gamma p \rightarrow p\pi^0\pi^0$ with CBELSA/TAPS
• **H. Eberhard** - Measurement of polarization observables in ω-photoproduction
• **A. Wilson** - Photoproduction of $\pi 0\omega$ meson pairs off the proton at CBELSA/TAPS
• **I. Jaegle** - Meson photoproduction off light nuclei
Summary

• tools for double polarization exp‘s w/ high acceptance for photons

• single & double meson production done w/ CBELSA/TAPS
d_\sigma, \Sigma, E, G, P, H, T for \pi and \eta on proton

• neutron under attack

• second complementary spectrometer BGO-OD commissioning better control and inclusion of charged final states focus on recoil polarimetry, strangeness, \omega, medium effects, …
Summary

• tools for double polarization exp‘s w/ high acceptance for photons

• single & double meson production done w/ CBELSA/TAPS
 dσ, Σ, E, G, P, H, T for π and η on proton

• neutron under attack

• second complementary spectrometer BGO-OD commissioning
 better control and inclusion of charged final states
 focus on recoil polarimetry, strangeness, ω, medium effects, …

Personal wishes and hopes on N*-activities:
 avoid costly stamp collection …
 theorists, help orthogonalize exp’s !!

 breakthrough, please come soon!